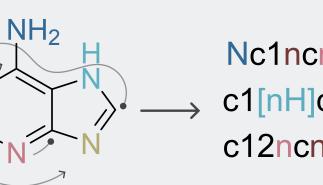
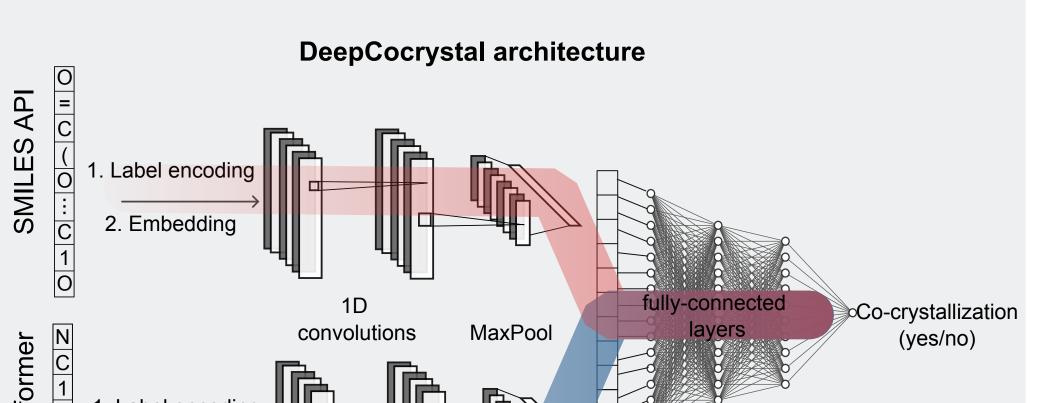
Deep Supramolecular Language Processing For Co-crystal Prediction

Rebecca Birolo^{1,2}, Rıza Özçelik¹, Andrea Aramini³, Roberto Gobetto², Michele Chierotti², Francesca Grisoni^{1*}

Co-crystals

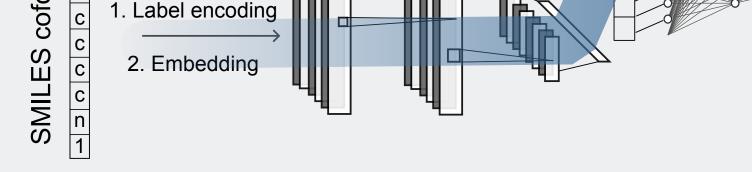

- Multicomponent systems formed by supramolecular interactions between an active pharmaceutical ingredient (**API**) and a second organic molecule (**coformer**).
- Phamaceutical formulations to increase API solubility and bioavailability.

Coformer selection is **time-consuming** and **resources-intensive** due to the vast number of possible combinations. While thousands of coformer are available, only a few are able to establish supramolecular interactions with a specific API.


SMILES strings

DeepCocrystal selects promising **API-coformer** pairs, limiting unsucessful lab experiments. **Unbalance** dataset for model training 5240 (79%) 'positives' and 1392 (21%) 'negatives' data \downarrow SMILES AUGMENTION

DeepCocrystal training, validation & benchmarking


Nc1ncnc2nc[nH]c12 c1[nH]c2c(N)ncnc2n1 c12ncnc(N)c1[nH]cn2

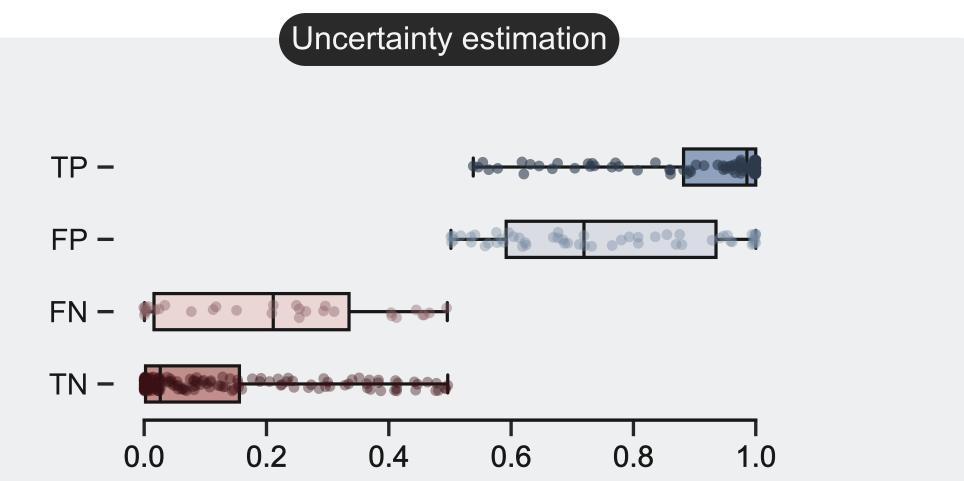
Performance of DeepCocrystal, tested on internal and external test sets. Internal test set: 664 pairs sampled by stratified splits of the collected dataset. External test set: 364 pairs more structurally diverse edit distance, and Tanimoto similarity computed) to the training set, also used to benchmark DeepCocrystal with existing literature models.

Test set	Model	BAcc	Recall	Specificity
Internal	DeepCocrystal - canonical	88% ± 2%	$96\% \pm 1\%$	79% ± 6%
	DeepCocrystal - augmented (1:4)	88% ± 2%	$91\% \pm 2\%$	86% ± 3%
	DeepCocrystal - augmented (2:7)	89% ± 2%	$92\% \pm 2\%$	87% ± 3%
External	DeepCocrystal - canonical	59%	93%	26%
	DeepCocrystal - augmented (1:4)	69%	71%	66%
	DeepCocrystal - augmented (2:7)	78%	75%	81%
	CCGNet	60%	51%	69%
	CC-Descriptor-ML	63%	79%	48%
	Descriptor-DNN	63%	84%	41%
	Fingerprint-DNN	57%	90%	25%

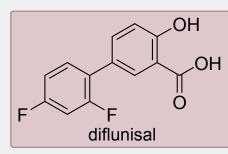
Chemical language processing, traditionally employes a 'one-molecule-one-property' approach.

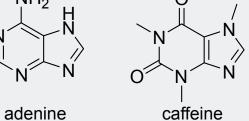
canonical SMILES, univocal standarized string per molecule.

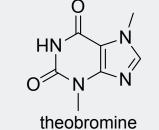
DeepCocrystal - augmented (2:7)
✓ outperforms benchmarks
✓ better trade-off between

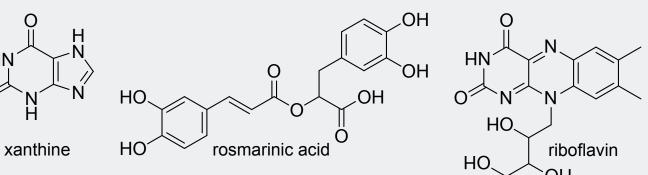

positive and negative predictions

higher generalization potential


'Supramolecular language' processing, simultaneosly learns from the SMILES strings of pairs of molecules.


'randomized' SMILES, differents strings based on the starting atom and graph trasveral route.

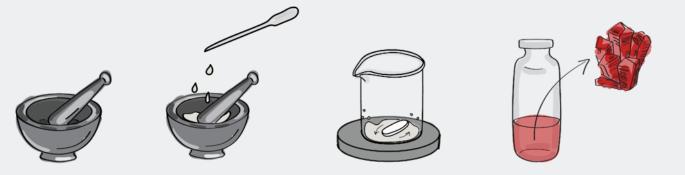

Different levels of augmentation specific number of randomization for positive and negatives optimized to balance the two classes [positive:negative = 1:4 or 2:7]



Prospective experimental application

average prediction (10-fold SMILES augmentation)

Uncertainty estimation with DeepCocrystal. External test set molecules were represented as **10 SMILES strings** each before prediction (using DeepCocrystal 2:7). **Majority voting** and **standard deviation** were used to estimate uncertainty.


SMILES input	Method	Thr.	No. Pairs (%)	BAcc	Recall	Specificity
Canonical	-	-	364 (100%)	78%	75%	81%
Augmented	Major.	≥ 50%	364 (100%)	76%	75%	77%
(10-fold)	Major.	≥ 60%	348 (96%)	77%	75%	79%
	Major.	≥ 70%	313 (86%)	79%	77%	82%
	Major.	≥ 80%	287 (79%)	82%	79%	84%
	Major.	≥ 90%	254 (70%)	84%	82%	86%
	Major.	=100%	218 (60%)	87%	86%	89%
	St. dev.	≤ 0.50	364 (100%)	76%	75%	77%
	St. dev.	≤ 0.40	351 (96%)	77%	76%	78%
	St. dev.	≤ 0.30	275 (76%)	82%	80%	83%
	St. dev.	≤ 0.30	227 (62%)	86%	85%	87%
	St. dev.	≤ 0.10	191 (52%)	88%	86%	90%
	St. dev.	= 0.05	161 (44%)	88%	84%	91%

12 natural products containing polyphenolic or purine moieties selected as coformer candidates and predicted with DeepCocrystal 2:7

Experimental screening of:

HO[^]

top-two high-certainty positive predictions
top-two high-certainty negative predictions
two most uncertainty predictions

Samples were analyzed by **IR spectroscopy** and **solid-state NMR** to discriminate between co-crystal and non-cocrystal formation.

Tested	DeepCo	Experimental	
coformer	Prediction	Outcome	Outcome
Adenine	0.99 ± 0.00	√	✓
Caffeine	0.99 ± 0.01	1	\checkmark
Theobromine	0.66 ± 0.35	?	X
Xanthine	0.63 ± 0.38	?	X
Rosmarinic acid		X	Х
Riboflavin	0.00 ± 0.00	Х	х

 ¹ Institute for Complex and Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
 ²Department of Chemistry and NIS Centre, University of Torino, Torino, Italy.
 ³Research and early Development, Dompé Farmaceutici S.p.A, L'Aquila, Italy.

/e

