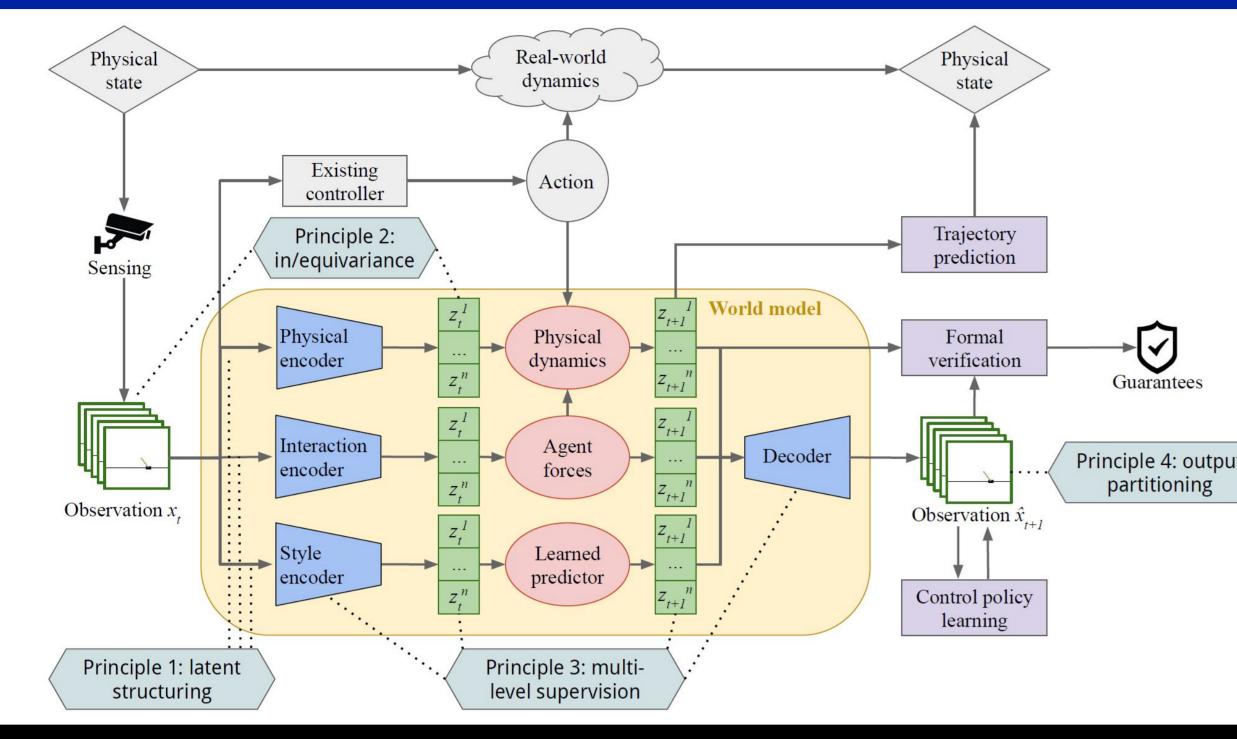
Four Principles for Physically Interpretable World Models

Jordan Peper*, Zhenjiang Mao*, Yuang Geng, Siyuan Pan, Ivan Ruchkin

Trustworthy Engineered Autonomy (TEA) Lab University of Florida

PROBLEM & CONTRIBUTIONS



What is a world model? Let $f(x) = (\text{dec} \circ \text{dyn} \circ \text{enc})(x)$ be a world model:

- enc: $X \rightarrow Z$ encodes the observation x into latent space
- dyn: $Z \rightarrow Z$ propagates the latent embedding through time
- dec: $Z \rightarrow X$ decodes the embedding back into the observation space

Problem: latent space lacks physical interpretability, making it difficult to:

- Understand what the model "knows"
- Integrate classical, state-based controllers or planners



Provide physically grounded safety guarantees

Solution: train world models that are physically interpretable

- Latent embeddings *z* correspond to physical properties
- Latent dynamics dyn emulate physical processes

PRINCIPLE 1

Functionally organized latent space

- Principle: functionally organize the latent space
 - Modular latent embedding and dynamics to encode human conceptual priors (absolute agent dynamics, relative dynamics between other agents, and background features)
- Overall loss is proportional to the losses in each branch:

 $\mathcal{L} \propto L_1(f_1(\text{enc}_1(x)), x) + L_2(f_2(\text{enc}_2(x)), x) + L_3(f_3(\text{enc}_3(x)), x)$

• $L = loss fn, f_i = WM branch, enc = encoder, x = input/observation$

PRINCIPLE 3

PRINCIPLE 2

Invariant/equivariant representations

- Principle: learn invariant/equivariant representations of the environment
 - *Invariant:* do not transform for transformation *f* that does not affect the underlying meaning (noise, image rotation)
- *Equivariant:* do transform for transformation *f* that affects the underlying meaning (fog, shape distortion)

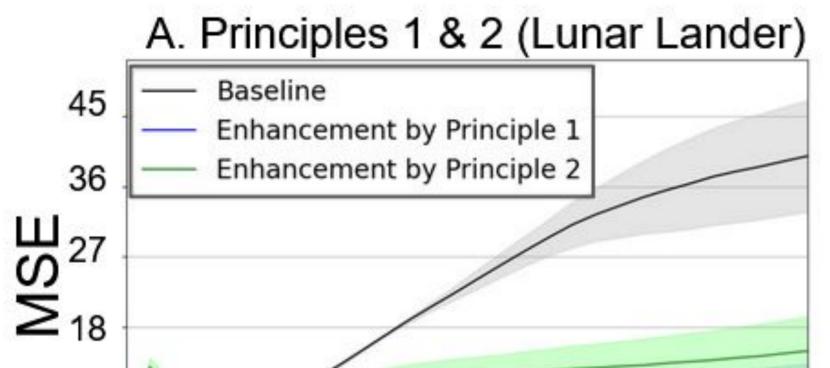
$$\mathcal{L}_{wm}(x) \propto \frac{\lambda}{|T|} \sum_{(g,h)\in T} \|\operatorname{enc}(g(x)) - h(\operatorname{enc}(x))\|_2^2$$

x = input/observation, enc = latent encoder, g = input-space transformation, h = latent-space transformation

Multi-Level and Multi-Strength Supervision

- Principle: integrate supervision signals of varied strength from multiple abstraction levels
- Key Idea: Physical supervision signals vary in both form (e.g., states, trajectories, constraints) and strength (e.g., exact values, intervals, implicit patterns). Training should adapt accordingly.
- Why It Matters: Real-world data often includes a mix of precise labels, coarse annotations, and entirely unlabeled sequences.

EXPERIMENTAL RESULTS



eakly supervised	Setting
mi-supervised Se	etting

— To promote invariance: h(enc(x)) = enc(x)

PRINCIPLE 4

Partitioned World Model Generation

- Principle: partition generated observations into segments from multiple simpler generators (enables scalable verification)
- Loss function: $\mathcal{L}_{gen} = ||x - \hat{x}||^2 + \lambda \sum_{i=1}^{N} ||x_i - \hat{x}_i||^2$
 - Segment-wise reconstruction loss: Enforces each decoder to accurately model its part of the input
 - Combined reconstruction loss: Encourages the model to reproduce the full observation when segments are combined

World model	Environment	Average MSE	Average SSIM	Model Size
Baseline (monolithic)	Cart Pole	0.02856	0.997122	200,259
Partitioned 3-way	Cart Pole	0.05176	0.995614	144,665
Baseline (monolithic)	Lunar Lander	0.18801	0.8686	360,773
Partitioned 3-way	Lunar Lander	0.306	0.6289	78,101

- Functionally organizing the latent space by physical roles (e.g., dynamics, interaction, style) **improves stability** over long horizons
- Encoding physical symmetries into the latent space enhances generalization to transformed observations
- Given partially labeled data, adding extra physical signals (e.g., inferred velocity or constraints) significantly improves learning and long-term prediction

Reference: Peper, J.*, Mao, Z.*, Geng, Y., Pan, S., & Ruchkin, I. (2025). Four Principles for Physically Interpretable World Models. In Proceedings of the International Conference on Neuro-symbolic Systems (NeuS), Philadelphia, PA, 2025. *Equal contribution

GAP IN EXISTING WORK

