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1. Introduction
Understanding the equilibrium distribution of

states is the first step towards generating realistic
materials under experimental conditions. Materi-
als exist at finite temperatures; thus it is not a single
structure that defines a static material property. For
example,molecules have a distribution of conforma-
tions, each with distinct properties [1] while catalyst
surfaces evolve as a function of reactants, tempera-
ture (T ), and external chemical potentials (µ) [2, 3].

2. Results
In this work, we focus on periodic lattice systems

that can be modeled using discrete states.

2.1 Related work
Previously, [4–6] adapted autoregressive methods

(ARMs) used in image and text generation to learn
lattice thermodynamics. However, these ARMs are
hampered in flexibility due to: (1) their fixed gen-
eration order and (2) requiring expensive evaluation
of conditional probabilities over the entire sequence
length, L, during training. Due to the former, ar-
bitrary in-/out-painting tasks for conditional genera-
tion are out of scope for thesefixed-order (FO)ARMs.
Due to the latter, the computational graph of auto-
matic differentiation scales asO(L2), limiting train-
ing samples to amodest lattice size, thereby hamper-
ing the accuracy of thermodynamic observables.

2.2 Contribution
We develop any-order (AO) ARMs that improve

on FO-ARMs of previous works and marginalization
models (MAMs) that scale training to larger lattice
systems capable of sampling across T and µ (Fig. 1).
We test ourmethod on up to 20×20 Ising lattices and
4 × 4 × 8 CuAu alloys, benchmarking on variational
free energies, free energy estimations, and phase di-
agrams.

2.3 Figures and tables
Results summary for the Ising model is provided

in Table 1. Fig. 2 contains detailed results for the 10×
10 Ising model. Results summary for the CuAu alloy
is provided in Table 2.

Conclusion
We developed any-order autoregressive and

marginalization models to improve scalability in

lattice thermodynamics sampling. Our results
show that any-order models enable flexible in-/out-
painting while matching or surpassing fixed-order
models. Marginalization models further scale train-
ing to larger lattices, overcoming ARM limitations.
Applied to the Ising model and CuAu alloy, our
approach efficiently captures thermodynamic ob-
servables. Future work will extend these methods to
larger lattice sizes and supercells, and integrate ad-
ditional physical constraints for improved accuracy
and scalability.
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Autoregressive models investigated in this work: (a) fixed-order autoregressive models (ARM) that have a predefined generation 
sequence using a trained conditional network, !!, (b) any-order ARM that are trained to generate lattices over arbitrary 
sequences, and (c) any-order marginalization models (MAM) that in addition to arbitrary sequence generation using !!, contain a 
marginal network !" to scale training to larger lattice sizes.
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Fig. 1: Autoregressive models investigated in this work.

Table 1: Ising model generation results. The best result for each lattice size is bolded. FO models cannot per-
form arbitrary in-/out-painting tasks. 20 × 20 Ising ARM models exceed GPU capacity. ⟨·⟩ is equivalent to
Ex∼p(x)[·].

5× 5 10× 10 20× 20

Model Trained Trained 10× 10 In-/out-painted Trained

ARM ⟨log p(x)− log f(x)⟩ (↓)
FO-MLP -26.26 -104.69 - -
AO-MLP -26.27 -104.77 -415.13 -

MAM ⟨log p(x)− log f(x)⟩ (↓)
AO-MLP -26.22 -98.90 -401.31 Mode collapse
AO-Transformer -26.25 -104.66 -415.13 -414.34
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Fig. 2: 10× 10 Ising results. (a) Score distribution, (b) free energies, and (c) generated samples.

Table 2: CuAu model generation results with the best for each lattice size bolded.

2× 2× 4 4× 4× 8

Model Trained 2× 2× 4 Inpainted

ARM ⟨log p(x)− log f(x)⟩ (↓)
FO-MLP -32.92 -
AO-MLP -32.92 -215.29

MAM ⟨log p(x)− log f(x)⟩ (↓)
AO-MLP -31.87 -223.16
AO-Transformer -32.84 -217.06
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