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A DATASETS & PREPROCESS

MetaQA (Zhang et al., 2018) consists of a movie ontology derived from the WikiMovies Dataset and
three sets of question-answer pairs written in different levels of difficulty. It evaluates the effectiveness
in a specific domain.

WebQSP (Yih et al., 2016) contains questions from WebQuestions that are answerable by Freebase.
It tests i.i.d. generalization on simple questions.

GrailQA (Gu et al., 2021) is a diverse KBQA dataset built on Freebase, covering 32,585 entities
and 3,720 relations across 86 domains. It is designed to test three levels of generalization of KBQA
models: I.I.D., compositional, and zero-shot.

B BASELINES

For the baselines in comparison, we have included the competitive methods that have a publication on
the official leaderboard of each dataset and record their results from the paper directly with the same
evaluation matrix. For ease of comparison, we have summarized the main thoughts of competitive
baselines in the following:

KB-BINDER (Li et al., 2023a) is a training-free system, which for the first time, proposes to utilize
the in-context learning capability of large language models (LLMs) to solve KBQA tasks. Particularly,
it leverages the Codex (Chen et al., 2021) to generate logical forms as the draft for a specific question
by imitating a few demonstrations, and then grounds on the knowledge base to bind the generated
draft to an executable one with BM25 score matching.

Pangu (Gu et al., 2022) is developed as a generic framework for grounded language understanding
that capitalizes on the discriminative ability instead of the generative ability of LLMs. Specifically,
Pangu consists of a symbolic agent and a neural LLM working in a concerted fashion, where the
agent explores the environment to incrementally construct valid plans, and the LLM evaluates the
plausibility of the candidate plans to guide the search process.

FlexKBQA (Li et al., 2023b) targets at leveraging automated algorithms to sample diverse programs,
such as SPARQL queries, from the knowledge base, which are subsequently converted into natural
language questions via LLMs. Moreover, FlexKBQA introduces an addtional execution guided
self-training method to iterative leverage unlabeled user questions, which can reduce the barriers of
distribution shift between synthetic data and real user questions.

C MORE EXPERIMENTAL RESULTS

The experimental results on GrailQA dataset have been exhibited on Table. 1 and Table. 2.
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Table 1: Performance comparison of different methods on the GrailQA dev set.

Method Overall
EM F1

QGG (Lan & Jiang, 2020) - 36.7
GloVE+Transduction (Gu et al., 2021) 17.6 18.4
GloVE+Ranking (Gu et al., 2021) 39.5 45.1
BERT+Transduction (Gu et al., 2021) 33.3 36.8
BERT+Ranking (Gu et al., 2021) 50.6 58.0
RnG-KBQA (Ye et al., 2022) 68.8 74.4
DecAF (Yu et al., 2022) 68.4 78.8
TIARA (Shu et al., 2022) 73.0 78.5

Pangu (Gu et al., 2022) 73.7 79.9
KB-BINDER (Li et al., 2023a) 50.6 56.0
FlexKBQA (Li et al., 2023b) 62.8 69.4
Keqing-LLaMA (Ours) 72.5 77.8

Table 2: Performance comparison of different methods on the GrailQA dev set.

Method IID Compositional Zero-shot
EM F1 EM F1 EM F1

QGG (Lan & Jiang, 2020) - 40.5 - 33.0 - 36.6
GloVE+Transduction (Gu et al., 2021) 50.5 51.6 16.4 18.5 3.0 3.1
GloVE+Ranking (Gu et al., 2021) 62.2 67.3 40.0 47.8 28.9 33.8
BERT+Transduction (Gu et al., 2021) 51.8 53.9 31.0 36.0 25.7 29.3
BERT+Ranking (Gu et al., 2021) 59.9 67.0 45.5 53.9 48.6 55.7
RnG-KBQA (Ye et al., 2022) 86.2 89.0 63.8 71.2 63.0 69.2
DecAF (Yu et al., 2022) 84.8 89.9 73.4 81.8 58.6 72.3
TIARA (Shu et al., 2022) 88.4 91.2 66.4 74.8 73.3 80.7
Pangu (Gu et al., 2022) 82.6 87.1 74.9 81.2 69.1 76.1
KB-BINDER (Li et al., 2023a) 51.9 57.4 50.6 56.6 49.9 55.1
FlexKBQA (Li et al., 2023b) 71.3 75.8 59.1 65.4 60.6 68.3
Keqing-LLaMA (Ours) 80.5 85.6 73.3 80.1 67.5 74.7
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