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Abstract
Data-free knowledge distillation (DFKD) has emerged as a pivotal
technique in the domain of model compression, substantially re-
ducing the dependency on the original training data. Nonetheless,
conventional DFKD methods that employ synthesized training data
are prone to the limitations of inadequate diversity and discrepan-
cies in distribution between the synthesized and original datasets.
To address these challenges, this paper introduces an innovative
approach to DFKD through diverse diffusion augmentation (DDA).
Specifically, we revise the paradigm of common data synthesis in
DFKD to a composite process through leveraging diffusion mod-
els subsequent to data synthesis for self-supervised augmentation,
which generates a spectrum of data samples with similar distribu-
tions while retaining controlled variations. Furthermore, to mitigate
excessive deviation in the embedding space, we introduce an image
filtering technique grounded in cosine similarity to maintain fidelity
during the knowledge distillation process. Comprehensive exper-
iments conducted on CIFAR-10, CIFAR-100, and Tiny-ImageNet
datasets showcase the superior performance of our method across
various teacher-student network configurations, outperforming
the contemporary state-of-the-art DFKD methods. Code will be
available at: https://github.com/SLGSP/DDA.
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1 Introduction
Model compression is an essential task that seeks to reduce the
size and complexity of deep models while maintaining their perfor-
mance and functionality [42]. This becomes particularly significant
in an era where large models are extensively used across a variety
of platforms while computational resources are frequently limited.
In the current wide variety of model compression technologies,
knowledge distillation [17, 19, 52] stands out as a pivotal approach,
which facilitates the transfer of knowledge from a complex and
resource-intensive model, commonly known as the teacher model,
to a more lightweight model referred to as the student model.

Despite knowledge distillation has demonstrated substantial suc-
cess across multiple domains, the conventional approach typically
necessitates access to the original data used to train the teacher
model [7, 17]. Acquiring such training data can be exceptionally
challenging due to its high cost and privacy concerns [3], which
highlights the urgent demand for alternative approaches to train-
ing data acquisition. In response, recent literature has endeavored
to address the issue of data scarcity by utilizing synthetic data in
place of the original training data, a method referred to as data-free
knowledge distillation (DFKD) [2, 4, 5].

Specifically, DFKD represents a fundamental paradigm within
knowledge distillation, comprising two interrelated steps: synthe-
sizing data that emulates the distribution of the original training
data and distilling knowledge from teacher model to student model,
as shown in Fig. 1. The first aspect, data synthesis, is typically di-
vided into two distinct strategies: noise optimization [2, 29, 45] and
generative reconstruction [4, 5, 9, 46]. Noise optimization involves
using optimization algorithms to modify the noise of the input data,
whereas generative reconstruction harnesses a generator network
to establish a mapping from low-dimensional noise to the intricate
data manifold. Compared to the former, generative reconstruction
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Figure 1: Comparison of the traditional DFKD with our
method in terms of the overall framework.

based methods alternately conduct data synthesis in each round of
adversarial iteration, avoiding substantial time consumption and
guarantees the production of high-quality data [23].

Nevertheless, current synthetic methods based on generative
reconstruction are still inadequate in fulfilling several critical needs.
To enable the student model to exhibit robust generalization across
a multitude of tasks, the synthetic data must possess a richness and
diversity that goes beyond mere replication of the original training
data [9, 32]. Techniques such as image rotation for data augmen-
tation in CSD [27] and channel-wise feature exchange (CFE) in
SpaceshipNet [47] are employed to generate varied images. How-
ever, neither approaches can fully achieve the balance between the
diversity and fidelity of the synthetic data inherent in adversarial
network, where the number of synthesis must be constrained to
maintain reliable domain prior [23], resulting in merely limited
image generation while preserving the original image features. In
addition, another concern is the necessity for the synthetic data to
closely match the distribution of the original training data. Meth-
ods such as CutMix [48], Mixup [50], and SpaceshipNet [47] may
inadvertently amplify unwanted noise in the synthesised image,
consequently leading to potential distributional shifts in the fi-
nal image set, as shown in Fig. 2. Therefore, adopting an updated
approach to achieve alignment between synthetic and authentic
training data is crucial for accurately capturing underlying patterns
and complexities.

Recent researches have made it possible to generate richer visual
representations with remarkable realism through the usage of dif-
fusion models [1, 6, 43]. Specifically, these models excel at incorpo-
rating data with consistent semantics but varying information [43],
thereby meeting the data augmentation needs in DFKD. However,
the diffusion model may occasionally incur bias in a small number
of cases during augmentation, causing spurious augmentation to
certain extend. To mitigate this concern, continued investigation is
essential to refine the augmentation process, effectively minimizing
the occurrence of low-quality augmented images.

In this paper, we propose a novel DFKD method termed Diverse
Diffusion Augmentation (DDA), which leverages diffusion models

to enrich the diversity of the generated data and employs cosine
similarity-based filtering technique to ensure the fidelity of the aug-
mentation process. Acknowledging the limitations of traditional
generative reconstruction methods in low-quality data synthesis,
we tackle the issue of noise amplification in synthetic images by
deliberately reducing the impact of generative adversarial networks
through model inversion [9, 45]. Instead of relying solely on single
data synthesis, such process is expanded by incorporating a diffu-
sion augmentation step, as shown in Fig. 1. In this setting, diffusion
models are allowed to adaptively augment the images based on
the semantic information understanding of student model within
the images, thereby achieving a self-supervised data augmenta-
tion that enhances data diversity and constrain distribution bias
simultaneously. To ensure augmentation fidelity, we further intro-
duce cosine similarity to filter spurious augmentation. Referring
to Fig. 3, through the integration of diffusion augmentation and
cosine similarity-based filtering technique, our proposed method
overcomes the inherent limitations of generative reconstruction,
striking a balance between data diversity and fidelity, both pre-
and post-augmentation. To comprehensively evaluate the gener-
alizability and robustness of our proposed method, we conducted
experiments on CIFAR-10, CIFAR-100 [6], and Tiny-ImageNet [22].
Extensive experiments provide concrete evidence that our method
significantly outperforms state-of-the-art DFKD methods.

Our key contributions can be summarized as follows:

• We propose a novel DFKD method called DDA, which inno-
vatively extends the conventional data synthesis in DFKD
with data augmentation to further enhance data diversity,
thus establishing a new paradigm for DFKD.
• We are the first to introduce diffusion models as a means of
data augmentation in DFKD, which enriches the semantics
and mitigates the distributional bias in synthetic data.
• To ensure the fidelity of the augmented images, we propose
to use the cosine similarity method to filter out spurious
augmentations.
• Experimental results confirm the effectiveness of our pro-
posed DDA, showcasing superior performance when com-
pared to the contemporary state-of-the-art DFKD methods.

2 Related Work
2.1 Data-Free Knowledge Distillation
The objective of DFKD is to transfer knowledge from a pre-trained
teacher model to a student model without direct access to the origi-
nal training data. Early approaches, exemplified by Lopes et al. [25],
initially explore the utilizing of metadata from teacher model to
reconstruct training data for knowledge distillation. Subsequent
researches has largely moved away from metadata reliance and in-
stead emphasizes alternative methodologies for knowledge transfer.
One category of methods involves updating randomly initialized
noise images by using optimisation algorithms to synthesize data.
Nayak et al. [29] models the output of the teacher network as a
Dirichlet distribution, while Yin et al. [45] regulates the distribu-
tion of synthesised images based on batch normalization statistics.
Besides, CMI [9] asserts that data diversity enhances distillation
performance and enables comparative learning to enhance instance
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Figure 2: The visualization of the synthesized data employed in the knowledge distillation training process for the pre-trained
wrn-40-2 model on CIFAR-10. Three representative DFKD methods, ADI [45], CMI [9] and SpaceshipNet [47] are chosen to
compared with our method. Obviously, our DDA is capable of achieving stronger instance distinguishability.

discrimination. An alternative category of methods employs gen-
erative networks to synthesise training data [4, 5, 8, 9, 26, 28, 46].
These methods can be classified into non-conditional generative
network-based methods [4, 5, 9, 26, 28] and conditional generative
network-based methods [26, 46], depending on whether or not they
combine conditional vectors when sampling random noise. Notably,
Spaceshipnet [47] utilizes features from previous synthetic images
to carry out channel-wise feature exchange (CFE) and employs
multi-scale spatial activation region consistency (mSARC) as the
constraint of similar network regions. Additionally, CDFKD-MFS
[13] explores distilling knowledge from multiple teacher networks
without access to original data, which uses a student network with
additional parameters and multi-level feature-sharing to learn from
multiple teachers. However, conventional DFKD methods are in-
capable of essentially achieving the balance of data diversity and
distributional consistency inherent in generative reconstruction
methods [23], causing less effective DFKD. In this paper, we propose
a novel DDA method, which shifts the focus of synthetic data from
adversarial networks to further data augmentation, overcoming
inherent limitation in DFKD.

2.2 Data Augmentation
Data augmentation plays a crucial role in improving the robustness
and generalisation capabilities of machine learning models across
various domains. Traditional data augmentation techniques, as out-
lined in [39], typically involve fundamental transformations such as
random flipping, cropping, and colour shifting, aimed at generating
diverse versions of original images. Recent advancements in data
augmentation have introduced mixup-based techniques[15, 20, 24,
30, 48, 50], which enhance diversity by blending patches of two

input images through convex combinations and adaptive sample
mixing policies. Furthermore, generative models have emerged as
a significant area of research in data augmentation, particularly
in domains such as medical image augmentation [11, 36], domain
adaptation [18], and bias mitigation [38]. These methods leverage
trained or pre-trained Generative Adversarial Networks (GANs)
[33] to generate images that adhere to desired distributions, which
also facilitate dense visual alignment supervision and pixel-level
annotation generation from limited labels. Notably, diffusion mod-
els [30, 31, 35, 51, 53] have demonstrated promise in generating
training data in zero or few-shot settings, as well as producing
challenging training examples. As research advances [34], it is an-
ticipated that further exploration of diffusion models will enhance
the effectiveness of data augmentation techniques. In this work, we
re-visit the DFKD paradigm from another perspective, where the
ability of data augmentation is utilized to enhance data diversity.

2.3 Diffusion Models
Diffusion models represent a significant advancement in generative
models, offering remarkable capabilities in authentic image genera-
tion. While earlier methods like Variational Autoencoders (VAEs)
[21] and GANs [33] laid the groundwork for realistic image synthe-
sis, recent breakthroughs in this domain have predominantly been
attributed to diffusion models. Demonstrated by [30, 31, 35, 51, 53],
diffusion models have exhibited superior sample quality compared
to traditional GAN-based approaches. Moreover, the evolution of
diffusion models has paved the way for advancements in high-
resolution image synthesis [34] and text-to-image generation [53],
facilitated by innovations such as classifier-free guidance [41]. Dif-
fusion models trained on large-scale datasets like LAION-5B [37]
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Figure 3: The illustrative framework of the proposed diverse diffusion augmentation (DDA) DFKD method. The three steps we
present in the overall DFKD are arranged from left to right.
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Figure 4: The visualization of diffusion augmentation and
image filtering process. The diverse augmented and filtered
low-quality images of several original images are shown.

have broadened their applicability across diverse domains, includ-
ing point cloud generation and few-shot conditional image gen-
eration. Feng et al. [10] has emphasized the potential of diffusion
models to enhance test-time prompt-tuning performance by di-
rectly incorporating semantically meaningful. Motivated by it, we
utilize a powerful stable diffusion model to achieve effective data
augmentation that maintain image semantics, as shown in Fig. 2.

3 Proposed Method
3.1 Preliminary
To achieve knowledge distillation, we initially give the definition
of the teacher model 𝑇 (·, 𝜃𝑇 ), the student model 𝑆 (·, 𝜃𝑆 ), and the

original training dataset 𝐷 consisting of images 𝑥 ∈ R𝐻×𝑊 ×𝐶 ,
where 𝐻 ,𝑊 and 𝐶 refer to the height, width and channel number.
For dataset 𝐷 , 𝑥𝑖 and 𝑥 𝑗 represent the image and the corresponding
label, respectively. The distinctive aspect of DFKD compared to
traditional knowledge distillation lies in enabling the student model
𝑆 to emulate the output of the teacher model 𝑇 for classification
capability without direct access to 𝐷 [23]. To execute knowledge
distillation without access to the original training dataset, model
inversion is advisable to synthesize a 𝐷′ dataset with a distribution
akin to that of 𝐷 , which serves as the training data [9, 25].

Specifically, we first establish the model inversion to recover
training data from a pre-trained model [9]. The proposed model
inversion framework encompasses two fundamental components:
the class priorL𝑐𝑙𝑠 and the Batch normalization (BN) regularization
L𝑏𝑛 . The class prior L𝑐𝑙𝑠 [4] is an one-hot assumption introduced
in class-conditional generation, ensuring that the network predic-
tions exhibit the same distribution as the original training data.
It minimises the cross entropy (CE) loss of predefined labels and
predictions from teacher model, as expressed below:

L𝑐𝑙𝑠 = 𝐶𝐸 (𝑥 𝑗 ,𝑇 (·, 𝜃𝑇 )) (1)

The BN regularization [45] process utilizes statistical informa-
tion stored in the batch normalization layer of the teacher network
as prior knowledge regarding the data. The regularization tech-
nique utilizes the running mean 𝜇𝑙 and running variance 𝜎2

𝑙
of the

𝑙-th BN layer, which encapsulate the feature statistics of the original
training data. The BN regularization is computed based on the dis-
parity between the feature statistics of the synthetic data and those
of the original training data. Mathematically, the BN regularization
can be represented as the distance between the feature statistics



Towards Effective Data-Free Knowledge Distillation via Diverse Diffusion Augmentation MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

and the batch normalized statistics:

L𝑏𝑛 =
∑︁
𝑙

(
∥𝜇𝑙 (𝑥) − 𝜇𝑙 ∥2 +

𝜎2
𝑙
(𝑥) − 𝜎2

𝑙


2

)
(2)

where 𝜇𝑙 (𝑥) and 𝜎2𝑙 (𝑥) denote the mean and variance of the feature
maps at the 𝑙-th BN layer, respectively.

Utilizing these two techniques, we introduce a unified inversion
framework for data-free knowledge distillation:

L𝑖𝑛 = 𝛼 · L𝑐𝑙𝑠 + 𝛽 · L𝑏𝑛 (3)

where 𝛼 and 𝛽 are parameters to balance L𝑐𝑙𝑠 and L𝑏𝑛 , respec-
tively. However, the aforementioned model inversion framework
lacks consideration on data diversity and distributional consistency,
which can result in the redundant generation of duplicate or irrel-
evant samples. To remedy this problem, we propose to improve
the existing framework by incorporating contrastive learning and
expand the data synthesis into a composite technique based on the
diffusion model, as shown in Fig. 3.

3.2 Data Synthesis
Data diversity refers to the variability and distinctiveness within a
training dataset [9]. A large amount of existing researches [9, 47]
indicate that increased data diversity results in more robust in-
stance discrimination and more effective knowledge distillation,
even when the amount of data remains constant. Additionally, con-
trastive learning [44] represents a self-supervised technique that
enables a neural network to learn the distinction between different
instances, thereby serving as a appropriate metric for assessing
data diversity.

3.2.1 Contrastive Learning for Data Diversity. A discriminator
𝑑𝑖𝑠𝑐 is integrated into the contrastive learning framework, which
is a multi-layer perception that takes the representation from the
penultimate layer and the global pooling of intermediate features
as input. A memory bank is introduced to store both historical and
newly synthesized samples. For each image, a positive view 𝑥+ is
constructed using random augmentation, while other images in
memory bank are considered as negative views 𝑥−𝑝 . The correct pair-
ing of images from these positive and negative views necessitates a
formulation to define the contrastive loss L𝑐 :

L𝑐 = −E𝑥𝑖 ∈R

𝑙𝑜𝑔
𝑒𝑥𝑝

(
𝑐𝑜𝑠

(
𝑥𝑖 , 𝑥

+
𝑖
, 𝑑𝑖𝑠𝑐

)
/𝑡𝑝

)∑
𝑝 𝑒𝑥𝑝

(
𝑐𝑜𝑠

(
𝑥𝑖 , 𝑥

−
𝑝 , 𝑑𝑖𝑠𝑐

)
/𝑡𝑝

)  (4)

where 𝑡𝑝 signifies the temperature parameter of knowledge distilla-
tion to soften the distribution and 𝑐𝑜𝑠 denotes the cosine similarity
between individual data point 𝑥 in the new embedding space, which
is mathematically expressed as the cosine of the angle between two
vectors. The discriminator serves to assess data diversity by dis-
tinguishing between different views, thus pulling positive views
closer together and pushing negative views further apart.

3.2.2 Integration of Model Inversion. The initial data synthesis
task can be optimized through contrastive learning [44], seamlessly
integrated into the foundational framework of model inversion.
A generator 𝑔 and a memory bank B are introduced into the en-
hanced model inversion framework and merely one batch of data
are synthesized by the generator 𝑔 in each timestamp 𝑇 . At the

beginning of timestamp 𝑇 , the teacher model is reinitialized for
model inversion by generator 𝑔 and its initial potential features 𝑓𝑖𝑛𝑖
along with the shared weights 𝜃𝑤 are iteratively optimized. Hence,
the model inversion framework is structured as follows:

L𝜃𝑤 ,𝑓𝑖𝑛𝑖 = 𝛼
′ · L𝑖𝑛 (𝑔 (𝑓𝑖𝑛𝑖 ;𝜃𝑤)) + 𝛽′ · L𝑐 (𝑔 (𝑓𝑖𝑛𝑖 ;𝜃𝑤) ∪ B) (5)

where L𝑖𝑛 and L𝑐 refer to the regular inversion framework in Eqn.
3 and the data diversity contrastive loss in Eqn. 4. Parameters 𝛼 ′
and 𝛽′ are updated parameters utilized to balance these two losses,
respectively. However, it is imperative to note that this inversion
technique is constrained in achieving the balance of data diversity
and distributional consistency [23]. To address this issue, the self-
supervised diverse diffusion augmentation strategy is employed to
further augment the available data.

3.3 Diverse Diffusion Augmentation
This section introduces the diverse diffusion augmentation tech-
nique for self-supervised data augmentation. For the first time,
diffusion models are incorporated into DFKD methods not only
to generate diverse and informative augmented images but also
to maintain semantic consistency across various distribution. The
Stable Diffusion-V2 [1] is selected as the decoder 𝐷𝑖 𝑓 𝑓 with sam-
pled noise 𝑛 ∼ N(0, 𝐼 ), which is capable of generating the images
G from the potential features 𝑓𝑠𝑦𝑛 converted by a image encoder
[1]. After model inversion, the obtained potential feature 𝑓𝑠𝑦𝑛 of a
single synthetic image is optimized and then passed through the
diffusion model to generate the augmented images. Consequently,
the augmented images can be represented as:

G𝑘 = 𝐷𝑖 𝑓 𝑓 (𝑓𝑠𝑦𝑛, 𝜃𝑤 , 𝑛) (6)

where G𝑘 denotes the 𝑘-th augmented image. However, employing
a single augmented data for knowledge distillation may prompt the
student model to repetitively synthesize samples, which may not
be conducive to optimal student performance.

Therefore, we self-supervise this augmentation process, involv-
ing adaptively data augmentation guided by the comprehension
abilities of students model, evaluated through its acquired semantic
information from images in each training iteration. Specifically, the
student model, typically a CNN model, comprises a feature extrac-
tor Φ with feature dimension 𝑑 and a classifier𝜓 . The augmented
image is classified by the classifier, and the resulting classification
is employed to compute the classification cross-entropy loss L𝑠𝑒𝑙 𝑓
based on the categories of the pre-augmented image:

L𝑠𝑒𝑙 𝑓 = 𝐶𝐸 (𝑥 𝑗 ,𝜓 (Φ(G𝑘 ))) (7)

where 𝜓 (Φ(G𝑘 )) denotes the predicted output of student model.
The cross-entropy loss of this self-supervised task effectively re-
flects the ability of student model to comprehend the semantic
information of the image, which can also contribute to enhancing
the efficiency of data augmentation.

Additionally, in comparison to other augmentation methods, our
images generated using the diffusion model exhibit higher resolu-
tion and diversity. Some examples of these images are illustrated
in Fig. 2. Nevertheless, images generated solely from the potential
features of the images may exhibit a certain degree of anisotropy,
causing bite-sized portion of images to deviate excessively from the
original images and diminishing the learning efficacy of the student
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Table 1: Experimental results of DFKD on CIFAR-10, CIFAR-100 and Tiny-ImageNet. Method 𝑻 . and 𝑺. refer to the scratch
training of teacher and student model on the labeled data.

Test accuracy (%)
Dataset Teacher Student T. S. DAFL ZSKT ADI DFQ CMI SpaceshipNet DDA

resnet-34 resnet-18 95.70 95.20 92.22 93.32 93.26 94.61 94.84 95.39 95.64
vgg-11 resnet-18 92.25 95.20 81.10 89.46 90.36 90.84 91.13 92.27 93.02
wrn-40-2 wrn-16-1 94.87 91.12 65.71 83.74 83.04 86.14 90.01 90.38 90.92
wrn-40-2 wrn-40-1 94.87 93.94 81.33 86.07 86.85 91.69 92.78 93.56 93.63

CIFAR-10

wrn-40-2 wrn-16-2 94.87 93.95 81.55 89.66 89.72 92.01 92.52 93.25 93.51

resnet-34 resnet-18 78.05 77.10 74.47 67.74 61.32 77.01 77.04 77.41 77.56
vgg-11 resnet-18 71.32 77.10 57.29 34.72 54.13 68.32 70.56 71.41 72.04
wrn-40-2 wrn-16-1 75.83 65.31 22.50 30.15 53.77 54.77 57.91 58.06 58.96
wrn-40-2 wrn-40-1 75.83 72.19 34.66 29.73 61.33 61.92 68.88 68.78 69.31

CIFAR-100

wrn-40-2 wrn-16-2 75.83 73.56 40.00 28.44 61.34 59.01 68.75 69.95 70.27

Tiny-ImageNet resnet-34 resnet-18 66.44 64.87 N/A N/A N/A 63.73 64.01 64.04 64.13

Table 2: Ablation study on the threshold value of the cosine
similarity filtering.

Threshold value CIFAR-10 CIFAR-100
𝜔=0.65 90.71 58.81
𝜔=0.7 90.86 58.85
𝜔=0.75 90.92 58.96
𝜔=0.80 90.89 58.90
𝜔=0.85 90.85 58.88

model. To preserve the fidelity of the data augmentation, we reuse
the cosine similarity measure discussed in Sec. 3.2.1 to filter out
augmented images that show excessive deviation before and after
augmentation. In specific, an additional maskM𝑘 is introduced to
determine whether to retain the 𝑘-th augmented image, based on
its similarity exceeding a threshold parameter 𝜔 :

M𝑘 = 𝑐𝑜𝑠 (G𝑘 , 𝐹𝑠𝑦𝑛) > 𝜔 (8)

where 𝐹𝑠𝑦𝑛 represents the previous synthetic image by model in-
version corresponding to the potential feature 𝑓𝑠𝑦𝑛 . This filtering
process eliminates spurious augmentations generated by the dif-
fusion model, effectively striking a balance between the diversity
and fidelity of the augmented data. The outcomes of the filtering
are visualized in Fig. 4, showcasing the improved quality of the
augmented dataset.

3.4 Knowledge Distillation
In the stage of knowledge distillation, a final prediction loss is syn-
thesised to serve as a constraint for the student model to emulate
the output of the teacher model. The Kullback-Leibler (KL) diver-
gence is commonly employed to minimize the logarithm of the
outputs of both the teacher and student models:

L𝐾𝐿 = 𝐾𝐿(𝑇 (·, 𝜃𝑇 )/𝜏, 𝑆 (·, 𝜃𝑆 )/𝜏) (9)

Additionally, feature maps are frequently employed to evaluate
the loss of feature mapping between the two models. Furthermore,
our self-supervised diffusion augmentation method integrates the

Algorithm 1: DFKD via Diverse Diffusion Augmentation.
Input: Pre-trained teacher model: 𝑇 and student model 𝑆 .
Output: Optimized student model 𝑆 .

Initialize prior knowledge 𝜃𝑤 and 𝑓𝑖𝑛𝑖 ;
while not converged do

Sample batch of noise 𝑛;
foreach epoch in 𝐷𝑖 𝑓 𝑓 do

Generate synthetic data 𝑥𝑖 with L𝜃𝑤 ,𝑓𝑖𝑛𝑖 ;
Implement data augmentation G𝑘 ← 𝐷𝑖 𝑓 𝑓 ;
Evaluate the ability of obtaining semantic
information of 𝑆 by L𝑠𝑒𝑙 𝑓 ← Φ,𝜓 ;
Filter invalid augmented images usingM𝑘 ;

Store augmented data G𝑘 ;
foreach epoch in knowledge distillation do

Sample augmented data from G𝑘 ;
Evaluate the ability of classification 𝑥 𝑗 ← 𝜓 ;
Optimize student network 𝑆 using L𝑡𝑜𝑡𝑎𝑙 ;

return Optimized student model 𝑆 .

image recognition ability of the student model into image aug-
mentation, implementing a form of adversarial learning. Conse-
quently, the total knowledge distillation loss can be mathematically
expressed as:

L𝑡𝑜𝑡𝑎𝑙 = 𝜂𝐾𝐿L𝐾𝐿 + 𝜂𝜃𝑤 ,𝑓 L𝜃𝑤 ,𝑓 + 𝜂𝑠𝑒𝑙 𝑓 L𝑠𝑒𝑙 𝑓 (10)

where 𝜂𝐾𝐿 , 𝜂𝜃𝑤 ,𝑓 ,𝑒 and 𝜂𝑠𝑒𝑙 𝑓 are the parameters to balance three
loss terms. The complete process and algorithm of DDA are out-
lined in Fig. 3 and Alg. 1, respectively. In summary, DDA enables
the provision of more knowledge from the teacher model, thus
enhancing distillation efficiency.

4 Experiments
In this section, we present a comprehensive set of experiments
for DFKD, aiming to validate the efficacy of our proposed DDA
method. We start by outlining the experimental setup, including
the specific tools and configurations employed throughout the ex-
perimentation process. Next, we benchmark the performance of
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Figure 5: The influence of the cosine similarity on two
teacher-student networks, wrn-40-2 to wrn-16-1 and resnet-
34 to resnet-18. The positive correlation tendencies demon-
strate the positive effect of cosine similarity on the results.

DDA against state-of-the-art DFKD methods to assess its potential
as a promising paradigm in the field. Additionally, we conduct ab-
lation studies to analyze the significance and effectiveness of the
different components within our method.

4.1 Settings
4.1.1 Models and Datasets. We implement knowledge distilla-
tion on several different models, including resnet [14], vgg [40],
and wide resnet (wrn) [49]. Three popular classification datasets,
namely CIFAR-10, CIFAR-100 [6], and Tiny-ImageNet [22] are uti-
lized as benchmarks to evaluate several existing DFKD methods.
CIFAR-10 and CIFAR-100 each consist of 60,000 images with 32×32
resolution, of which 50,000 are used for training and the remaining
10,000 for testing. Alternatively, Tiny-ImageNet has 64×64 resolu-
tion images, encompasssing 100,000 training images and 10,000 test
images. These three types of datasets also contain 10, 100 and 200
classes, respectively.

4.1.2 Diffusion models. The data augmentation step occurs after
generating data through model inversion. We employed Stable
Diffusion-V2 [1] to augment the data obtained from the synthetic
images, expanding three new images for each synthetic image.
The guidance scale of the Stable Diffusion-V2 and the number of
diffusion steps are set to 0.5 and 50 respectively.

4.1.3 Implementation details. All teacher models mentioned
above are trained on labelled datasets, whereas the student models
are trained on data generated by inversion of the teacher model.
During model inversion, we update the generator using the Adam
optimizer with a learning rate of 1e-3, which in turn synthesises
200 images per step, with 500 repetition steps. Subsequently, the
student model is trained using a SGD optimizer with a learning rate
of 0.1 and a momentum of 0.9, with cosine annealing decay of 1e-4.

4.2 Comparison with State-of-the-arts Methods
Table 1 elaborately presents the results of DFKD for state-of-the-
art (SOTA) methods in recent years, including DAFL [4], ZSKT
[28], ADI [45], DFQ [5], CMI [9] and SpaceshipNet [47], as well
as our DDA. According to the classification of DFKD methods,
DAFK, ZSKT, DFQ, CMI, SpaceshipNet, and DDA belong to the
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Figure 6: Variation of the cosine similarity versus the guid-
ance scale and number of diffusion steps.

generative reconstruction type of DFKD, while ADI belongs to the
noise optimization type. The main difference between our method
and the baselines methods is the usage of a diffusion model to
extend the data synthesis. For a fair comparison, we utilize the same
teacher-student networks as visual backbones for all experiments.
The results in Tab. 1 evidence that DFKD method guided by DDA
quantitatively outperforms the current SOTA methods on all three
commonly used datasets by a large margin.

In addition, Fig. 2 further visualizes the data utilized in knowl-
edge distillation training process of four methods: ADI [45], CMI
[9], SpaceshipNet [47] and DDA. It is evident that our augmented
images exhibit considerably clearer and more restorative character-
istics with better diversity. The visualization also distinct character
evidently that DeepInversion produces images with similar colour
and texture, while the CMI method improves highly image diversity
but neglects sufficient clarity and resolution. Additionally, Space-
shipNet uses CFE network to enhance image content but still falls
short of enabling recognition with the naked eye. In contrast, the
images produced by DDA are readily recognizable even without
magnification, facilitating an effective capture of the features and
objects present in each image.

4.3 Ablation Study
4.3.1 The influence of cosine similarity. Before investigating
the effects of other parameters on the distillation results, it is im-
perative to rigorously establish the positive correlation of cosine
similarity with the final outcomes. An experiment was conducted
on the CIFAR-10 dataset, employing wrn-40-2 to wrn-16-1 and
resnet-34 to resnet-18 as the two teacher-student networks. Fig. 5
illustrates that the growth of cosine similarity improves test accu-
racy, indicating that a augmented image dataset with higher cosine
similarity yields superior results.

4.3.2 The effect of guidance scale and diffusion steps. This
section investigates the influence of two critical parameters in the
diffusion model, diffusion steps and guidance scale [1], which are
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Figure 8: Ablation study on the weights of DDA loss.

related to the cosine similarity of the augmented dataset. In a stable
diffusion model, each diffusion step predicts noise from a Gaussian
distribution, and the prediction of model relies more on the source
condition as the guidance scale increases. Fig. 6 illustrates that the
diffusion model, when applied for augmenting our synthetic data
approach, produces highest quality images with 50 diffusion steps
and guidance scale of 0.5.

4.3.3 The effect of threshold parameter 𝝎. As stated in Sec 3.3,
𝜔 is utilized to filter augmented images below a specific cosine
similarity threshold. We evaluated the results of using different
values of 𝜔 on the CIFAR-10 and CIFAR-100 datasets using wrn-40-
2 to wrn-16-1 as the teacher-student model network. Tab. 2 reveals
that threshold parameter of 0.75 enhances knowledge distillation
performance. A reasonable explanation is that a small threshold
may result in low-quality knowledge being transferred, while a
large threshold may decrease the diversity of data and constrain
the generalisation of the student model. Such value of 0.75 is exactly
moderate for the threshold, striking a balance that results in the
best performance.

4.3.4 The effect of the scale of the augmented dataset. We
further explore the impact of augmented dataset scale on the results,
building upon the experiments in Sec 4.3.3. As depicted in Fig. 7, it
is apparent that the testing accuracy exhibits remarkable growth
with the increase in augmented data scale, while the growth in
accuracy becomes marginal during the transition from 3 × to 4
× augmented images, and the incorporation of more augmented
images undoubtedly diminishes the extent of model compression.
To strike a balance between accuracy and model size, our work

Table 3: Fréchet Inception Distance (FID) of augmented data.
We estimate FID metric in three shallow layers, namely the
1-st Pool, the 2-nd Pool, and the deep final Pool.

Feature position 1-st Pool 2-nd Pool Final Pool
WGAN-GP [12] N/A N/A 29.3

ADI [45] 2.021 17.28 84.69
CMI [9] 0.140 1.776 62.63
Ours 0.127 1.532 56.33

Table 4: Ablation study about the effect of diffusion model
and cosine similarity.

Method DM. CS. CIFAR-10 CIFAR-100
(a) X X 89.33 57.65
(b) ✓ X 90.69 58.74
(c) X ✓ 89.54 57.85
(d) ✓ ✓ 90.92 58.96

augments each synthesized image into three images. Moreover,
we estimate the average of Fréchet Inception Distance (FID) [16]
score for tripled number of augmented images, where a lower score
indicates higher quality of images. Referring to the Tab. 3, our
augmented images achieve the lowest score across all three layers,
demonstrating their superior diversity from low-level features to
high-level semantics.

4.3.5 The effect of diffusion model and cosine similarity. The
effects of two core modules in DDA: the diffusion model and the
cosine similarity are investigated, where we disable each module
both in conjunction and individually to evaluate its influence. As
shown in Tab. 4, the test accuracy decreases by an average of 1.245%
when the diffusion model is deactivated, and by an average of
0.225% when the cosine similarity is disabled. This indicates that
the diffusion model has a more significant impact on the results,
with its deactivation leading to a more substantial degradation in
accuracy. Moreover, Fig. 8 shows the effect of parameter 𝜂𝑠𝑒𝑙 𝑓 in
Eqn. 10 where the term L𝑠𝑒𝑙 𝑓 is proposed by ourselves. It can be
observed that the model’s accuracy nearly consistently improves
with the increase of the 𝜂𝑠𝑒𝑙 𝑓 , which demonstrates the effectiveness
of our diffusion model and cosine similarity.

5 Conclusion
In this paper, we pioneer the application of diffusion models in the
domain of DFKD, achieving enhanced data diversity with reduced
distributional bias. Additionally, to mitigate redundancy in data
augmentation, we introduce a image filtering technique based on
cosine similarity, which eliminates augmented images exhibiting
significant deviations pre- and post-augmentation, resulting in im-
proved performance. Through extensive experimentation on three
widely-used datasets and various teacher-student model pairs, we
have achieved state-of-the-art results, highlighting the high effec-
tiveness of our DDA method. As diffusion models and large-scale
models continue to evolve rapidly, investigating alternative diffu-
sion models for data augmentation in knowledge distillation offers
a promising direction for future research.
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