
Partitioned World Model Generation
■ Principle: partition generated observations into segments from 

multiple simpler generators (enables scalable verification)
■ Loss function:

— Segment-wise reconstruction loss: Enforces each decoder to 
accurately model its part of the input
— Combined reconstruction loss: Encourages the model to 
reproduce the full observation when segments are combined

 

■ Fine-tuning of 
foundation models

■ Additional dynamical 
states like speed and 
angular velocity

■ Apply multimodal 
foundation models

■ Case studies on 
physical robots
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Four Principles for Physically Interpretable World Models

FUTURE WORK

PRINCIPLE 2

PROBLEM & CONTRIBUTIONS

GAP IN EXISTING WORK

Functionally organized latent space
■ Principle: functionally organize the latent space

─ Modular latent embedding and dynamics to encode human 
conceptual priors (absolute agent dynamics, relative dynamics 
between other agents, and background features)

■ Overall loss is proportional to the losses in each branch:

■ L = loss fn, f
i
 = WM branch, enc = encoder, x = input/observation
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PRINCIPLE 3

PRINCIPLE 1

PRINCIPLE 4

Invariant/equivariant representations
■ Principle: learn invariant/equivariant representations of the 

environment
─ Invariant: do not transform for transformation f that does not 

affect the underlying meaning (noise, image rotation)
─ Equivariant: do transform for transformation f that affects the 

underlying meaning (fog, shape distortion)

■ Principle: integrate supervision signals of varied strength from 

multiple abstraction levels

■ Key Idea: Physical supervision signals vary in both form (e.g., 

states, trajectories, constraints) and strength (e.g., exact values, 

intervals, implicit patterns). Training should adapt accordingly.

■ Why It Matters: Real-world data often includes a mix of precise 

labels, coarse annotations, and entirely unlabeled sequences.

PREDICTION HORIZON

■ x = input/observation, enc = latent encoder, g = input-space 
transformation, h = latent-space transformation

─ To promote invariance: h(enc(x)) = enc(x)

■ Latent states in world models are uninterpretable: Most 
world models use distributed latent representations that 
lack physical meaning (e.g., velocity, position).

■ This makes it difficult to integrate with classical control, 
design physically grounded rewards, or verify safety 
properties.

■ Current methods improve performance by being physically 
informed, but don’t guarantee physical interpretability.

Problems

Design of Physically Interpretable World Models

Our Approach: We adapt training to a hierarchy of supervision — 
from precise labels to weak constraints and self-supervised signals 
— to align latent states with physics under limited supervision.

EXPERIMENTAL RESULTS

MSE of physical state prediction across different prediction horizons 
for Principles 1--3.

A world model  f  is defined as a pair of learned modules:      

Encoder: enc Dynamics: d Decoder: dec
    : the observation at time t          : the latent representation inferred by the model.

   the overall predictive model:

Physically Interpretable World Model: A model that encodes observations yt into latent states zt  to 

predict yt+1 , where  zt  aligns with the physical structure and hidden state xt   despite the unknown mapping 

from xt   to  yt.

■ Functionally organizing the latent space by physical roles (e.g., 
dynamics, interaction, style) improves stability over long horizons

■ Encoding physical symmetries into the latent space enhances 
generalization to transformed observations

■ Given partially labeled data, adding extra physical signals (e.g., 
inferred velocity or constraints) significantly improves learning and 
long-term prediction

■ Results: reduced state-prediction MSE 
over longer horizons

PREDICTION HORIZON
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Multi-level supervision
■ Key Idea: Not all physical information comes with clean labels,  

so the training must adapt to the granularity of supervision

■ Why It Matters: Real-world data is often partially labeled, 

noisy, or completely unlabeled.

Our Approach: We adapt training to a hierarchy of supervision — 
from precise labels to weak constraints and self-supervised signals 
— to align latent states with physics under limited supervision.

Multi-Level and Multi-Strength Supervision

Problem: Latent space lacks physical meaning

Most world models rely on unstructured, uninterpretable latent spaces, making it hard to:

(i) Understand what the model "knows"      (ii)   Integrate it with classical controllers or planners
 (iii) Provide physical safety guarantees

Solution: Physically Interpretable World Model

What is a world model? Let f (x) = (dec ∘ dyn ∘ enc)(x) be a world model:

● enc: X → Z encodes the observation x into latent space

● dyn: Z → Z propagates the latent embedding through time

● dec: Z → X decodes the embedding back into the observation space

Problem: latent space lacks physical interpretability, making it difficult to:

● Understand what the model “knows”

● Integrate classical, state-based controllers or planners

● Provide physically grounded safety guarantees

Solution: train world models that are physically interpretable

● Latent embeddings z correspond to physical properties

● Latent dynamics dyn emulate physical processes
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