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APPENDIX A PRELIMINARIES IN QUANTUM INFORMATION

In this appendix, we write more details on quantum computation and quantum information for read-
ers to better understand quantum computing.

A.1 QUANTUM COMPUTATION AND QUANTUM INFORMATION BASICS

We use ∥∥p to denote the lp-norm for vectors and the Schatten-p norm for matrices. The common-
used linear algebra notations include complex conjugate transpose A†, the trace of matrix Tr[A].
The µ-th component of the vector θ is denoted as θµ. The derivative with respect to θµ is then
represented as ∂µ := ∂

∂θµ
. The big-O notation O implies the asymptotic notation of upper bounds.

Quantum information is encoded and processed via the fundamental cells, namely, qubits, and de-
scribed as quantum states. An n-qubit state can be mathematically represented by a 2n×2n positive
semi-definite density matrix ρ, i.e., ρ ⪰ 0 over the complex field and Tr[ρ] = 1. A pure state, in this
formulation, satisfy Rank (ρ) = 1 and can be expressed in Dirac bra-ket notation as ρ = |ψ⟩⟨ψ|
where |ψ⟩ ∈ C2n denotes a Hilbert space unit column vector with the corresponding dual vector
⟨ψ|† = |ψ⟩ and † denoting the complex conjugate transpose operation. A mixed state satisfies
Rank (ρ) > 1, and based on Spectral theorem, it has a decomposition form ρ =

∑
j pj |ψj⟩⟨ψj |

where pj > 0 denotes the probability of observing |ψj⟩⟨ψj | in ρ and
∑
j pj = 1.

Based on Uhlmann’s theorem Nielsen & Chuang (2010) for every mixed state ρ acting as a linear
operator on a Hilbert space A, there exists a purified state |AR⟩ (i.e, pure state) in the composite
system AR such that TrR[|AR⟩⟨AR|] = ρ, where TrR[·] denotes the partial trace operation tracing
out the ancillary system R. The purification |AR⟩ has a Schmidt decomposition form |AR⟩ =∑
j

√
pj |ψj⟩ ⊗ |jR⟩ for some orthonormal set |jR⟩ in R.

The partial trace operation in the above statement plays an important role in quantum computation
and information. Given a composite quantum system described by a tensor product of Hilbert spaces,
HA⊗HB , or simply denoted as AB, whereHA andHB represent the Hilbert spaces of subsystems
A and B, respectively, the partial trace operation allows us to focus on subsystem A while tracing
out the degrees of freedom associated with subsystem B. The partial trace of an operator ρ with
respect to subsystem B is denoted as TrB [ρ] and is defined as follows:

TrB [ρ] =
∑
i

(IA ⊗ ⟨i|B) · ρ · (IA ⊗ |i⟩B)

Where IA is the identity operator on HA; |i⟩B forms an orthonormal basis for HB and ⟨i|B repre-
sents the conjugate transpose of |i⟩B .

The evolution of a quantum state ρ is realized by applying a series of quantum gates, which are
mathematically described as unitary operators. The state ρ′ that undergoes transformation via a
quantum gate U can be obtained through direct matrix multiplication, expressed as ρ′ = UρU†.
Common single-qubit gates include the Pauli rotations {RP (θ) = e−i

θ
2P |P ∈ {X,Y, Z}}, which

are in the matrix exponential form of Pauli matrices

X :=

(
0 1
1 0

)
, Y :=

(
0 −i
i 0

)
, Z :=

(
1 0
0 −1

)
.

Common two-qubit gates include controlled-X gate CX (or CNOT) = I ⊕X and controlled-Z gate
CZ= I ⊕ Z where ⊕ denotes the direct sum operation. An n-qubit operator generally lives in the
linear operator space L(C2n) over the complex field. Quantum measurements are then applied at
the end of the quantum circuits, extracting classical information by projecting the quantum states
onto its classical shadow.

A.2 FUNDAMENTAL OF QUANTUM NEURAL NETWORKS

In quantum machine learning, quantum neural networks (QNNs) are usually represented as param-
eterized unitaries consisting of a bunch of single-qubit rotation gates and several two-qubit gates,

14



Under review as a conference paper at ICLR 2024

denoted as U(θ) where θ are the trainable parameters. The model is trained using a classical op-
timizer according to a minimization process on some cost function C(θ) based on the quantum
measurement results.

QNNs can be used to handle a variety of computational tasks, which is usually seen as a quantum
version of classical neural networks. In the most general form, a QNN model can be expressed as
U(θ) =

∏M
k=1 Uk(θk) for some sub-network layers Uk(θk) where each layer can also be seen as a

combination of parameterised circuits as Uk(θk) =
∏d
j=1 Uj(θ

(k)
j )Wj , where Uj(θ

(k)
j ) = e−igjθ

(k)
j

is a parameterised gate with a Hermitian generator gj . Wj is usually non-parameterised, such as the
networks of CNOT and CZ gates. The product

∏
k here is, by default, in the increasing order from

the right to the left in the above representations.

The idea of quantum neural networks has obtained massive attention since its birth Tóth et al.
(1996). Various QNN architectures have been introduced to address a diverse range of computa-
tional challenges, spanning both classical and quantum problem domains Rebentrost et al. (2018);
Zhao et al. (2019); Liu et al. (2013); Cong et al. (2019); Killoran et al. (2019), thereby pioneering
an entirely novel realm of machine learning models. Recent literature focusing on the trainability
theory of QNNs indicates a prospective direction for coping with barren plateaus by reducing the
expressibility of QNN architectures Cerezo et al. (2021); Liu et al. (2022a). Beyond that, some
strategies have been proposed under certain conditions, for example, adopting clever initialization
strategy Grant et al. (2019); Kulshrestha & Safro (2022), using adaptive algorithms Grimsley et al.
(2019); Zhang et al. (2021); Skolik et al. (2021); Grimsley et al. (2022), making parameterization
generalization Volkoff & Coles (2021); Friedrich & Maziero (2022) and choosing different cost
forms and circuit architectures Cerezo et al. (2021); Kieferova et al. (2021); Liu et al. (2022b).

APPENDIX B EFFECTIVENESS OF QSSM STATE LEARNING

In this section, we give proof of the effectiveness of QSSM based on Schmidt decomposition,
Uhlmann’s theorem and the properties of purification.

B.1 DEGREES OF FREEDOM IN PURIFICATION

One of the implications of Uhlmann’s theorem is that it ensures the degrees of freedom for quantum
state purification Nielsen & Chuang (2010). Purification is a commonly used mathematical proce-
dure in quantum computing. For an arbitrary quantum state, its purification is not unique. However,
we could bridge these purification states via unitary transformations, which we call freedom in pu-
rification.

Lemma S1 Let |ψ⟩ and |ϕ⟩ be two purifications of a state ρ acting on a composite system AE.
Then there exists a unitary UE locally acting on E s.t.,

|ψ⟩ = (IA ⊗ UE)|ϕ⟩.

The proof is simply inspired by the Schmidt decomposition. Let |ψ⟩ and |ϕ⟩ be the purifications of
ρ acting on AE. Write the Schmidt decomposition of these two states,

|ψ⟩ =
∑
j

√
λj |jA⟩|jE⟩ |ϕ⟩ =

∑
k

√
ηk|kA⟩|kE⟩.

Notice TrE [ψ] = ρ = TrE [ϕ], which then induces,∑
j

λj |jA⟩⟨jA| =
∑
k

ηk|kA⟩⟨kA|.

By linear algebra, we could easily extend both {|jA⟩}j and {|kE⟩}k to the basis set of HE , via
Gram-Schmidt method, and hence proves the existence of a unitary UE s.t,

UE |kE⟩ = |jE⟩,
which is then substituted into the above equations to prove the lemma. Based on the freedom in
purification, we could prove the lemma S2, and therefore prove the effectiveness of our QSSM.

15



Under review as a conference paper at ICLR 2024

Lemma S2 Given a target state ρ acting on system A and B, we suppose it can be purified on
system ABE where E is an environment. For any pure state |ψ⟩ acting on ABE, s.t.,

TrBE [|ψ⟩⟨ψ|] = TrB [ρ].

There always exists a local unitary UBE , s.t.,

TrE [(IA ⊗ UBE)|ψ⟩⟨ψ|(IA ⊗ U†
BE)] = ρ.

From the definition, |ψ⟩⟨ψ| and ρ have the same reduced state acting on A. Suppose the state |ϕ⟩ is
the purification of ρ on system ABE. Thus, it is also a purification of ρA = TrB [ρ]. We have |ϕ⟩
and |ψ⟩ acting on the composite system ABE. By lemma S1, there exists a UBE s.t.,

|ϕ⟩⟨ϕ| = (IA ⊗ UBE)|ψ⟩⟨ψ|(IA ⊗ U†
BE).

Now since |ϕ⟩ is the purification of ρ we have,

TrE [(IA ⊗ UBE)|ψ⟩⟨ψ|(IA ⊗ U†
BE)] = ρ,

as required. Moreover, based on the Schmidt decomposition betweenAB andE, the dimensionality
of system E clearly determines the maximum rank of the output states. For Rank[ρ] = r. It is
sufficient and necessary to construct such a unitary UBE so that the last equation in lemma S2 can
hold when dim[E] ≥ log2 r.

B.2 EFFECTIVENESS PROPOSITION OF QSSM

Before we move to the effectiveness proposition of QSSM state learning, we first define some sym-
bols for a better layout of our demonstration of QSSM effectiveness. A k-th partition of ρ separates
the state into bipartite subsystems Ak and Āk covering the first k qubits and the remaining, respec-
tively, where 1 ≤ k ≤ n. For k = n, Āk becomes trivial and Ak = C2n . We then could define the
rank sequence of a given target state ρ in the following sense. A sketch of this has been figured out
in Fig. S1

⋯ ⋯
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⋯

Fig S1: The sketch for illustrating the rank sequence of a given quantum state ρ.

Definition S1 Given an n-qubit quantum state ρ represented by n ordered quantum registers labeled
as q1, q2, · · · , qn, denoting ρk as the k-th reduced density matrix of the first k-register state, i.e.,
ρk = Trqk+1:qn [ρ] for 1 ≤ k ≤ n where the operation Trqi:qj [·] representing a partial tracing over
registers qi to qj , the (Schmidt) rank sequence of ρ is an ordered listRρ,

Rρ = {r1, r2, · · · , rn−1, rn},
where rk indicates Rank[ρk]. In particular, if ρ is pure, then rn = 1 since ρ can be represented as
|ϕ⟩⟨ϕ| for some pure state vector |ϕ⟩.

Here for clarification, by setting up the k-partition of ρ, Ak contains the registers q1 : qk and
Āk contains the registers qk+1 : qn which is the reason why we use this notation to represent the
corresponding partial trace operations. We are now ready to prove the effectiveness proposition of
the main results.

Proposition S3 [Effectiveness] For a given n-qubit pure target state ρ represented by n ordered
quantum registers q1, q2, · · · , qn, if the rank sequence of ρ is Rρ = {r1, r2, · · · rn−1, rn}. Then
there exists a quantum algorithm 1, based on QSSM, that could produce a state σ exactly satisfying
σ = ρ, if and only if the k-th scattering layer Uk(θk) of QSSM has a width wk scales O(⌈log2 rk⌉).
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To prove the above Proposition, we first suppose an n-qubit pure target ρ = |ϕ⟩⟨ϕ|, and at the k-th
step,

σk = TrĀk
[|ψk⟩⟨ψk|] = TrĀk

[ρ] = ρk

We call this the k-th perfect learning condition of QSSM state learning. Then, by lemma S2, there
exists a local unitary such that,

TrĀk+1
[(Ik ⊗ Uk+1)|ψk⟩⟨ψk|(Ik ⊗ U†

k+1)] = TrĀk+1
[ρ],

where the existence of Uk+1 ensures the effectiveness of QSSM. We call it a perfect learning as-
sumption of QSSM state learning if all the k-th perfect learning can be achieved.

Now, we are ready to deliver the proof of the effectiveness of QSSM. The proof assumes sufficient
computational resources, ensuring perfect learning for each step’s reduced target. We divide the
entire learning task into three main stages based on the algorithm setup.

(1), in the beginning, a state |0⟩ is initialized for the model. We denote the step as k = 1 for learning
the reduced state acting on A1 of a single qubit. Notice that for any single-qubit state ρ1 has an
eigendecomposition,

ρ1 = λ
(1)
1 |0(1)⟩⟨0(1)|+ λ

(1)
2 |1(1)⟩⟨1(1)|,

where the states |0(1)⟩ and |1(1)⟩ are not necessary the computational basis elements. There exists a
purification unitary UA1A2

,

UA1A2 |00⟩ =
√
λ
(1)
1 |0(1)⟩|0(2)⟩+

√
λ
(1)
2 |1(1)⟩|1(2)⟩.

Such a unitary should have the following components. The rest of the matrix can be extended using
the Gram-Schmidt process. We could write out the computational basis representation of UA1A2

,

[UA1A2
]mn =



√
λ
(1)
1 ⟨00|0(1)0(2)⟩+

√
λ
(1)
2 ⟨00|1(1)1(2)⟩ · · ·√

λ
(1)
1 ⟨01|0(1)0(2)⟩+

√
λ
(1)
2 ⟨01|1(1)1(2)⟩ · · ·√

λ
(1)
1 ⟨10|0(1)0(2)⟩+

√
λ
(1)
2 ⟨10|1(1)1(2)⟩ · · ·√

λ
(1)
1 ⟨11|0(1)0(2)⟩+

√
λ
(1)
2 ⟨11|1(1)1(2)⟩ · · ·

 .

(2), now for 1 < k ≤ ⌈n/2⌉, by the assumption of ideal learning of state ρk−1, a purification,
denoted as |ψk−1⟩ of it would be imported from the (k − 1)-th step. The reduced state ρk would
generally require at least k extra ancillary qubits to be purified, which is why a width control wk =
k + 1 is settled in the worst case. Moreover, if the Rρ is given as above, the rank values give better
choices of layer widths as wk = min{k + 1, ⌈log2 rk⌉}.
Now suppose a purification |ϕk⟩ of ρk. Since dim(|ψk−1⟩) ≤ dim(|ϕk⟩), we could always extend
|ψk⟩ to |ψ̃k⟩ = |ψk⟩|0⟩ so that the result pure state lives in the same dimensional Hilbert as |ϕk⟩.
We could observe |ψ̃k⟩ and |ϕk⟩ are both purification of ρk−1. Based on the lemma S2, there exists
Uk acting on the qubits index from k + 1 to wk + k s.t.,

TrĀk+1
[(IAk−1

⊗ Uk)ψ̃k(IAk−1
⊗ U†

k)] = TrĀk+1
[ϕk] = ρk.

(3), at last, for ⌈n/2⌉ < k ≤ n. |ϕk⟩ becomes the pure state acting on the entire system of n
qubit registers. The imported purification |ψk−1⟩ of ρk−1 is also a pure state of n qubits. The result
follows by applying the lemma S2 again but with wk = min{n− k + 1, ⌈log2 rk⌉}.
Above all, we have proven the effectiveness of QSSM. One important point to note here is that the
width of each scattering layer can be carefully settled concerning the rank of ρk for 1 ≤ k < n
in order to obtain the perfect learning. However, exactly constructing those purification unitaries
using scattering layers Uk(θk) is not possible. In reality, if each scattering layer of QSSM forms an
approximate local unitary t-design for sufficient large positive integer t. Then, given enough time
for training, the scattering layers would approximate these purification unitaries to arbitrarily high
accuracy.

Further, the proposition identifies a group of quantum states that can be learned more efficiently
using QSSM. One notable exemplar within this proposition is the n-qubit GHZ state.
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Remark 1 An n-qubit GHZ state Greenberger et al. (1989) has constant rank rk = 2 for 1 ≤ k < n.
Hence, setting wk = 2 ∀k is sufficient to obtain perfect learning of QSSM state learning on GHZ
state.

The above phenomenon suggests a connection between the amount of entanglement within a target
state and the sufficient widths wk to achieve perfect learning. The higher the ranks, the harder the
target state could be learnt via QSSM.

APPENDIX C TRAINABILITY AND GRADIENT ANALYSIS OF QSSM

In this section, we give the proof for the proposition 2 stated about the trainability of QSSM in this
paper. We first recall some useful lemmas to make the proof easy to read and emphasize important
intermediate results. The following lemmas were derived from the studies of unitary t-design. These
were originally computed in Cerezo et al. (2021).

Definition S2 A unitary t-design of dimension d Dankert et al. (2009) with respect to the Haar
measure is defined as a finite set of unitaries {Uk}Mk=1 on a d-dimensional Hilbert space such that,

1

M
·
M∑
k=1

P(t,t)(Uk) =

∫
U(d)

dµHaar(U)P(t,t)(U),

where P(t,t)(U) denotes a homogeneous polynomial of degree at most t on the elements of U and
U†.

Lemma S4 Suppose X ⊂ U(d) is unitary t-design, and A,B,C,D are arbitrary linear operators.
If t ≥ 1, then we have

1

|X|
∑
U∈X

Tr[U†AUB] =

∫
U(d)

Tr[U†AUB]dη(U) =
Tr[A] Tr[B]

d
(Appendix C.1)

If t ≥ 2, then we have

1

|X|
∑
U∈X

Tr[U†AUBU†CUD] =

∫
U(d)

Tr[U†AUBU†CUD]dη(U) (Appendix C.2)

=
Tr[A] Tr[C] Tr[BD] + Tr[AC] Tr[B] Tr[D]

d2 − 1
− Tr[AC] Tr[BD] + Tr[A] Tr[B] Tr[C] Tr[D]

d(d2 − 1)
(Appendix C.3)

Lemma S5 Suppose A,B,C,D are arbitrary linear operators. Then,∫
U(d)

Tr[UAU†B] Tr[UCU†D]dη(U) =
1

d2 − 1
(Tr[A] Tr[B] Tr[C] Tr[D] + Tr[AC] Tr[BD])

− 1

d(d2 − 1)
(Tr[AC] Tr[B] Tr[D] + Tr[A] Tr[C] Tr[BD])

Lemma S6 Let H = HA ⊗ HB be a bipartite Hilbert space of dimension d = dAdB , and for
arbitrary linear operators M,N : H → H, we have∫

U(dB)

dη(U)(IA ⊗ U)M(IA ⊗ U†)N =
TrB [M ]⊗ IB

dB
N,

and ∫
U(dB)

dη(U) Tr[(IA ⊗ U)M(IA ⊗ U†)N ] =
Tr[TrB [M ] TrB [N ]]

dB
.
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Lemma S7 LetH = HA⊗HB be a bipartite Hilbert space of dimension d = dAdB (d = 2n, dA =

2n
′
), and for arbitrary linear operators M,N,U : H → H, we have

Tr[(IA ⊗ U)M(IA ⊗ U†)N ] =
∑
p,q

Tr[UMqpU
†Npq],

where the summation runs over all bitstrings of length n′, and where

Mqp = TrA[(|p⟩⟨q| ⊗ I)M ]

Npq = TrA[(|q⟩⟨p| ⊗ I)N ].

With these lemmas, we can now start our proof by directly calculating the variance of gradients.
The whole proof includes three parts indicating the gradient magnitude of different stages in the
algorithm.

C.1 TRAINABILITY OF THE LAST LAYER

Proposition S8 For a n-qubit target state ρ, assume we start from the σ̂ such that Trn[ρ] = Trn[σ̂],
where Trn[ρ] denotes partial trace over the last qubit of the state. And if the circuit is only acting
on the last qubit and forms a 2-design, then E[∂µCn] = 0 and the variance Var[∂µCn] ∈ [ 1627 ,

8
9 ].

The proof is given by the following, suppose the output state is σ, then the cost function is

Cn(θ) = Tr[(ρ− σ(θ))(ρ− σ(θ))†].
With a similar notation used in McClean’s paper McClean et al. (2018), we can use U to denote
the unitary representation of circuits. And we can write it as U = U+e

−iθµHU−, where H denotes
the hermitian operator and in most cases it will be the Pauli matrices, and they are traceless. Since
Trn[ρ] = Trn[σ̂], we have

σ̂ = (IA ⊗ VB)ρ(IA ⊗ V †
B).

where V is a fixed unitary and system A denotes the first n− 1 qubits and the system B denotes the
last qubit. So dA = 2n−1 and dB = 2. For simplicity, we will hide the subscript in the following
proof.

We then arrive at
σ = (I ⊗ UV )ρ(I ⊗ V †U†).

Next, we compute the partial derivative of Cn w.r.t the k-th parameter. Notice that the trace is linear,
the derivative operation could pass through the trace and hence we obtain,

∂µCn = ∂µ(Tr(ρ
2 + σ2 − 2(ρσ)) = −2Tr(ρ∂µ(σ)),

Now We start by calculating the mean of gradients, expanding the expression for σ, we could find,

∂µCn = −2Tr
[
ρ
(
(I ⊗ (∂µU)V )ρ(I ⊗ V †U†) + (I ⊗ UV )ρ(I ⊗ V †(∂µU

†))
)]
,

by the chain rule of derivative. Since U = U+e
−iθµHU−, we could compute the derivatives as,{

∂µU = −iU+e
−iθµHHU−

∂µU
† = iU†

−He
iθµHU†

+.

For convenient, we define Ũ+ = U+e
−iθµH . Substituting the above into the expression of cost

derivative to achieve,

∂µCn = 2iTr
[
ρ
(
(I ⊗ Ũ+HU−V )ρ(I ⊗ V †U†)− (I ⊗ UV )ρ(I ⊗ V †U†

−HŨ
†
+)

)]
.

Now we expand U = Ũ+U−, and assume the Ũ− = U−V

∂µCn = 2iTr
[
ρ
(
(I ⊗ Ũ+HU−V )ρ(I ⊗ V †U†

−Ũ
†
+)− (I ⊗ Ũ+U−V )ρ(I ⊗ V †U†

−HŨ
†
+)

)]
= 2iTr

[
ρ
(
(I ⊗ Ũ+HŨ−)ρ(I ⊗ Ũ†

−Ũ
†
+)− (I ⊗ Ũ+Ũ−)ρ(I ⊗ Ũ†

−HŨ
†
+)

)]
= 2iTr

[
(I ⊗ Ũ†

+)ρ(I ⊗ Ũ+)[I ⊗H, (I ⊗ Ũ−)ρ(I ⊗ Ũ†
−)]

]
.
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where the [A,B] = AB − BA denotes the commutator notation. Denote the commutator [I ⊗
H, (I ⊗ Ũ−)ρ(I ⊗ Ũ†

−)] by T−, thus we have

∂µCn = 2iTr
[
(I ⊗ Ũ†

+)ρ(I ⊗ Ũ+)T−

]
.

Then we integrate over Ũ+ by using the lemma S6,

E[∂µCn] = 2i
Tr[TrB [ρ] TrB [T−]]

dB
= iTr[TrB [ρ] TrB [T−]].

We can write the ρ as
ρ =

∑
i,j

|i⟩⟨j|A ⊗Xi,j .

thus lead to
TrB [T−] = TrB [[I ⊗H, (I ⊗ Ũ−)ρ(I ⊗ Ũ†

−)]]

=
∑
i,j

TrB [[I ⊗H, (I ⊗ Ũ−)(|i⟩⟨j|A ⊗Xi,j)(I ⊗ Ũ†
−)]]

=
∑
i,j

TrB [|i⟩⟨j| ⊗HŨ−Xi,jŨ
†
− − |i⟩⟨j| ⊗ Ũ−Xi,jŨ

†
−H]

=
∑
i,j

|i⟩⟨j|(Tr[HŨ−Xi,jŨ
†
−]− Tr[Ũ−Xi,jŨ

†
−H])

= 0. (Appendix C.4)
Therefore, we have

E[∂µCn] = 0.

The mean of gradients is 0. Based on the fact that the mean of gradients is 0, we then only need to
consider the E[(∂µCn)2] in order to determine the variance.

Var[∂µCn] = E[(∂µCn)2] = −4EŨ+,Ũ−

[
(Tr[(I ⊗ Ũ†

+)ρ(I ⊗ Ũ+)T−])
2
]
.

Using lemma S7, we have

EŨ+,Ũ−

[
(Tr[(I ⊗ Ũ†

+)ρ(I ⊗ Ũ+)T−])
2
]
= EŨ+,Ũ−

[
(
∑
p,q

Tr[Ũ+ρqpŨ
†
+T−pq])(

∑
m,n

Tr[Ũ+ρnmŨ
†
+T−mn])

]

= EŨ+,Ũ−

[ ∑
p,q,m,n

Tr[Ũ+ρqpŨ
†
+T−pq] Tr[Ũ+ρnmŨ

†
+T−mn]

]
=

∑
p,q,m,n

EŨ+,Ũ−

[
Tr[Ũ+ρqpŨ

†
+T−pq] Tr[Ũ+ρnmŨ

†
+T−mn]

]
.

Then, according to lemma S5∑
p,q,m,n

EŨ+,Ũ−

[
Tr[Ũ+ρqpŨ

†
+T−pq] Tr[Ũ+ρnmŨ

†
+T−mn]

]
=

∑
p,q,m,n

EŨ−
(

1

d2B − 1
(Tr[ρqp] Tr[T−pq] Tr[ρnm] Tr[T−mn] + Tr[ρqpρnm] Tr[T−pqT−mn])

− 1

dB(d2B − 1)
(Tr[ρqpρnm] Tr[T−pq] Tr[T−mn] + Tr[ρqp] Tr[ρnm] Tr[T−pqT−mn])).

(Appendix C.5)
Since

Tr[ρqp] = Tr[TrA[(|p⟩⟨q| ⊗ I)ρ]]
= Tr[(|p⟩⟨q| ⊗ I)ρ]
= Tr[|p⟩⟨q|TrB [ρ]]
= ⟨q|TrB [ρ]|p⟩, (Appendix C.6)
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and

Tr[T−pq] = Tr[TrA[(|q⟩⟨p| ⊗ I)T−]]
= Tr[(|q⟩⟨p| ⊗ I)T−]
= Tr[|q⟩⟨p|TrB [T−]]
= 0. (Appendix C.7)

where the Eq. Appendix C.7 holds because of Eq. Appendix C.4.

Thus the Eq. Appendix C.5 can be simplified as∑
p,q,m,n

EŨ+,Ũ−

[
Tr[Ũ+ρqpŨ

†
+T−pq] Tr[Ũ+ρnmŨ

†
+T−mn]

]
=

∑
p,q,m,n

EŨ−
(

1

d2B − 1
Tr[ρqpρnm] Tr[T−pqT−mn]−

1

dB(d2B − 1)
Tr[ρqp] Tr[ρnm] Tr[T−pqT−mn])

=
∑

p,q,m,n

EŨ−

(
1

dB(d2B − 1)
Tr[T−pqT−mn](dB Tr[ρqpρnm]− Tr[ρqp] Tr[ρnm])

)
=

∑
p,q,m,n

1

dB(d2B − 1)
(dB Tr[ρqpρnm]− Tr[ρqp] Tr[ρnm])EŨ−

(Tr[T−pqT−mn]) .

We now need to evaluate the other integral w.r.t Ũ−. A simplification can be first done by noticing,

T−pq = TrA[(|q⟩⟨p| ⊗ I)T−]
= TrA[I ⊗H, (I ⊗ Ũ−)(|q⟩⟨p| ⊗ I)ρ(I ⊗ Ũ†

−)]

= [H, Ũ− TrA[|q⟩⟨p| ⊗ I)ρ]Ũ†
−]

= [H, Ũ−ρpqŨ
†
−],

since |p⟩⟨q| ⊗ I commutes with other operators. Therefore,

Tr[T−pqT−mn] = Tr[[H, Ũ−ρpqŨ
†
−][H, Ũ−ρmnŨ

†
−]]

= 2Tr[HŨ−ρpqŨ
†
−HŨ−ρmnŨ

†
−]− Tr[Ũ−ρpqρmnŨ

†
−H

2]− Tr[Ũ−ρmnρpqŨ
†
−H

2].

So according to lemma S4,

EŨ−
(Tr[T−pqT−mn])

=
2

d2B − 1
(Tr[ρpq] Tr[ρmn] Tr[H

2] + Tr[ρpqρmn] Tr
2[H])

− 2

dB(d2B − 1)
(Tr[ρpqρmn] Tr[H

2] + Tr[ρpq] Tr[ρmn] Tr
2[H])− 2

dB
Tr[ρpqρmn] Tr[H

2]

=
−2

dB(d2B − 1)
(dB Tr[ρpqρmn]− Tr[ρpq] Tr[ρmn])(dB Tr[H2]− Tr2[H])

=
−2

(d2B − 1)
Tr[H2](dB Tr[ρpqρmn]− Tr[ρpq] Tr[ρmn]).

Then, we go back to Eq. Appendix C.8,∑
p,q,m,n

EŨ+,Ũ−

[
Tr[Ũ+ρqpŨ

†
+T−pq] Tr[Ũ+ρnmŨ

†
+T−mn]

]
=

∑
p,q,m,n

−2
dB(d2B − 1)2

Tr[H2](dB Tr[ρqpρnm]− Tr[ρqp] Tr[ρnm])(dB Tr[ρpqρmn]− Tr[ρpq] Tr[ρmn]).
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First, we look at the Tr[ρqpρnm]

Tr[ρqpρnm] = Tr[TrA[(|p⟩⟨q| ⊗ I)ρ] TrA[(|m⟩⟨n| ⊗ I)ρ]]

= Tr[
∑
i

(⟨i| ⊗ I ((|p⟩⟨q| ⊗ I)ρ) |i⟩ ⊗ I)
∑
j

(⟨j| ⊗ I(|p⟩⟨q| ⊗ I)ρ|j⟩ ⊗ I)]

= Tr[(⟨q| ⊗ I)ρ(|p⟩⟨n| ⊗ I)ρ(|m⟩ ⊗ I)]
= Tr[⟨q|TrB [ρ(|p⟩⟨n| ⊗ I)ρ]|m⟩]
= ⟨q|TrB [ρ(|p⟩⟨n| ⊗ I)ρ]|m⟩.

Then, ∑
p,q,m,n

Tr[ρqpρnm] Tr[ρpqρmn]

=
∑

p,q,m,n

⟨q|TrB [ρ(|p⟩⟨n| ⊗ I)ρ]|m⟩⟨m|TrB [ρ(|n⟩⟨p| ⊗ I)ρ]|q⟩

=
∑
p,n

Tr [TrB [ρ(|p⟩⟨n| ⊗ I)ρ] TrB [ρ(|n⟩⟨p| ⊗ I)ρ]] .

Suppose the Schmidt decomposition of |ϕ⟩ is

|ϕ⟩ =
∑
k

λk|uk⟩A|vk⟩B . (Appendix C.8)

where {|uk⟩} are orthogonal basis on the system A and {|vk⟩} are orthogonal basis on the system
B. Therefore, we can write the ρ as

ρ =
∑
i,j

λiλj |ui⟩⟨uj | ⊗ |vi⟩⟨vj |. (Appendix C.9)

We can expand the ρ in TrB [ρ(|p⟩⟨n| ⊗ I)ρ]
TrB [ρ(|p⟩⟨n| ⊗ I)ρ]

=TrB [(
∑
i,j

λiλj |ui⟩⟨uj | ⊗ |vi⟩⟨vj |)(|p⟩⟨n| ⊗ I)(
∑
k,l

λkλl|uk⟩⟨ul| ⊗ |vk⟩⟨vl|)]

=
∑
i,j,k,l

λiλjλkλl TrB [|ui⟩⟨uj ||p⟩⟨n||uk⟩⟨ul| ⊗ |vi⟩⟨vj ||vk⟩⟨vl|]

=
∑
i,j

λ2iλ
2
j |ui⟩⟨uj ||p⟩⟨n||uj⟩⟨ui|.

Thus, we arrive at∑
p,n

Tr [TrB [ρ(|p⟩⟨n| ⊗ I)ρ] TrB [ρ(|n⟩⟨p| ⊗ I)ρ]]

=
∑
p,n

Tr[(
∑
i,j

λ2iλ
2
j |ui⟩⟨uj ||p⟩⟨n||uj⟩⟨ui|)(

∑
k,l

λ2kλ
2
l |uk⟩⟨ul||p⟩⟨n||uk⟩⟨ul|)]

=
∑
p,n

Tr[
∑
i,j,k,l

]λ2iλ
2
jλ

2
kλ

2
l |ui⟩⟨uj ||p⟩⟨n||uj⟩⟨ui||uk⟩⟨ul||n⟩⟨p||ul⟩⟨uk|

=
∑
p,n

∑
i,j,l

λ4iλ
2
jλ

2
l Tr[⟨uj ||p⟩⟨n||uj⟩⟨ul||n⟩⟨p||ul⟩]

=
∑
i,j,l

λ4iλ
2
jλ

2
l Tr[Tr[|ul⟩⟨uj |] Tr[|uj⟩⟨ul|]]

=
∑
i,j

λ4iλ
4
j

=(
∑
i

λ4i )
2.
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Then we look at the Tr[ρqp] Tr[ρpq] Tr[ρmn] Tr[ρnm],∑
p,q,m,n

Tr[ρqp] Tr[ρpq] Tr[ρmn] Tr[ρnm]

=
∑

p,q,m,n

⟨q|TrB [ρ]|p⟩⟨p|TrB [ρ]|q⟩⟨m|TrB [ρ]|n⟩⟨n|TrB [ρ]|m⟩

=Tr[TrB [ρ] TrB [ρ]] Tr[TrB [ρ] TrB [ρ]]

=(Tr[TrB [ρ] TrB [ρ]])
2

=(
∑
i

λ4i )
2.

Now, we look at the Tr[ρqpρnm] Tr[ρpq] Tr[ρmn]

Tr[ρqpρnm] = ⟨n|TrB [ρ(|m⟩⟨q| ⊗ I)ρ]|p⟩ (Appendix C.10)

=
∑
i,j

λ2iλ
2
j ⟨n||ui⟩⟨uj ||m⟩⟨q||uj⟩⟨ui||p⟩. (Appendix C.11)

and
Tr[ρpq] Tr[ρmn] = ⟨p|TrB [ρ]|q⟩⟨m|TrB [ρ]|n⟩

=
∑
i,j

λ2iλ
2
j ⟨p||ui⟩⟨ui||q⟩⟨m||uj⟩⟨uj ||n⟩.

Thus, ∑
p,q,m,n

Tr[ρqpρnm] Tr[ρpq] Tr[ρmn]

=
∑

p,q,m,n

(
∑
k,l

λ2kλ
2
l ⟨n||uk⟩⟨ul||m⟩⟨q||uk⟩⟨ul||p⟩)(

∑
i,j

λ2iλ
2
j ⟨p||ui⟩⟨ui||q⟩⟨m||uj⟩⟨uj ||n⟩)

=
∑

p,q,m,n

∑
i,j,k,l

λ2iλ
2
jλ

2
kλ

2
l (⟨n||uk⟩⟨ul||m⟩⟨q||uk⟩⟨ul||p⟩⟨p||ui⟩⟨ui||q⟩⟨m||uj⟩⟨uj ||n⟩)

=
∑
q,m

∑
i,j,k,l

λ2iλ
2
jλ

2
kλ

2
l Tr[|uk⟩⟨ul||m⟩⟨q||uk⟩⟨ul||ui⟩⟨ui||q⟩⟨m||uj⟩⟨uj |]

=
∑
i,j,k,l

λ2iλ
2
jλ

2
kλ

2
l Tr[|uk⟩⟨ul||ui⟩⟨ui|] Tr[|uj⟩⟨uj ||uk⟩⟨ul|]

=
∑
i

λ8i .

Therefore, we have, ∑
p,q,m,n

(dB Tr[ρpqρmn]− Tr[ρpq] Tr[ρmn])

=(d2B + 1)(
∑
i

λ4i )
2 − 2dB(

∑
i

λ8i ).

So,

Var[∂µCn] =
8

dB(d2B − 1)2
Tr[H2]((d2B + 1)(

∑
i

λ4i )
2 − 2dB(

∑
i

λ8i )) (Appendix C.12)

Since the dB is 2, we can simplify the equation above as

Var[∂µCn] =
4

9
Tr[H2](λ81 + λ82 + 10λ41λ

4
2) (Appendix C.13)

=
8

9
(c41 + c42 + 10c21c

2
2). (Appendix C.14)

where the c1 = λ21, c2 = λ22 such that c1 + c2 = 1, and Tr[H2] = dB = 2.

Therefore, we can simply get the range of the variance.
16

27
≤ Var[∂µCn] ≤

8

9
(Appendix C.15)

23



Under review as a conference paper at ICLR 2024

C.2 TRAINABILITY OF THE MIDDLE STEP

Lemma S9 For the target pure state ρABC on system ABC, suppose we start from a initial state σ̂
such that TrBC [ρ] = TrBC [σ̂] and the output state is σ. If the cost function is

C = Tr[(TrC [ρ]− TrC [σ])(TrC [ρ]− TrC [σ])] (Appendix C.16)

and the circuit is acting on system BC while forming a local 4-design, then E[∂µC] = 0 and the
variance of cost gradient scales as Var[∂µC] ∈ O( 1

d3BdC
), where dB , dC denote the dimension of

system B and C respectively.

Since TrBC [ρ] = TrBC [σ̂], there exist a fixed unitary V such that

σ̂ = (IA ⊗ VBC)ρ(IA ⊗ V †
BC). (Appendix C.17)

Then
σ = (I ⊗ UV )ρ(I ⊗ V †U†). (Appendix C.18)

Then, the cost gradient becomes,

∂µC = 2Tr[TrC [σ]∂µ TrC [σ]− 2Tr[TrC [ρ]∂µ TrC [σ]]

= 2iTr[TrC [(I ⊗ U+U−V )ρ(I ⊗ V †U†
−U

†
+)− ρ] TrC [(I ⊗ U+U−V )ρ(I ⊗ V †U†

−HU
†
+)

− (I ⊗ U+HU−V )ρ(I ⊗ V †U†
−U

†
+)]]

We exploit the RTNI package Fukuda et al. (2019a) to calculate the mean of the cost gradient. It
turns out that the mean of the cost gradient is zero.

E[∂µC] = 0

Then we consider the variance

Var[∂µC] = −E[(∂µC)2]

With the RTNI package Fukuda et al. (2019b), it turns out that the exact expression of the variance
is dominant by

Var[∂µC]
d→∞−−−→ Tr[H2]

d2B(d
2
Bd

2
C − 1)

·

 ρ ρρ ρ


We know that Tr[H2] = dBdC , thus we have

Var[∂µC] ∈ O(
g(ρ)

d3BdC
),

where g(ρ) denotes the dominant factor from the tensor product illustrated above. Finally, we can
conclude the following Proposition,

Proposition S10 For the k-th learning step (k ≤ n) in QSSM, the mean of cost gradient is 0, and
the variance of cost gradient scales as Var[∂µCk] ∈ O(2−nk), where nk is the circuit width of k-th
learning step.

Suppose the target state is ρ and the input state for k-the learning step is σ̂. We assume system A
denotes the first k − 1 qubits, system B denotes the k-th qubit and system C denotes the (k + 1)-th
qubit to the (k + nk − 1)-th qubit. With the definition of nk claimed in the text, there exists a
purification ρ̂ABC of ρA on system ABC. According to lemma S9, we can easily know that

Var[∂µCk] ∈ O(
1

2nk+2
) = O(2−nk)
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Proposition S11 [Trainability] Given the state learning algorithm stated in Proposition 1, for an
n-qubit pure target state ρ represented by n ordered quantum registers q1, q2, · · · , qn with a rank
sequence Rρ = {r1, r2, · · · rn−1, rn}, if one of the U (k)

± in the k-th scattering layer Uk forms at
least local unitary 4-design, the expectation and the variance of Ck with respect to θµ can be upper
bounded by,

E[∂µCk] = 0; Var[∂µCk] ∈ O
(
g(ρk)

rk

)
,

where the expectation is computed regarding the Haar measure and the factor g(ρk) scales polyno-
mially in Tr[ρ2k] known as the purity of ρk.

Since we know that 2nk−1 ≤ rk ≤ 2nk , thus according to Proposition S10, we can get the proof.
Notice that the factor g(ρk) scales polynomially in Tr[ρ2k] due to the Cauchy-Schwartz inequality of
density matrices. We then finish the proof of the Proposition.

APPENDIX D ANALYTIC EVALUATION OF COST FUNCTION AND GRADIENT

In this appendix, we provide a detailed analysis of the analytic gradient of our cost functionCk equa-
tion 3. We take the 2-norm squared cost function as our objective. At the k-th learning step, an-
alyzing the exact form of ∂µCk is necessary for further designing the training strategy of QSSM.
Recalling the expression of Ck, we could derive the derivative form with respect to the parameter
θµ = θµk . From here, we have concentrated on the k-th step and for convenience, we will omit the
subscript k of the parameter in the following sections. The partial derivative of Ck with respect to
θµ is then expressed as,

∂µCk = 2Tr(2σk∂µ(σk))− 2Tr(ρk∂µ(σk)), (Appendix D.1)

where σk = σk(θ) which is constructed via paramterized circuit Uk(θ), and ρk is the k-th step re-
duced target. In a practical sense, our Uk is composed of the quantum gates satisfying the parameter-
shift rule andUk = Ule

−i θµ2 ΩµUr = ŨlUr, where Ω2
µ = I . The k-th scattering layer has been shown

in Fig. S2. Then the following lemma holds,

𝜓!"#

𝐴

𝐵

𝐸 𝑈!

𝜎! → 𝜌!

𝜓!

Fig S2: The k-th learning step layer. Based on adaptive learning processes, the previously learnt
state |ψk−1⟩ on system ABE must be pure where E is the additional system acted by the k-th step
layer Uk. Under perfect learning situation, we have σk−1 = TrBE(ψk−1) = ρk−1.

Lemma S12 The k-th step cost function Ck has the partial derivative form (w.r.t. θµ and evaluated
at θ = θ∗),

∂µC
∗
k =

〈
∆∗
k ⊗

IE
dE

〉
θµ+

π
2

−
〈
∆∗
k ⊗

IE
dE

〉
θµ−π

2

where ∆k = σk − ρk with ∗ indicating the state difference evaluated at θ∗. The other symbols all
match the settings in Fig. S2.

By observing σk = TrE((IA ⊗ Uk)Pψk−1
(IA ⊗ U†

k)), where Pψk−1
= |ψk−1⟩⟨ψk−1|, we could

compute the expression of ∂µσk based on the linearity of derivative operation,

∂µσk = TrE((IA ⊗ ∂µ(Uk))Pψk−1
(IA ⊗ U†

k)) + TrE((IA ⊗ Uk)Pψk−1
(IA ⊗ ∂µ(U†

k))).
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Recalling the expression of ∂µ(Uk) and ∂µ(U
†
k), we have,

∂µσk = − i
2
TrE((IA ⊗ Ũl)[(IA ⊗ Ωµ), (IA ⊗ Ur)Pψk−1

(IA ⊗ U†
r )](IA ⊗ Ũ

†
l ))

= − i
2
TrE(Ũl[Ωµ, UrPψk−1

U†
r ]Ũ

†
l )

,

where we have abbreviated the ‘IA⊗’ correspondence for simplicity, which the subsystem A would
never join the optimizations during the k-th step. Since Uµ(θµ) = e−i

θµ
2 Ωµ satisfies the parameter-

shift rule. we could use the gate identity,

i[Ωµ,M ] = Uµ

(
−π
2

)
MU†

µ

(
−π
2

)
− Uµ

(π
2

)
MU†

µ

(π
2

)
for any linear operator M , and then derive the exact value of ∂µσ∗

k at θ = θ∗ as,

∂µ(σ
∗
k) =

1

2
TrE

(
Uk(θ

∗
µ +

π

2
)Pψk−1

U†
k(θ

∗
µ +

π

2
)− Uk(θ∗µ −

π

2
)Pψk−1

U†
k(θ

∗
µ −

π

2
)
)
.

Here ∂µ(σ∗
k) = ∂µ(σk)|θ=θ∗ , and circuit Uk(θ∗µ + α) intakes θ∗ and modifies the parameter θ∗µ to

θ∗µ + π
2 . Now, recalling the fact that,

Tr(TrB(ρAB)σA) = Tr

(
ρAB(σA ⊗

IB
dB

)

)
,

we have,

Tr(ρk∂µ(σ
∗
k)) =

〈
ρk ⊗

IE
dE

〉
θ∗µ+

π
2

−
〈
ρk ⊗

IE
dE

〉
θ∗µ−π

2

Tr(σ∗
k∂µ(σ

∗
k)), =

〈
σ∗
k ⊗

IE
dE

〉
θ∗µ+

π
2

−
〈
σ∗
k ⊗

IE
dE

〉
θ∗µ−π

2

,

where ⟨M⟩θ = ⟨ψk(θ)|M |ψk(θ)⟩ and |ψk(θ)⟩ is derived by applying Uk(θ) on |ψk−1⟩. Combining
the above calculations to obtain the desired result in lemma S12 taking ∆∗ = σk(θ

∗)− ρk. Finally,
by taking the actual dimensional factors, we could derive the analytic form of the partial derivative
as shown in Sec. 4.2.
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