
1 REINFORCE versus Reparameterization
The REINFORCE trick is just the application of the following useful identity:

∇φ log qφ(x) =
1

qφ(x)
∇φqφ(x) → qφ(x)∇φ log qφ(x) = ∇φqφ(x).

We can then use this identity to evaluate expectations using Monte-Carlo:

∇φ E
qφ(x)

[f(x)] =

∫
f(x)∇φqφ(x)dx = E

qφ(x)
[f(x)∇φ log qφ(x)]

Conversely, a unique reparameterization trick must be formulated for every distribution that you apply
it to, and cannot be applied to discrete distributions. For the univariate normal distribution, find a
literal reparameterization such that we can sample from white noise (i.e. a Gaussian with mean zero,
and variance one), and then evaluate the expectation over this distribution. This looks something like,

∇φ E
x∼qφ(x)

[f(x)] = ∇φ E
ε∼N(0,1)

[f(µφ + εσφ)] = E
ε∼N(0,1)

[∇φf(µφ + εσφ)] (1)

In general, the reparameterization is known to be much lower variance than the REINFORCE esti-
mator, but this difference can vary drastically when you introduce trust region methods and control
variates depending on how accurate the control variate is, and how small the trust region.

2 Finite Time Horizon Problems: Reverse KL
This section will discuss how one might produce an approximately optimal policy (πφ(at|st) ≈
π(at|st, ot, ...oT−1)) be minimizing the reverse KL divergence between the optimal policy and our
parameterized approximation. This section contains proofs and derivations relevant to the reverse KL
applied to RLAI. More specifically, this section gives information on the un-marginalized objective,
the marginalized objective, the REINFORCE trick, and the reparameterization trick. While largely
technical, it does highlight some of the advantages, and disadvantages with this objective which will
be useful later when we discuss how to create a practical algorithm. This section will rely on many
of the usual tools found in variational inference, and makes heavy use of the reinforce trick, and zero
expectation score function trick.

2.1 Derivation of the Un-marginalized Reverse KL Objective
For the following we assume that τt := (at, st, st+1, rt), and (s0:T , a0:T−1, r0:T−1) := τ . We also make a
distinction between qφ(τ) and p(τ,O) which are defined in the following way:

qφ(τ) = p(s0)

T−1∏
t=0

p(st+1|st, at)πφ(at|st),

p(τ,O) = p(s0)

T−1∏
t=0

p(st+1|st, at)
(
1− 1

Z
exp rt(at, st)

)1−Ot ( 1

Z
exp rt(at, st)

)Ot
π0(at|st).

We wish to prove the following:

min
φ

DKL(qφ(τ) || p(τ |O = 1)) = min
φ
− E
τ∼qφ

[
T−1∑
t=0

r(st, at)− log
πφ(at|st)
π0(at|st)

]
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This is relatively easy to show if we consider the functional form of the KL divergence above,

min
φ

DKL(qφ(τ) || p(τ |O)) = min
φ

[∫
τ
qφ(τ) log

(
qφ(τ)

p(τ |O)

)
dτ

]
= min

φ

[∫
τ
qφ(τ) log

(
qφ(τ)

p(τ,O)

)
dτ −

∫
τ
qφ(τ) log(p(O))dτ

]
= min

φ

[∫
τ
qφ(τ) log

(
qφ(τ)

p(τ,O)

)
dτ − log(p(O))

]
= min

φ

[∫
τ
qφ(τ) log

(
qφ(τ)

p(τ,O)

)
dτ

]
Next we can look at the log term and note, that it can be broken up into each time step, and additionally that the
dynamics between the the joint and approximate distribution cancel out. Below we assume that anywhere O is
written, we have O0:T−1 = 1 (i.e. the posterior is over optimal policies).

log

(
qφ(τ)

p(τ,O)

)
= log(qφ(τ))− log(p(τ,O)) = log(qφ(τ))− log(p(O|τ))− log(p(τ))

=
T−1∑
t=0

(log(πφ(at|st))− r(at, st)− log(π0(at|st))) = −
T−1∑
t=0

(
r(at, st)−

log(π0(at|st))
log(πφ(at|st))

)
With this expression in mind, simply replace the log within the previous integral to get the desired result:

min
φ

[∫
τ
qφ(τ) log

(
qφ(τ)

p(τ,O)

)
dτ

]
= min

φ
−

[∫
τ
qφ(τ)

T−1∑
t=0

(
r(at, st)−

log(π0(at|st))
log(πφ(at|st))

)
dτ

]

= min
φ
− E
τ∼qφ

[
T−1∑
t=0

r(st, at)− log
πφ(at|st)
π0(at|st)

]

2.2 The Reverse KL as a stochastic lower bound
This objective can also be derived as a stochastic lower bound on the marginal log probability of optimality. To
see this, rewrite, and then lower-bound the marginal likelihood of these samples under the true data generating
process p:

log p(O) = log

∫
p(O, τ0:T−1)dτ = log

∫
p(O, τ0:T−1)

qφ(τ0:T−1)

qφ(τ0:T−1)
dτ0:T−1

= log

(
E

τ0:T−1∼qφ

[
p(O, τ0:T−1)

qφ(τ0:T−1)

])
≥ E

τ0:T−1∼qφ

[
log

(
p(O, τ0:T−1)

qφ(τ0:T−1)

)]
.

2.3 Derivation of the Marginalized Reverse KL gradient
For the following we assume for conciseness that τt := (at, st), and that (s0:T , a0:T−1) := τ . We again make a
distinction between qφ(τ) and π(τ) which are defined in the following way:

qφ(τ) = p(s0)
T−1∏
t=0

p(st+1|st, at)πφ(at|st), πφ(τ) =
T−1∏
t=0

πφ(at|st).

In this setting we will actually derive a gradient estimator for the original objective defined above which is
much lower variance. From this gradient estimator we can infer an objective whose minimum is the same as
the one above up to a constant factor. This derivation is closely related to that of the policy gradient theorem
for those interested. We wish to prove the following:

∇φ E
q(τ)

[
T−1∑
t=0

r(st, at)− log
πφ(at|st)
π0(at|st)

]
=

T−1∑
t=0

E
qφ(τt:T−1)

[
∇φ log πφ(st, at)

(
T∑
t′=t

r(st′ , at′)− log
πφ(at′ |st′)
π0(at′ |st′)

)

)]
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We start by passing the gradient into the expectation under the assumption that the gradient can be passed
into the integral, which should hold so long as the expectation is bounded.

∇φJq,p(φ) =
∫
∇φ

[(
T−1∑
t=0

r(st, at)− log
πφ(at|st)
π0(at|st)

)
qφ(τ)

]
dτ

=

∫
∇φqφ(τ)

(
T−1∑
t=0

r(st, at)− log
πφ(at|st)
π0(at|st)

)
dτ +

∫
qφ(τ)∇φ

(
T−1∑
t=0

r(st, at)− log
πφ(at|st)
π0(at|st)

)
dτ

=

∫
∇φ log qφ(τ)

(
T−1∑
t=0

r(st, at)− log
πφ(at|st)
π0(at|st)

)
qφ(τ)dτ −

∫ (T−1∑
t=0

∇φ log πφ(at|st)

)
qφ(τ)dτ

=

∫ (T−1∑
t=0

∇φ log πφ(at|st)

)(
T−1∑
t′=0

r(st′ , at′)− log
πφ(at′ |st′)
π0(at′ |st′)

)
qφ(τ)dτ

−
∫ (T−1∑

t=0

∇φ log πφ(at|st)

)
qφ(τ)dτ

=

∫ (T−1∑
t=0

∇φ log πφ(at|st)

)(
T−1∑
t′=0

r(st′ , at′)− log
πφ(at′ |st′)
π0(at′ |st′)

− 1

)
qφ(τ)dτ

Note that st and s′t correspond to the same random variable (and same for at and a′t for all t. The ’s are
introduced only to index the double sum below correctly.

Here we use the score function trick in line two to transform the integral of a gradient into the expectation
over a gradient. We then combine terms and simplify, noting that the gradient of the dynamics is zero, and
can thus be ignored. We then convolve these sums and further simplify using d separation of the probabilistic
graphical model.

Jq,p(φ) =

∫ T−1∑
t=0

T−1∑
t′=0

∇φ log πφ(at|st)
(
r(st′ , at′)− log

πφ(at′ |st′)
π0(at′ |st′)

− 1

)
qφ(τ)dτ,

=

T−1∑
t=0

∫ T−1∑
t′=0

∇φ log πφ(at|st)
(
r(st′ , at′)− log

πφ(at′ |st′)
π0(at′ |st′)

− 1

)
qφ(τ)dτ,

=

T−1∑
t=0

T−1∑
t′=0

∫
∇φ log πφ(at|st)

(
r(st′ , at′)− log

πφ(at′ |st′)
π0(at′ |st′)

)
qφ(τ)dτ,

=
T−1∑
t=0

T−1∑
t′=t

∫
∇φ log πφ(at|st)

(
r(st′ , at′)− log

πφ(at′ |st′)
π0(at′ |st′)

)
qφ(τ)dτ

+
T−1∑
t=0

t−1∑
t′=0

∫
∇φ log πφ(at|st)

(
r(st′ , at′)− log

πφ(at′ |st′)
π0(at′ |st′)

)
qφ(τ)dτ,

=

T−1∑
t=0

T−1∑
t′=t

∫
∇φ log πφ(at|st)

(
r(st′ , at′)− log

πφ(at′ |st′)
π0(at′ |st′)

)
qφ(τ)dτ.

Where the last line follows from the Markov property of the graphical model which gives t′ < t→ r(st′ , at′)−
log πφ(at′ |st′) + log π0(at′ |st′) is independent of ∇φ log πφ(at|st). This means that we can decompose the
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expectation such that for all t′ < t,∫
∇φ log πφ(at|st)f(at′ , st′)qφ(τ)dτ =

∫
f(at′ , st′)

(∫
∇φ log πφ(at|st)πφ(at|st)dat

)
qφ(τ)

πφ(at|st)
dτ \ at

=

∫
f(at′ , st′)

(∫
∇φπφ(at|st)dat

)
qφ(τ)

πφ(at|st)
dτ \ at

=

∫
f(at′ , st′)∇φ

(∫
πφ(at|st)dat

)
qφ(τ)

πφ(at|st)
dτ \ at

=

∫
f(at′ , st′)∇φ (1)

qφ(τ)

πφ(at|st)
dτ \ at

=

∫
f(at′ , st′) (0)

qφ(τ)

πφ(at|st)
dτ \ at = 0

Therefore the inner expectation is a constant for all t′ less then t, and the score function estimator is zero in
expectation at these terms in the series. This sum of (entropy regularized) rewards ahead is often referred to
as the Q function or the advantage (if we include a baseline). If we define this term according to the following
expectation,

Q(st, at) = E
qφ(τt+1:T )|τt={at,st}

[
T∑
t′=t

r(st′ , at′)− log
πφ(at′ |st′)
π0(at′ |st′)

]
,

Then we can concisely write the desired result:

∇φJq,p(φ) =
T−1∑
t=0

Eqφ(τt:T−1)

[
∇φ log πφ(at|st)

(
T∑
t′=t

r(st′ , at′)− log
πφ(at′ |st′)
π0(at′ |st′)

)]

=

T−1∑
t=0

Eqφ(at,st) [∇φ log πφ(at|st)Q(st, at)].

2.4 Control Variates and the Value Function
As in the case of VAEs, one can introduce a parameterized, zero mean mean function to reduce the variance
of the gradient estimator. This function in the context of RL is referred to as the baseline, and is generally a
function of the state. This gradient tends to look something like:

∇φJq,p(φ) =
T−1∑
t=0

Eqφ(at,st) [∇φ log πφ(at|st)Q(st, at)− b(st)].

Further, it can actually be shown that the optimal baseline is in fact the integral of our Q function, defined above
as the value function:

V (st) =

∫
a
Q(a, st)πφ(a|st)da (2)

This yields what is referred to as the advantage, and both in theory and practice avoids many of the pitfalls of
learning a policy only via the q function.

∇φJq,p(φ) =
T−1∑
t=0

Eqφ(at,st) [∇φ log πφ(at|st)Q(st, at)− V (st)] =

T−1∑
t=0

Eqφ(at,st) [∇φ log πφ(at|st)A(st, at)].

The value function will be discussed further in a later section where we will consider its relationship to the
backwards message in a particle filter. We can however make a couple notes on how critics are estimated or
learned in practice however.
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3 Finite Time Horizon Problems: Forward KL
This section details derivations for how to produce an approximate optimal policy under the forward KL, and
like the previous section includes the derivation of its relationship to the marginal log likelihood. The un-
marginalized gradient of the objective is also derived along side its estimator as before. In this case we take
advantage of tools from self normalized importance weighting to produce our estimator, and briefly discuss
some of the issues present.

3.1 Un-marginalized Objective Derivation for the Forward KL
This objective, represents the expected KL divergence between a target distribution, and an approximate distri-
bution under samples from the target distribution:

KL(p(τ |O)||qφ(τ)). (3)

Again, our latent variables are given as the associated state-action pairs, while the observed variables represents
the optimality distribution. In order to evaluate the expression above, we apply a standard importance weighting
scheme, beginning with the removal constant terms within the expectation.

KL(p(τ |O)||qφ(τ)) =
∫
p(τ |O) log

p(τ |O)

qφ(τ)
dτ = −

∫
p(τ |O) log qφ(τ)dτ +

∫
p(τ |O) log p(τ |O)dτ

= −
∫
p(τ |O) log qφ(τ)dτ + c =

∫
log qφ(τ)p(τ |)

qφ(τ)

qφ(τ)
dτ + c

=

∫
1

p(O)
log qφ(τ)

p(τ,O)

qφ(τ)
qφ(τ)dτ + c = E

τ∼qφ

[
1

Z
log qφ(τ)

p(τ,O)

qφ(τ)

]
+ c

3.2 The forward KL as a stochastic upper bound
Similar to the previous RKL, we can also use this divergence to get a bound on the marginal log likelihood of
the observed random variables and then attempt to iteratively tighten this bound. Unlike the previous example
however, we arrive at a stochastic upper bound that we must minimize.

KL(p(τ |O)||qφ(τ)) ≥ 0⇒ E
τ∼p

[
log

p(τ |O)

qφ(τ)

]
≥ 0

⇒ E
τ∼p

[
log

p(τ,O)

p(O)qφ(τ)

]
≥ 0⇒ E

τ∼p

[
log

p(τ,O)

qφ(τ)

]
≥ E

τ∼p
[log p(O)]

⇒ E
τ∼p

[
log

p(τ,O)

qφ(τ)

]
≥ log p(O)⇒ E

τ∼qφ

[
p(τ |O)

qφ(τ)
log

p(τ,O)

qφ(τ)

]
≥ log p(O)

This upper bound is re-written to exclude terms that do not include the proposal distribution parameters φ,
which will become zero when differentiated. We can then apply self normalized importance weighting in order
for us to sample from a known distribution in order to approximate the expectation of another.

3.3 Un-marginalized gradient of the Forward KL Objective
Crucially, because the original problem is over a distribution not dependent on φ, we can directly pass the
gradient into the expectation without the REINFORCE trick, or the reparameterization trick. This gives the
following expression for the gradient:

∇φKL(p(τ |O = 1)||qφ(τ)) = E
τ∼qφ

[
p(τ,O)

qφ(τ)

∇φ log qφ(τ)
Z

]
This actually gives us a simple algorithm that can evaluate the gradient, and thereby minimize the expected
KL between our two distributions following samples generated from our policy interacting with the simulator.
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Based upon this approach, we can apply self normalized importance weighting to avoid explicitly computing
the constant Z. This is done in the following way:

∇φKL(p(τ |O)||qφ(τ)) ≈
m∑
i=1

[wi∇φ log qφ(τi)] =
1

Z

m∑
i=1

[
p(τi, Oi)

qφ(τi)
∇φ log qφ(τi)

]
.

Where for optimal trajectories (O = Ot=0:T−1), the un-normalized weights are defined as,

wi =
1

Z

p(τ i, O)

qφ(τ i)
=

1

Z

p(s0)
∏T−1
t=0 p(st+1|st, at)

(
1− 1

Z0
exp rt(at, st)

)1−Ot (
1
Z0

exp rt(at, st)
)Ot

π0(at|st)

p(s0)
∏T−1
t=0 p(st+1|st, at)πφ(at|st)

=
1

Z

T−1∏
t=0

(
1− 1

Z0
exp rt(at, st)

)1−Ot (
1
Z0

exp rt(at, st)
)Ot

π0(at|st)

πφ(at|st)

=
1

Z

T−1∏
t=0

1
Z0

exp rt(at, st)π0(at|st)
πφ(at|st)

=
1

Ẑ
exp

[
T−1∑
t=0

r(ait, s
i
t)− log

(
πφ(a

i
t|sit)

π0(ait|sit)

)]

Where the first line follows from cancellation of the dynamics, and the second follows from the fact that we are
only considering Ot = 1. In order to avoid computation of Z explicitly, we take advantage of the consistent but
biased self normalized importance weighting estimator. This means that the weights wi are replaced with the
following:

ŵi =
wi∑m
j=1wj

=
exp

[∑T−1
t=0 r(a

i
t, s

i
t)− log

(
πφ(a

i
t|sit)

π0(ait|sit)

)]
∑m

j=1 exp

[∑T−1
t=0 r(a

j
t , s

j
t )− log

(
πφ(a

j
t |s

j
t )

π0(a
j
t |s

j
t )

)] . (4)

In this case we know now have a more biased estimator of the gradient, but also one that is low variance when
compared to its un-marginalized RKL counterpart,

∇φKL(p(τ |O)||qφ(τ)) ≈
n∑
i=1

exp
[∑T−1

t=0 r(a
i
t, s

i
t)− log

(
πφ(a

i
t|sit)

π0(ait|sit)

)]
∑n

j=1 exp

[∑T−1
t=0 r(a

j
t , s

j
t )− log

(
πφ(a

j
t |s

j
t )

π0(a
j
t |s

j
t )

)]∇φ log qφ(τi) (5)
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