Four Principles for Physically Interpretable World Models
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PROBLEM & CONTRIBUTIONS

What is a world model? Let /(x) = (dec ° dyn ° enc)(x) be a world model:
| e cnc: X — Z encodes the observation x into latent space
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Principle 2:

..~°<in/equivariance>:‘

e dec: Z — X decodes the embedding back into the o

oservation space

Problem: latent space lacks physical interpretability, making it difficult to:
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Solution: train world models t
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PRINCIPLE 1

e Latent embeddings z correspond to p
e Latent dynamics dyn emulate physica

nat are physically interpretable
nysical properties

processes

PRINCIPLE 2

Functionally organized latent space

Invariant/equivariant representations

m  Principle: functionally organize the latent space m Principle: learn invariant/equivariant representations of the
— Modular latent embedding and dynamics to encode human environment
conceptual priors (absolute agent dynamics, relative dynamics — Invariant: do not transform for transformation f that does not
between other agents, and background features) affect the underlying meaning (noise, image rotation)
m  Overall loss is proportional to the losses in each branch: — Equivariant: do transform for transformation f that affects the

underlying meaning (fog, shape distortion)
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L x Li(fi(enci(x)),x) + La(fa(ence(x)), x) + L3(fs(encs(x)), x)

L =loss fn,fi = WM branch, enc = encoder, x = input/observation

PRINCIPLE 3
Multi-Level and Multi-Strength Supervision

T

X = input/observation, enc = latent encoder, g = input-space
transformation, h = latent-space transformation
— To promote invariance: h(enc(x)) = enc(x)

m Principle: integrate supervision signals of varied strength from
multiple abstraction levels PRlNClPLE 4
m Key Idea: Physical supervision signals vary in both form (e.g., Partitioned World Model Generation
states, trajectories, constraints) and strength (e.g., exact values, C "y . .
| S o | m Principle: partition generated observations into segments from
intervals, implicit patterns). Training should adapt accordingly. multiple simpler generators (enables scalable verification)
m Why It Matters: Real-world data often includes a mix of precise m  Loss function:
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— Segment-wise reconstruction loss: Enforces each decoder to
accurately model its part of the input
— Combined reconstruction loss: Encourages the model to

reproduce the full observation when segments are combined
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labels, coarse annotations, and entirely unlabeled sequences. ger

EXPERIMENTAL RESULTS

“A. Principles 1 & 2 (Lunar Lander) B.Principle 3 (Lunar Lander)

45 |~ Baseline s || — Weakly supervised Setting World model Environment Average MSE Average SSIM  Model Size
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36 | — Enhancement by Principle 2 Baseline (monolithic) Cart Pole 0.02856 0.997122 200,259
Partitioned 3-way Cart Pole 0.05176 0.995614 144,665
'-U')J 27 Baseline (monolithic)  Lunar Lander 0.18801 0.8686 360,773
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