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ABSTRACT
Multimodal medical data, such as brain scans and non-imaging
clinical records like demographics and neuropsychology exami-
nations, play an important role in diagnosing neurodegenerative
disorders, e.g., Alzheimer’s disease (AD) and Parkinson’s disease
(PD). However, the disease-relevant information is overwhelmed
by the high-dimensional image scans and the massive non-imaging
data, making it a challenging task to fuse multimodal medical in-
puts efficiently. Recent multimodal learning methods adopt deep
encoders to extract features and simple concatenation or align-
ment techniques for feature fusion, which suffer the representation
degeneration issue due to the vast irrelevant information. To ad-
dress this challenge, we propose a deep self-weighted multimodal
relevance weighting approach, which leverages clustering-based
constrastive learning and eliminates the intra- and inter-modal
irrelevancy. The learned relevance score is integrated as a gate
with a multimodal attention transformer to provide an improved
fusion for the final diagnosis. Our proposed model, called SMART
(Self-weighted Multimodal Attention-and-Relevance gated Trans-
former), is extensively evaluated on three public AD/PD datasets
and achieves state-of-the-art (SOTA) performance in the diagnostics
of neurodegenerative disorders. Our source code will be available.

KEYWORDS
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1 INTRODUCTION
Neurodegenerative disorders [19], e.g., Alzheimer’s disease (AD) [9,
49], Parkinson’s disease (PD) [8, 26], affect millions of people world-
wide; unfortunately, they are currently incurable. However, early
diagnosis of neurodegenerative diseases is crucial for intervention
and provides people affected by dementia the opportunity to access
early treatments and make plans for future care. In the clinical
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Figure 1: Conceptual comparison between prior state-of-the-
art methods (top) [5, 60, 64] and our approach (bottom) for
the multimodal diagnostics of neurodegenerative disorders.

diagnosis of neurodegenerative disorders, medical data commonly
exhibits a multi-modal nature, including medical image scans like
brain MRIs and non-imaging clinical information, e.g., demograph-
ics, serological tests, neuropsychology examinations, etc. The abun-
dance of high-dimensional medical scans and vast clinical data
overwhelms the disease-related information. Therefore, how to
distinguish and fuse task-discriminative information among these
multimodal clinical data is essential but challenging for an accurate
computer-aided diagnosis of neurodegenerative disorders.

In the early stage, machine learning-based methods require man-
ual selection of disease-related features for diagnosis [40, 47, 56];
however, the related expert knowledge is too limited to support an
accurate selection of diagnostic features. Along with the popular-
ity of deep learning (DL) approaches, automatic feature selection
has become a top choice, and most existing methods completely
depend on DL techniques to handle the feature selection and fusion
task among massive information. As illustrated in Fig. 1, a typical
approach adopted by most researchers [15, 28, 64] is extracting
features for imaging and non-imaging data separately and then
concatenating them for diagnostic classification. Since task-related
and irrelevant information is intermingled, it is exhausting and
overwhelming to fuse so much information for diagnosis. Also, due
to the space discrepancy of multimodal features and the demon-
strated effectiveness of recent vision language pre-training (VLP)
models, e.g., CLIP [45], ALBEF [32], BLIP [31], a couple of recent
works, e.g., MedCLIP [55], Alifuse [5], align imaging features to the
text feature space of the non-imaging data and fuse them using a
pre-trained large language model or the cross-attention techniques.
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However, VLP-based models prefer paired image and text data,
such as medical scans and reports [58], where texts describe the
associated medical images. Differently, the non-imaging data for
clinical diagnosis is partially paired with medical scans and pro-
vides complementary diagnostic information about a subject. More
importantly, the alignment between imaging and non-imaging hap-
pens at the image level, it lacks the fine-grained features that help
fuse partially-paired data and contribute to the disease diagnosis.

Considering the existence of a large amount of irrelevant in-
formation for disease diagnosis in both imaging and non-imaging
data, in this paper, we explore the possibility of automatically high-
lighting and fusing the multimodal features that have a strong
correlation with the target disease, as shown at the bottom of Fig. 1.
The disease-irrelevant information exists at both intra-modal and
inter-modal levels. To eliminate this irrelevancy issue, we propose
a Self-supervised Multimodal Relevance Weighting (SMRW) mod-
ule, which hierarchically clusters relevant information and learns
a relevance score vector to weight within and among multimodal
data. Guided by the learned weights, the multimodal feature fusion
becomes relatively easy via a transformer with attention mecha-
nisms. Hence, we propose a Multimodal Relevance-gated Attention
Transformer (MRAT), which involves intra-modal and inter-modal
relevance scores in calculating self-attention and image-to-text and
text-to-image cross-attention, resulting in an efficient relevance-
gated fusion for the diagnostic prediction. Figure 2 depicts the
overview architecture of our proposed model, i.e., Self-weighted
Multimodal Attention-and-Relevance gated Transformer (SMART),
which is applied to the diagnostics of neurodegenerative disorders.

Overall, the contributions of this paper are summarized below:
(1) We propose a novel framework SMART for multimodal neu-

rodegenerative disorder diagnosis. Extensive experiments on three
public benchmark datasets for neurodegenerative disorders like
AD and PD demonstrate the superiority of our approach over ten
baselines, including previous SOTA methods.

(2) We propose a self-weighted multimodal representation learn-
ing technique SMRW, which adopts a self-supervised two-level
contrastive learning to automatically cluster and weight relevant
information at both intra-modal and inter-modal levels. A follow-up
relevancy-gated attention module allows an efficient multimodal
feature fusion for the final prediction.

(3) Thanks to the relevancy score learned by SMRW, our model is
explainable to some extent while having a high diagnostic accuracy.
Also, our model is theoretically designed for multiple modalities,
which could include more modalities like audio to fully leverage all
possible medical information.

2 RELATEDWORK
2.1 Vision-Language Model (VLM)
Vision-language representation learning aims to jointly encode
vision and language in a fusion model, which has been demon-
strated to learn uni-modal and multi-modal representations with
superior performance on downstream tasks [32, 45]. CLIP [45] and
ALIGN [24] are dual-encoder models that are pre-trained with con-
trastive learning objectives on image-text pairs. They learn strong
image and text unimodal representations with simple multimodal

alignment, which is not enough to handle tasks that require com-
plex reasoning. ALBEF [32], CoCa [61], and BLIP [31] promote a
deeper interaction between images and text using a deep fusion
encoder with cross-modal attention. These models achieve better
performance for vision-language classification by learning efficient
multi-modal representations. Medical image-text representation
learning is investigated based on contrastive learning as well, such
as MedCLIP [55], CheXZero [52], and MedViLL [38]. However,
these methods prefer modeling on paired image and text data, such
as medical scans and reports.

2.2 Multimodal Learning in Medical Diagnosis
In medical diagnosis, fully leveraging medical data collected from
multiple modalities becomes a popular choice, since multimodal
machine learning models can leverage more information and more
easily identify patterns of diseases, compared to using a single
modality [2, 7, 12, 35, 51, 59]. A straightforward way for multi-
modal learning is to concatenate features and feed them into a
classifier such as SVM or MLP for prediction [14, 21, 40, 43, 48].
To improve the model performance, feature selection methods are
applied to reduce the feature dimension [18, 47, 63, 65]. Compared
to machine learning methods, deep learning methods are feasible
to capture hierarchical representations and achieve better perfor-
mances. Kim et al. [28] propose a heterogeneous graph learning
method to fuse the multimodal medical data. Zhou et al. [64] in-
troduces the IRENE model based on Transformers, which fused
representations among modality-specific low-level embeddings for
diagnosis. Also, multimodal data like images and genomes have
been used in diagnostics of breast cancer [15]. However, most of
these studies potentially ignore the heterogeneity between modal-
ities due to a lack of ability to fully explore the task relevance in
intra-and-inter modalities, resulting in sub-optimal results.

2.3 Contrastive Learning
Contrastive learning [17, 41, 44] pulls positive pairs closer and
pushes negative pairs farther contrastively to obtain discriminative
features. In addition to the single-modality representation learn-
ing, contrastive methods for multiple modalities are also widely
explored. Multi-modality data often contain two or more modali-
ties and they naturally form multiple inputs. The common meth-
ods [3, 24, 27, 32, 45, 50, 62] leverage the cross-modal contrastive
matching to align two different modalities and learn the inter-
modality correspondence. However, since the semantic consistency
among intra-modal and inter-modal is not guaranteed, it is chal-
lenging to capture the useful information in multimodal data, while
considering the side effects of irrelevant information. For example,
Yang et al. [60] leverages the maximization of mutual information
to conduct consistency learning across different views and aims to
achieve a provable sufficient representation. Xu et al. [57] observe
the conflict between consistency and reconstruction objectives
in encoder-decoder frameworks and propose to learn multi-level
features for multiple modalities. Li et al. [34] propose leveraging
domain-specific medical knowledge as guiding signals to perform
multi-level contrastive learning. Although satisfactory results are
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Figure 2: (a) An overview of our proposed SMART network for neurodegenerative disorder diagnosis, where two visual and
textual branches are jointly trained. The output of the fusion branch predicts the diagnostic outcome. (b) Our Multimodal
Relevance-Gated Attention Transformer (MRAT) takes the features and task-relevance distributions from two modalities as
input and generates disease probability. (c) A detailed diagram of Self-supervised Multimodal Relevance Weighting (SMRW)
works in a self-weighted mode to summarize task-relevant information within and between image and text modalities.

achieved in many cases, the multimodal representation degenera-
tion is still not well considered and addressed. Recently, new per-
spectives of deep clustering have been offered by the development of
contrastive clustering [33]. In this paper, we propose a cluster-based
self-weighted intra-modal and inter-modal contrastive learning to
address the irrelevancy issue in multimodal medical diagnosis.

3 METHODOLOGY
Figure 2 presents the architecture framework of our SMART net-
work. The input to our model is the multi-modality (e.g., brain struc-
ture MRI and clinical transcribed text in our case). Our model in-
cludes three components: the feature encoding, the Self-supervised
Multimodal Relevance Weighting (SMRW) module, and the Multi-
modal Relevance-gated Attention Transformer (MRAT) module.

3.1 Feature Encoding
We extract unimodal features for brain structure MRI and text-
described clinical data with independent encoders to obtain their

hidden representations. Following [64], we use ViT [11] as the fea-
ture encoder for each patch of brain structure MRIs and BERT [10]
as the feature encoder for each sentence of the textual description
of non-imaging clinical data. Specifically, we denote the generated
image and text features as I ∈ R𝑆𝐼 ×𝐷𝐼 and T ∈ R𝑆𝑇 ×𝐷𝑇 , where 𝑆𝐼
indicates the number of patches of a medical image and 𝑆𝑇 indicates
the number of sentences of the clinical text, respectively. Features of
different modalities are then projected into a common embedding
space with the same dimension using a linear fully connected layer.

3.2 Self-supervised Multimodal Relevance
Weighting (SMRW)

In multi-modality learning, variations in data quality within and
acrossmodalities are common, posing a risk of representation degra-
dation when merging data or features. Specifically, this degenera-
tion makes the representation of task-relevant data mediocre, po-
tentially leading to the loss of crucial discriminative information, as
observed in Fig. 3. We take a multi-modal dataset ADNI [42] as an
example. We first evaluate the representation quality of containing
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Figure 3: Diagnostic accuracy on the ADNI dataset using vari-
ous data typeswithin amodel and across differentmodalities.

semantics of different categories of clinical information except for
image scans, including SC (Subject Characteristics), MH (Medical
History), NS (Neuropsychology Scores), BA (Blood Analysis), GN
(Genetic), and All of them. Concatenating all categories of clinical
semantic information performs worse than simply using NS in AD
diagnosis. Similar phenomenon is observed in learning multimodal
representation using images and text.

To mitigate such representation degeneration issues in multi-
modal learning, we seek a technique that upgrades the task-relevant
information while downgrading the task-irrelevant one, so that all
intra-modal and inter-modal relevant information can be high-
lighted for further fusion. Hence, as shown in Fig. 2(c) we propose
a Self-supervised Multimodal Relevance Weighting (SMRW) mod-
ule based on cluster contrastive learning, which learns distinct
representations for intra- and inter-modal relevant information.

3.2.1 Intra-modal Contranstive Learning. Consider an input X =

{X𝑚 ∈ R𝑁×𝑆𝑚×𝐷𝑚 }𝑀
𝑚=1 with𝑀 modalities (e.g.𝑀 = 2, image and

text modalities in our case) and N instances (e.g. the number of
patients in our case); 𝑆𝑚 denotes the total items (e.g. image patches
or text sentences) of the 𝑚-th modality, 𝐷𝑚 denotes the feature
dimension of the 𝑚-th modality. X𝑚,𝑠 = [x𝑚,𝑠1 , x𝑚,𝑠2 , ..., x𝑚,𝑠

𝑁
] de-

notes the instance collection of x𝑚,𝑠
𝑖

from the𝑚-th modality’s 𝑠-th
sub-items of the 𝑖-th subject. We designate the encoder E𝑚 and the
decoder D𝑚 for the specific𝑚-th modality. Encoder E𝑚 projects
the raw data into modality-specific feature space via

z𝑚,𝑠
𝑖

= E𝑚
(
x𝑚,𝑠
𝑖

)
, (1)

resulting in Z𝑚,𝑠 = [z𝑚,𝑠1 , z𝑚,𝑠2 , ..., z𝑚,𝑠
𝑁

] ∈ R𝑁×𝐷𝑚 . Inspired by [16],
we employ a decoder D𝑚 to reconstruct z𝑚,𝑠

𝑖
, which ensures learn-

ing sufficient features from the raw data for clustering those rele-
vant information, i.e.,

x̂𝑚,𝑠
𝑖

= D𝑚
(
z𝑚,𝑠
𝑖

)
= D𝑚

(
E𝑚

(
x𝑚,𝑠
𝑖

))
. (2)

The reconstruction loss involving all modalities is defined as:

Lrec
intra =

1
𝑀𝑆𝑚

𝑀∑︁
𝑚=1

𝑆𝑚∑︁
𝑠=1



X𝑚,𝑠 − X̂𝑚,𝑠


2

2

=
1

𝑀𝑆𝑚𝑁

𝑀∑︁
𝑚=1

𝑆𝑚∑︁
𝑠=1

𝑁∑︁
𝑖=1




x𝑚,𝑠𝑖
− D𝑚

(
E𝑚

(
x𝑚,𝑠
𝑖

))


2

2
.

(3)

To extract discriminative features from data of each modality, we
use an adaptive weighting technique to obtain the intra-modal
mean feature Z̄𝑚 ∈ R𝑁×𝐷𝑚 , where Z̄𝑚 = [z̄𝑚1 , z̄

𝑚
2 , · · · , z̄

𝑚
𝑁
] and

z̄𝑚
𝑖

is defined as:

z̄𝑚𝑖 =

𝑆𝑚∑︁
𝑠=1

𝑤𝑚,𝑠z𝑚,𝑠𝑖
. (4)

Here, 𝑤𝑚,𝑠 denotes the 𝑠-th item’s weight of the 𝑚-th modality
and

∑𝑆𝑚
𝑠=1𝑤𝑚,𝑠 = 1. The weights are optimized during training,

reflecting the importance of different items within a single modality.
To optimize the above weights, we adopt a two-layer linear MLP

F𝑚intra to map the modal-specific features and the mean intra-modal
feature to a 𝐾-dimension space. Here, 𝐾 is the number of clusters.
Then, a softmax layer for normalization is attached to obtain the
probability of each feature belonging to each cluster. That is, we
obtain the probability matrix for each intra-modal item of each
subject, i.e., 𝐶𝑚,𝑠 = [𝑐𝑚,𝑠1 , 𝑐

𝑚,𝑠
2 , · · · , 𝑐𝑚,𝑠

𝑁
] ∈ R𝑁×𝐾 and that for the

intra-modal mean features as well, i.e., 𝐶𝑚intra = [𝑐𝑚1 , 𝑐
𝑚
2 , · · · , 𝑐

𝑚
𝑁
]

∈ R𝑁×𝐾 . Specifically, 𝑐𝑚,𝑠
𝑖, 𝑗

denotes the probability of the 𝑠-th item
of the 𝑖-th subject from the𝑚-th modality that belongs to the clus-
ter 𝑗 . Since the intra-modal items from the same cluster should
have similar features, cluster contrastive learning decreases the
distance between item pairs from the same cluster while increasing
the distance between those pairs from distinct clusters. Therefore,
{𝑐𝑚
𝑖,𝑗
, 𝑐
𝑚,𝑠
𝑖, 𝑗

}𝑠=1,2,· · · ,𝑆𝑚 are positive pairs from subject 𝑖 , while other
pairs of {𝑐𝑚

𝑖,𝑗
, 𝑐
𝑚,𝑠
𝑖,≠𝑗

}𝑠=1,2,· · · ,𝑆𝑚 are negative pairs.
To quantify the similarity between two clusters, we use the

Cosine similarity as follows:

𝑆

(
𝑐𝑚𝑖,𝑗 , 𝑐

𝑚,𝑠
𝑖, 𝑗

)
=

𝑐𝑚
𝑖,𝑗

· 𝑐𝑚,𝑠
𝑖,𝑗


c̄𝑚𝑖,𝑗 


 


c𝑚,𝑠𝑖,𝑗




 . (5)

Based on this metric, we define the intra-modal cluster contrastive
loss as

Lcon
intra = − 1

𝑁𝐾𝑀𝑆𝑚

𝑁∑︁
𝑖=1

𝐾∑︁
𝑗=1

𝑀∑︁
𝑚=1

𝑆𝑚∑︁
𝑠=1

log
𝑒
𝑆

(
𝑐𝑚
𝑖,𝑗
,𝑐
𝑚,𝑠
𝑖,𝑗

)
/𝜏1∑𝐾

𝑘=1 𝑒
𝑆

(
𝑐𝑚
𝑖,𝑗
,𝑐
𝑚,𝑠

𝑖,𝑘

)
/𝜏1 − 𝑒1/𝜏1

.

(6)

Here, 𝜏1 denotes the temperature coefficient. The total intra-modal
loss is:

Lintra = Lres
intra + Lcon

intra . (7)

3.2.2 Inter-modal Contrastive Learning. Similarly, we apply inter-
modal contrastive learning to learn modality consistency across
multiple modalities. We also use the above adaptive weighting tech-
nique to obtain the inter-modalmean features ¯̄Z = [¯̄z1, ¯̄z2, · · · , ¯̄z𝑁 ] ∈
R𝑁×𝐷 , where each ¯̄z𝑖 is computed as:

¯̄z𝑖 =
𝑀∑︁
𝑚=1

𝑤𝑚 z̄𝑚𝑖 . (8)

Here, 𝑤𝑚 is the weight of the 𝑚-th modality and
∑𝑀
𝑚=1𝑤𝑚 = 1.

To optimize these weights, we adopt another two-layer MLP Finter
and another Softmax layer to obtain the clustering probability, i.e.,
ˆ̄𝐶𝑚inter = [ ˆ̄𝑐𝑚1 , ˆ̄𝑐𝑚2 ,· · · , ˆ̄𝑐𝑚

𝑁
]∈ R𝑁×𝐾 for each modality feature z̄𝑚

𝑖
and
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¯̄𝐶inter = [ ¯̄𝑐1, ¯̄𝑐2, · · · , ¯̄𝑐𝑁 ] ∈ R𝑁×𝐾 for the inter-modal mean feature
¯̄z𝑖 . Similarly, ˆ̄𝑐𝑚

𝑖,𝑗
represents the probability of the𝑚-th inter-modal

feature of 𝑖-th subject that belongs to cluster 𝑗 . For inter-modal
mean feature ¯̄𝑐𝑖, 𝑗 , { ¯̄𝑐𝑖, 𝑗 , ˆ̄𝑐𝑚

𝑖,𝑗
}𝑚=1,2,· · · ,𝑀 are positive pairs and the rest

cluster pairs of { ¯̄𝑐𝑖, 𝑗 , ˆ̄𝑐𝑚
𝑖,≠𝑗

}𝑚=1,2,· · · ,𝑀 are negative pairs. Therefore,
the inter-modal contrastive loss is:

L𝑖𝑛𝑡𝑒𝑟 = − 1
𝑁𝐾𝑀

𝑁∑︁
𝑖=1

𝐾∑︁
𝑗=1

𝑀∑︁
𝑚=1

log
𝑒
𝑆

(
¯̄𝑐𝑖,𝑗 , ˆ̄𝑐𝑚𝑖,𝑗

)
/𝜏1∑𝐾

𝑘=1 𝑒
𝑆

(
¯̄𝑐𝑖,𝑗 , ˆ̄𝑐𝑚𝑖,𝑘

)
/𝜏1 − 𝑒1/𝜏1

. (9)

3.3 Multimodal Relevance-gated Attention
Transformer (MRAT)

Transformers [53] have demonstrated their superior advantages in
modeling different modalities, e.g., visual, language, and audio, on
various multimodal tasks, e.g., visual question answering [1, 30, 39],
vision-language pre-training [4, 5, 55]. Therefore, we adopt the
transformer architecture to fuse our multimodal weighted features,
as shown in Fig 2(b). After obtaining image and text features and
their relevance scores from our SMRW module, we fed them into
a feature enhancer for cross-modality feature fusion. The feature
enhancer includes two feature enhancer layers, i.e., an image-to-
text cross-attention and a text-to-image cross-attention for feature
fusion. These modules help align features of different modalities,
which are fed into a feed-forward network (FFN) layer, respectively.
After such deep interaction between image and text features, we
concatenate and pass them into a self-attention layer for modality
alignment and fusion and finally output the diagnostic prediction.

Different from the commonly-used self- and cross-attention lay-
ers, we propose the relevance-gated attention operations to fully
leverage the relevance scores learned during the SMRW module.
Specifically, our attention block is defined as:

AttentionBlock(𝑄,𝐾,𝑉 , 𝑅)
= LN(𝑄 + FFN(𝑄 + Attn(𝑄,𝐾,𝑉 , 𝑅))), (10)

where 𝑄,𝐾,𝑉 represents the query, key, and value features, 𝑅 is
the relevance score obtained from SMRW, LN(·) represents a layer
normalization, and the feed-forward network, FFN(·), is a sequence
of layer normalization, linear transformation, GELU activation, and
another linear transformation. Lastly, the attention mechanism,
Attn(𝑄,𝐾,𝑉 , 𝑅), is calculated as follows:

𝑄 ′ = Linear(𝑄), 𝑅′ = LN(Linear(𝑅)),
𝐾 ′ = Linear(𝐾 ⊕ 𝑅′), 𝑉 ′ = Linear(𝑉 ),
Attn(𝑄,𝐾,𝑉 , 𝑅) = Softmax

(
𝑄 ′𝐾 ′⊤) 𝑉 ′ .

(11)

Here, ⊕ denotes addition along the feature dimension, and Linear(·)
represents a linear transformation.

3.4 Loss Function
We employ three loss functions to train our model, including one
classification loss and two self-supervised relevance weighting
losses, i.e., the intra- and inter-modal contrastive learning losses.

Table 1: The statistics of the datasets in our experiments.

Datasets Type #Image #Non-imaging clinical data

SC MH NS BA GN

ADNI [42] NC/MCI/AD 1042 16 20 31 34 12

AIBL [13] NC/MCI/AD 858 2 18 4 12 4

SC BS MH M NM

PPMI [37] NC/PD 599 11 24 12 34 36
SC: Subject characteristics, MH: Medical History, NS: Neuropsychology
Scores, BA: Blood Analysis, GN: Genetics, BS: BIO-Specimen, M: Motor

Function, NM: Non-Motor Function.

In the training process, the classification loss is constructed by a
cross-entropy function:

Lcls = − 1
𝑁𝐶

𝑁∑︁
𝑖=1

𝐶∑︁
𝑐=1

𝑦𝑐𝑖 log
(
𝑝𝑐𝑖

)
, (12)

where 𝑝𝑐
𝑖
is the predicted classification score of each subject for

each class 𝑐 , while 𝑦𝑐
𝑖
is the corresponding one-hot ground-truth

label. The overall loss is defined below:

L = Lcls + 𝛼 · Lintra + 𝛽 · Linter, (13)

where Lintra and Linter represent the intra-modal contrastive loss
given in Eq. (7) and the inter-modal one in Eq. (9), respectively; 𝛼
and 𝛽 are hyper-parameters balancing these three terms.

4 EXPERIMENTS
4.1 Datasets
Three public multimodal datasets are evaluated in this study, with
considering both medical image scans (e.g., structure MRIs) and
non-imaging clinical information (e.g., demographics, serological
tests, neuropsychology examinations). The detailed statistics of
these datasets are summarized in Table 1.

ADNI [42]. The ADNI dataset is a longitudinal and multi-site mul-
timodal neuroimaging dataset. We collect 1042 subjects for evalua-
tion, including 342 normal controls (NC), 351 with mild cognitive
impairment (MCI), and 349 patients with Alzheimer’s disease (AD)
from ADNI1, ADNI2, ADNIGO, and ADNI3. We excluded follow-
up scans and included a single baseline scan of the structure MRI
and non-imaging clinical information per subject. These subjects
are divided into three groups (i.e., AD, MCI, and NC), and MCI is
considered to be a significant stage for the preclinical AD diagnosis.

AIBL [13]. A total of 858 subjects are included in this dataset, where
609 NCs, 144 MCIs, and 105 AD subjects were recruited from the
same technical infrastructure as the ADNI. AIBL is also a longitudi-
nal dataset and we process it in the same way with ADNI.

PPMI [37]. The PPMI dataset includes 247 NCs and 352 PDs. The pa-
tients were diagnosed at baseline, and the NCs were healthy at their
first examination. Notably, the PPMI dataset is also a longitudinal
database, and each participant has multiple scans. We also included
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Table 2: Comparison among different methods on AD classification using ADNI and AIBL datasets. The best results are in bold.

Methods Modality

ADNI AIBL

NC vs MCI MCI vs AD NC vs AD NC vs MCI vs AD NC vs MCI MCI vs AD NC vs AD NC vs MCI vs AD

ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

Res50 [20] I. 72.77 79.13 73.14 80.43 77.25 82.14 65.22 73.91 74.61 81.08 75.48 81.60 78.73 82.14 68.29 75.15
Med3D [6] I. 75.25 81.40 75.77 81.34 80.06 83.75 69.57 72.64 76.90 79.78 77.14 81.13 81.30 85.25 72.73 74.91
ViT [11] I. 83.60 86.93 84.65 88.16 88.67 90.95 79.83 84.73 84.48 88.26 85.61 88.89 90.46 91.06 76.19 81.40
M3T [23] I. 86.14 89.17 86.06 89.73 89.64 91.06 74.77 78.51 86.95 89.73 87.16 91.14 90.02 92.27 75.47 81.55

BERT [10] T. 88.21 90.04 88.91 91.23 92.04 93.45 80.80 83.57 88.46 90.38 91.70 93.73 91.27 93.34 81.14 84.82
RoBERTa [36] T. 88.80 90.89 89.17 92.47 92.12 93.73 81.36 84.75 88.18 91.83 90.73 93.77 92.87 94.26 83.27 85.93

Perceiver [22] I.+T. 86.48 89.75 87.12 89.75 90.55 92.34 73.91 77.85 87.24 89.83 88.29 90.67 91.06 92.39 72.73 77.39
GIT [54] I.+T. 85.36 87.59 86.11 89.76 89.17 91.75 82.46 83.87 86.22 86.36 88.02 89.34 91.17 91.56 80.67 82.86
Irene [64] I.+T. 88.65 91.94 89.74 90.45 91.71 93.54 83.48 85.34 88.32 89.64 91.30 93.53 93.36 94.56 84.27 86.25
Alifuse [5] I.+T. 88.21 90.93 89.73 90.59 91.57 93.54 85.93 87.36 89.65 91.94 89.29 91.86 93.48 95.76 86.31 88.99
SMART (ours) I.+T. 90.17 92.16 91.06 92.73 93.56 94.82 89.18 90.21 91.21 93.25 92.73 94.54 93.81 94.63 89.92 91.45

Table 3: Comparison of different approaches on PD classifi-
cation using the PPMI dataset. The best results are in bold.

Methods Modality
NC vs PD

ACC AUC

Res50 [20] I. 73.12 76.72
Med3D [6] I. 76.45 78.84
ViT [11] I. 75.45 79.56
M3T [23] I. 75.84 78.21

BERT [10] T. 79.24 81.84
RoBERTa [36] T. 80.53 81.46

Perceiver [22] I.+T. 77.64 80.35
GIT [54] I.+T. 83.57 85.53
Irene [64] I.+T. 84.43 87.75
Alifuse [5] I.+T. 85.25 88.63
SMART(ours) I.+T. 87.12 89.34

only the baseline scan of the structureMRI and non-imaging clinical
information per subject.

4.2 Data preprocessing
As shown in Table 1, we collect over a hundred pieces of non-
imaging clinical data for each patient in the ADNI dataset. For
instance, there are 20 medical histories for each patient. Clinical
text data are semantically prepared before encoding for all datasets.
Clinical variable terms are collected and cleaned using the ADNI
Data Dictionary or PPMI Data Dictionary, and then semantically
aggregated to the appropriate level of granularity to ensure a less
sparse dataset. For example, if a patient’s HMT3=4.39, a correspond-
ing sentence is written as "Red blood cell count is 4.39". If a patient’s
MH4CARD=1, then it is described as "has a cardiovascular medical
history". We argue that its contained digital numbers and categories

are more meaningful in the text context. Therefore, we create a
text representation for each data sample using the information
contained in the tables of raw data. Regarding the collected T1-
weighted structural MRI (sMRI) scans, we apply the same data
pre-processing to normalize and standardize them from a multi-
institutional database. We resize the images to have the same voxel
spacing (i.e., 1.75mm × 1.75mm × 1.75mm) and the same volume
size (i.e., 128 × 128 × 128), then normalize the image intensities of
all the voxels using the zero-mean unit-variance method.

4.3 Implementation details
The experimental framework is implemented on the Pytorch plat-
form and executed on a 24GB NVIDIA Geforce RTX 3090 Linux
server. The image patch size is set to 16 × 16 × 16. The encoder
and decoder in SMRW are implemented using fully connected lay-
ers with the encoder dimensions of input-500-1000-1000-512. The
decoder is symmetric with the encoder. We set hyper-parameters
𝛼 and 𝑏𝑒𝑡𝑎 both to 1. Adam optimizer is adopted with a learning
rate of 3e-4 and a batch size of 32, trained for 300 epochs. For all
experiments, we evaluated the performance in terms of two metrics,
i.e., accuracy (ACC) and area under curve (AUC).

4.4 Experimental Results
Baselines. In this study, we compare our proposed SMART with
baseline deep learning approaches and well-estimated transformer-
based methods. These methods include: (1) the image-only group.
We choose four recent baselines that are commonly used, includ-
ing Net50 [20], Med3D [6], VisionTransformer [11], M3T [23]. (2)
The text-only group. We choose BERT [10] and RoBERTa [36] as
our text-only baseline. (3) themulti-modal group. We have four
baselines, i.e., GIT [54], Preciver [22], IRENE [64] and Alifuse [5].
They are recent transformer-based models that fuse multi-modal in-
formation for classification. IRENE and Alifuse are previous SOTA
methods designed for multimodal medical diagnosis.

Comparison Results. Table 2 and Table 3 report the comparison
results of our SMART with ten baseline methods on three datasets
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Table 4: Ablation studies on each component of our model
by classifying NC, MCI, and AD subjects.

Method
ADNI AIBL

ACC AUC ACC AUC

(a) SMART w/o Lres
intra 88.05 88.37 86.56 87.21

(b) SMART w/o Lintra 82.84 83.42 82.55 84.02
(c) SMART w/o Linter 88.73 89.06 89.17 90.46
(d) SMART w/o SMRW 73.67 76.51 77.24 80.17
(e) SMART w/o MRAT 85.32 87.10 86.31 87.25
(f) SMART-I 76.52 77.97 77.89 79.34
(g) SMART-T 87.67 89.24 87.56 86.93
(h) SMART-S 89.18 90.21 89.92 91.45

for classifying two representative neurodegenerative diseases, i.e.,
AD and PD. As shown in Table 2, on all datasets SMART signifi-
cantly outperforms the image-only model, the text-only model, and
four recent SOTA transformer-based multimodal methods, except
for one AUC result provided by Alifuse. Take three-label classifica-
tion on ADNI for example, SMART achieves the highest accuracy
of 0.89, over ∼15% higher than the image-only model that only
takes structural MRIs as input. In comparison with the text-only
method, SMART maintains an advantage of over ∼8% improvement.
Comparing SMART to GIT, we observe an advantage of over ∼7%.
Compared to previous SOTA methods, i.e., Irene and Alifuse, the
transformer-based multimodal classification model, SMART still
delivers competitive results, surpassing them by ∼4%.

4.5 Ablation Studies
We conduct ablation studies on ADNI and AIBL to evaluate the
crucial factors in our proposed SMART, as shown in Table 4. Here
we provide some implementation details. (a) "w/o Lres

intra": we re-
move our intra-modal reconstruction loss in the SMRW module in
the training process. (b) "w/o Lintra": we remove our intra-modal
constrastive learning loss in the training process. (c) "w/o Linter":
we remove our inter-modal constrastive learning loss in the train-
ing process. (d) "w/o SMRW": we remove the SMRW module and
replace the task-relevance score with a randomly initialized learn-
able tensor, which has the same shape as the value features 𝑉 . (e)
"w/o MRAT": we remove the guidance of relevance in MRAT by
replacing the task-relevance score with a zero tensor, which has the
same shape as 𝑉 as well. (f) "-I": we only train the visual modality
in SMRW and remove its textual branch by replacing the textual
feature with zero tensor. (g) "-T": we perform a similar operation as
(f), except that we use the prediction of the textual branch during
inference. (h) "-S": our standard model with both images and text.

Importance of SMRW. Checking the d and h rows in Table 4, we
observe that the prediction accuracy improves significantly when
trained with self-supervised multimodal relevance weighting, ver-
ifying the effectiveness of our self-weighted task relevance tech-
nique. Taking one step further, on the ADNI dataset we achieve
∼15% performance improvement on ACC by using SMRW, and
∼14% performance improvement on AUC; while on AIBL, these
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Figure 4: Ablation on different pretraining strategy.

two numbers are about 14%, 11%. This indicates that our SMRW
module can alleviate the information irrelevancy efficiently espe-
cially when facing a large amount of data. We further perform
ablation studies on loss functions in SMRW, which are reported
in rows of (a,b,c), intra-modal contrastive learning is more help-
ful than inter-modal contrastive learning. Also, it suggests that to
prevent the model from crashing, reconstruction regularization is
crucial on smaller datasets with varying data quality.

Effectiveness of MRAT. Comparing the row (e) with (h) in Table 4,
there are great performance drops of ∼4% on ACC of ADNI and
3% on ACC of AIBL, if the relevance-gated attention is removed.
This indicates that the guidance of the relevance score is essential
for a more accurate diagnosis and reduces the difficulty of fusing
high-dimensional multimodal data.

Benefits of Multimodal Learning. Comparing the rows (f,g) with (h)
in Table 4, there are also dramatic drops of 11%, 12% on ACC and
AUC of ADNI if the text modality is removed, and 1.5%, 2% drops on
ACC and AUC when the image modality is removed. This ablation
study demonstrates that the multi-modal design outperforms the
unimodal one, showing the necessity of using both imaging and
non-imaging clinical data for neurodegenerative disorder diagnosis.
Compared to the imaging data, the non-imaging data is more effec-
tive in classifying AD. Thus, it is worth to discover and amplify the
crucial clues within the non-imaging clinical text data.

To Pretrain or Not? Since our SMRWmodule is self-supervised, one
potential attempt would be using the self-supervised loss in SMRW
to pre-train. For instance, we first pre-train the SMRW module
for 100 epochs, which is followed by another 200 epochs using
the overall loss functions. As shown in Figure 4, the earlier stage
performance improvement is stable with pre-training SMRW. In-
terestingly, in the ADNI experiment, the later adjustment in the
optimization process weakens the model’s performance. This in-
dicates that suitable pretraining is a good choice while excessive
adjustment using supervised signals would discard some valid in-
formation learned in the early stage of training.

4.6 Qualitative Analysis
Figure 5 shows the visual comparison between SMART and the
baseline, i.e., our method witout the SMRW module. The image
patches and text sentences with the top five highest scores are
selected for comparison. We observe that the baseline model misses
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Figure 5: Visualization of relevance scores on sub-regions of brain MRI scans and sentences of non-imaging text description.
"Baseline" indicates our SMART without the SMRWmodule.
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Figure 6: Visualization of the attention maps on the non-
imaging clinical data of an AD subject sampled from the
AIBL dataset. A darker blue indicates a higher attention.

to pay great attention on some important biomarkers[25, 29, 46].
On the contrary, our model demonstrates better locations of those
key image subregions and text sentences.

To further demonstrate the interpretability of our model, we
compare SMART with the previous SOTA method Alifuse. Figure 6
shows the attention weight distribution over the text description of
the non-imaging clinical data. We discover that our model can cap-
ture the feature of a longer sequence. In the sentence "ApoE4 gene
detection of apolipoprotein", which is a biomarker of Alzheimer’s
disease [29], Alifuse exerts little attention, while our model does
capture task relevance between the meaning of the words and the
neurodegenerative disease. Our method demonstrates its ability to
handle a long text description to some extent. This is essential in

the diagnostics of neurodegenerative disorders since a lot of non-
imaging clinical information is desired to be explored to identify
the unknown yet potential biomarkers for diagnosis.

5 CONCLUSION
In this paper, we propose a novel diagnosis framework SMART that
fuses multimodal medical data via a self-supervised weighting ap-
proach and augments transformer attention techniques to achieve
a more accurate diagnostic classification. We demonstrate the ef-
fectiveness of our model in classifying both AD and PD, which
outperforms ten baselines and achieves the SOTA classification
accuracy. Currently, we only consider brain MRI scans; in future
work, more image modalities like PET and even others like audio
will be included as well for more accurate diagnosis. Another ex-
tension to our current model is the incorporation of longitudinal
data. Because degeneration over age is an essential characteristic
of neurodegenerative disorders, multimodal fusion on longitudinal
data will be our future work as well.
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