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Enhancing Robustness in Learning with Noisy Labels: An
Asymmetric Co-Training Approach

Anonymous Authors

ABSTRACT
Label noise, an inevitable issue in various real-world datasets, tends

to impair the performance of deep neural networks. A large body

of literature focuses on symmetric co-training, aiming to enhance

model robustness by exploiting interactions between models with

distinct capabilities. However, the symmetric training processes

employed in existing methods often culminate in model consensus,

diminishing their efficacy in handling noisy labels. To this end, we

propose an Asymmetric Co-Training (ACT) method to mitigate

the detrimental effects of label noise. Specifically, we introduce an

asymmetric training framework in which one model (i.e., RTM) is

robustly trained with a selected subset of clean samples while the

other (i.e., NTM) is conventionally trained using the entire training

set. We propose two novel criteria based on agreement and discrep-

ancy between models, establishing asymmetric sample selection

and mining. Moreover, a metric, derived from the divergence be-

tween models, is devised to quantify label memorization, guiding

our method in determining the optimal stopping point for sample

mining. Finally, we propose to dynamically re-weight identified

clean samples according to their reliability inferred from historical

information. We additionally employ consistency regularization to

achieve further performance improvement. Extensive experimental

results on synthetic and real-world datasets demonstrate the effec-

tiveness and superiority of our method. The source code has been

made anonymously available at https://github.com/shtdusb/ACT.

CCS CONCEPTS
• Computing methodologies→Machine learning.

KEYWORDS
Noisy labels, asymmetric co-training, sample selection

1 INTRODUCTION
Deep neural networks (DNNs) are renowned for their remarkable ef-

fectiveness in various computer vision tasks, including image classi-

fication [27], object detection [33], face recognition [5], and instance

segmentation [60]. Among all factors contributing to the efficacy of

deep neural networks, the availability of large-scale, high-quality

human-labeled training data [8] is recognized as instrumental in en-

suring their state-of-the-art (SOTA) performances. However, such
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large volumes of accurate human annotations are costly and time-

consuming to acquire, especially for tasks that necessitate expert

annotating knowledge (e.g., medical images [49]). To obtain large-

scale annotated data under a limited budget, recent researchers

have started to pay attention to using crowd-sourcing platforms

[48] or web image search engines [10] for dataset construction.

Unfortunately, these methods inevitably introduce low-quality sam-

ples with noisy labels, which can cause DNNs to overfit misleading

information and degrade their performance. Consequently, devel-

oping robust methods aimed at alleviating the detrimental impact

of noisy labels is of significant importance.

Prior literature has illustrated theMemorization Effect [2] of
DNNs, which suggests that models tend to first learn clean sam-

ples and then progressively memorize noisy ones. Accordingly,

researchers explore a diversity of robust learning strategies, such

as sample selection [6, 7, 22, 50, 53, 55], label correction [41, 58, 59]

and sample re-weighting [9, 21, 44], to mitigate the harmful effects

of noisy labels. Notably, among existing solutions, the symmet-

ric co-training (SCT) is one of the most popular training strategies

within the realm of sample-selection methods [13, 28, 38, 40, 45, 61].

SCT methods usually entail the simultaneous training of two net-

works with identical architectures but distinct weight initialization.

The twin networks adopt the same training strategy, capitalizing

on their distinct learning capabilities to provide mutual guidance

throughout the learning process, as shown in Fig. 1 (a). For example,

Decoupling [28] trains two networks simultaneously and updates

them using instances with different predictions. Co-teaching [13]

maintains two networks simultaneously and enables them to select

low-loss samples for each other. Co-teaching+ [61] follows a similar

scheme as Co-teaching but proposes to select small-loss data from

disagreement one. JoCoR [45] employs a joint loss to select low-

loss data, encouraging agreement between networks. The efficacy

of SCT methods primarily relies on the assumption that the two

networks can extract divergent knowledge from the training data,

thereby augmenting robustness through complementary informa-

tion. However, we argue that the information gains attributed to

SCT are substantially constrained since the capability discrepancies

between the twin networks mainly arise from distinct initializa-

tions. Furthermore, it is problematic that the learning capabilities

of the twin networks tend to converge in the later stage of training,

leading to a decline in effectiveness for addressing noisy labels [40].

To alleviate aforementioned issues, we propose a novel approach,

termed ACT (Asymmetric Co-Training), to combat noisy labels, as

shown in Fig. 1 (b). In our ACT approach, two models with identical

architectures are simultaneously trained utilizing distinct train-

ing strategies. The first model, designated as the Robustly Trained

Model (RTM), is trained with a selected clean subset. Contrarily,

the second model, termed the Non-Robustly Trained Model (NTM),

undergoes training on the entire noisy training set. Owing to our

asymmetric training strategy, we empower the robustness of the

https://github.com/shtdusb/ACT
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: The differences between classic symmetric co-training methods (i.e., Decoupling, Co-teaching, Co-teaching+, JoCoR
and Co-learning) and our asymmetric co-training approach.

RTM by capitalizing on the diverse capabilities of the two models.

In our framework, we introduce two novel criteria to devise an

asymmetric sample selection and mining strategy that hinges on

the relationship between model predictions and given labels, focus-

ing on both consensus and disagreement. Moreover, we propose a

dynamic sample re-weighting approach to leverage the historical

states throughout the training process, enhancing the reliability of

our clean sample selection and mining. Employing two asymmetri-

cally trained models, our ACT establishes a positive feedback loop

that continuously promotes the model’s robustness against noisy

labels. Notably, this enhancement is achieved without the require-

ment for any dataset-dependent prior knowledge (e.g., a pre-defined
noise rate and a small subset of clean samples). Comprehensive

experimental results have been provided to verify the effective-

ness and superiority of our approach. Our main contributions are

summarized as follows:

(1) We propose a novel asymmetric co-training (ACT) approach

to mitigate the negative impact induced by noisy labels. It trains

two networks asymmetrically to improve the reliability of learned

knowledge. Through this asymmetric training framework, our RTM

and NTM can provide more distinctive insights for clean sample

selection compared to existing SCT methods.

(2) We introduce two novel criteria to establish an asymmetric

sample selection and mining strategy based on the relationship

between model predictions, focusing on their consensus and dis-

agreement with given labels. Moreover, we propose a dynamic

sample re-weighting method, utilizing historical training states to

enhance the reliability of our clean sample selection and mining.

(3) We present comprehensive experimental results on both syn-

thetic and real-world datasets to demonstrate the superiority of our

proposed ACT method. Moreover, we conduct extensive ablation

studies to further validate the effectiveness of our approach.

2 RELATEDWORK
2.1 Learning with Noisy Labels
Researchers have explored various robust training strategies for

learning with noisy labels (LNL) [3, 6, 7, 15, 19, 24, 25, 29, 54, 65].

Existing LNLmethods can be categorized into three main directions:

sample selection [13, 21, 23, 51], label correction [1, 6, 11, 21, 52, 58],

and sample re-weighting [9, 34, 43, 44, 46, 63].

Sample Selection: To cope with noisy labels, one intuitive idea

is to select clean samples and discard noisy ones from training

[23, 53, 56]. Previous sample selection methods primarily regard

samples with small losses as clean ones [13, 28, 45, 61]. For instance,

DivideMix [21] extracts the clean subset by fitting the loss distri-

bution with the Gaussian Mixture Model. Some recent methods

propose new selection criteria for finding clean samples [20, 30].

For example, NCE [20] resorts to neighbor data to identify clean

and noisy samples. BARE [30] proposes a data-dependent, adaptive

sample selection strategy that relies on batch statistics of a given

mini-batch. However, these methods usually demand pre-defined

drop rates or thresholds to facilitate efficient selection.

Label Correction: Another straightforward idea for addressing

noisy labels is to correct corrupted labels before feeding them into

networks [1, 6, 11, 12, 31, 52]. Label correction methods typically

attempt to rectify sample labels using the noise transition matrix

[11] or model predictions [21]. For example, Goldberger et al. [11]
proposes to use an additional layer to estimate the noise transition

matrix. Jo-SRC [56] uses the temporally averaged model (i.e., mean-

teacher model) to generate reliable pseudo-label distributions for

providing supervision. However, the noise transition matrix is diffi-

cult to estimate accurately, while prediction-based label correction

tends to suffer from error accumulation.

Sample Re-weighting: Recently, some researchers have focused

on re-weighting training samples to cope with noisy labels [9, 34,

36, 42, 44]. For example, DIW [9] proposes a dynamic importance

weighting strategy as an end-to-end solution to alleviate the bias

of static importance weighting. RPM [44] proposes a Bayesian

method that infers the example weights as latent variables. L2RW

[34] proposes to assign different sample weights based on meta-

learning. However, existing sample re-weighting methods also tend

to require dataset-dependent prior knowledge (e.g., a small subset

of clean samples), posing a limit to their practicability.

2.2 Symmetric Co-training
Symmetric co-training is one of the most frequently-employed

strategies in sample selection methods [13, 21, 28, 38, 40, 45, 56, 61].

The idea of SCT stems from the Co-training approach [4], which

aims to obtain information gains by simultaneously training two

models and enabling them to mutually guide the learning process.
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Figure 2: The overall framework of our proposed ACT. We train two models simultaneously but employ robust (i.e., training
using selected clean data) and non-robust (i.e., training on the entire noisy training set) training strategies separately. By
revisiting the prediction results (𝑦𝑅 and 𝑦𝑁 ) and the given labels 𝑦, we perform asymmetric sample selection (𝑦𝑅 = 𝑦,𝑦𝑁 = 𝑦)
and sample mining (𝑦𝑅 ! = 𝑦,𝑦𝑁 = 𝑦) before the non-robust model suffers from label memorization. Moreover, we maintain a
memory bank to estimate the reliability of selected and mined “clean” samples. A dynamic sample re-weighting scheme is
proposed based on the memory bank to integrate the reliability of “clean” data in the loss re-weighting process.

In SCT methods, the two models have identical architectures but

are initialized differently to acquire discrepant learning capabilities.

For instance, Co-teaching [13] trains two networks simultaneously

and selects small-loss data to teach the peer network during train-

ing. JoCoR [45] maintains two networks, training them with a joint

loss to make their predictions converge. Co-learning [40] proposes

to train a shared feature encoder with two distinctive prediction

heads, maximizing their agreement in the latent space. Co-LDL

[38] simultaneously trains two models and lets them communicate

useful knowledge by selecting low-loss and high-loss samples for

each other. However, our study posits that the additional infor-

mation gain introduced by the SCT strategy is constrained, as the

disparities between the two models primarily arise from random

initialization. The dual models will eventually converge, leading to

a diminution of their effectiveness in addressing noisy labels.

3 METHODS
3.1 Problem Statement
Considering a classification problem with 𝐶 classes, let us suppose

that X ⊂ R𝑑 is the input space and Y = {0, 1}𝐶 is the given label

space (in a one-hot manner). We denote 𝐷 = {(𝑥,𝑦) |𝑥 ∈ X, 𝑦 ∈ Y}
as the training set, which is obtained from the joint distribution over

X×Y. For noisy label learning, the given label 𝑦 ∈ Y is potentially

“incorrect” and we use 𝑦∗ to represent the ground-truth label of the

sample 𝑥 . In conventional supervised learning, the DNN learns a

mapping function F : X → Y on the training set 𝐷 and optimizes

the network parameters 𝜃 using the following cross-entropy loss:

L = − 1

|𝐷 |
∑︁

(𝑥,𝑦) ∈𝐷
𝑦𝑙𝑜𝑔(F (𝑥, 𝜃 )) . (1)

The goal is to obtain optimal parameters 𝜃∗ by minimizing the

empirical risk RL (F ) subjected to network parameters as follows:

𝜃∗ = argmin

𝜃

RL (F (·;𝜃 )) . (2)

Given the remarkable fitting capability of DNNs [62], optimiza-

tion of network parameters using noisy labels within the conven-

tional supervised learning framework can potentially steer the

model toward an undesirable direction. Therefore, it is imperative

to establish a solution capable of effectively addressing noisy labels.

3.2 Asymmetric Co-training
SCT has been demonstrated effective in learning with noisy labels,

particularly in sample selection-based methods [13, 21, 28, 40, 45,

56, 61]. Resorting to the simultaneously trained dual networks, SCT

effectively harnesses their diverse learning capabilities to promote

model robustness in a mutual-reinforced manner. However, the two

models in SCT are destined to converge due to the identical network

architecture and the homogeneous training process, eventually

vanishing the information gains obtained from symmetric training.

To this end, we propose an Asymmetric Co-Training (ACT)
method, aiming to continuously enhance model robustness against

noisy labels through asymmetric learning. In contrast to SCT, where

both models adhere to the same training process, our ACT simulta-

neously trains two networks (i.e., RTM and NTM) with identical

architectures but employs distinct training strategies. RTM (i.e.,
𝜃𝑅𝑇𝑀 ) adopts a robust training strategy during network optimiza-

tion, while NTM (i.e., 𝜃𝑁𝑇𝑀 ) is trained with the entire training set

following the conventional supervised learning process. As such,

an asymmetric co-training framework is accordingly established.

Specifically, to facilitate the robustness against noisy labels, we

perform loss back-propagation only on a selected “clean” subset

𝐷𝑐 ⊆ 𝐷 when training RTM. Its loss function is as follows:

L𝜃𝑅𝑇𝑀
= − 1

|𝐷𝑐 |
∑︁

(𝑥,𝑦) ∈𝐷𝑐

𝑦𝑙𝑜𝑔(F (𝑥, 𝜃𝑅𝑇𝑀 )) . (3)

For the NTM, we follow the conventional supervised learning pro-

cedure, conducting training on the entire training set 𝐷 . Its loss
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Figure 3: Selection precision and prediction accuracy of samples selected by different criteria on CIFAR100N-Sym-20%.

function is as follows:

L𝜃𝑁𝑇𝑀
= − 1

|𝐷 |
∑︁

(𝑥,𝑦) ∈𝐷
𝑦𝑙𝑜𝑔(F (𝑥, 𝜃𝑁𝑇𝑀 )). (4)

Accordingly, given an input sample 𝑥 , we can derive the prediction

results produced by the two models as:

𝑦𝑅 = argmax

𝑐=1,...,C
𝑝 (𝑥, 𝜃𝑅𝑇𝑀 )𝑐 , 𝑦𝑁 = argmax

𝑐=1,...,C
𝑝 (𝑥, 𝜃𝑁𝑇𝑀 )𝑐 . (5)

𝑝 (𝑥, 𝜃𝑅𝑇𝑀 )𝑐 and 𝑝 (𝑥, 𝜃𝑁𝑇𝑀 )𝑐 represent the prediction probabilities
of the sample 𝑥 on the category 𝑐 by models 𝜃𝑅𝑇𝑀 and 𝜃𝑁𝑇𝑀 .

Obviously, the NTM is predetermined to overfit noisy samples

and yield degenerated performance. However, our design enables

the NTM to complement the RTM with knowledge learned from a

different perspective. Specifically, based on our asymmetric training

design, the RTM consistently engages in robust learning from clean

samples, whereas the NTM progressively fits all samples (includ-

ing noisy ones) as a result of label memorization. RTM and NTM

tend to exhibit agreement when learning clean samples (i.e., robust
learning) but disagreement when learning noisy samples (i.e., label
memorization). Consequently, we argue that our asymmetric train-

ing can provide more unique insights for selecting clean samples

compared to existing SCT methods.

3.3 Asymmetric Sample Selection and Mining
Existing SCT methods have investigated both agreement-based

[13, 45] and disagreement-based [28, 61] sample selection strate-

gies for addressing noisy labels. However, their reliabilities are

prone to be compromised due to the converging behavior of SCT

models. Especially in the later training stage, SCT models tend to

produce consentaneous predictions even when confronted with

noisy data. This diminishes their precision in selecting clean sam-

ples, thereby leading to degraded model performance. Inspired by

existing agreement-based and disagreement-based sample selection

methods, Our ACT revisits the relationship between predictions

and given labels. By employing our asymmetric training design, we

obtain insights that support us in devising better sample selection

criteria, aiding in the selection and mining of more valuable and

reliable clean samples for RTM.

Specifically, we find the relationships between predictions of

models (i.e., 𝑦𝑅 and 𝑦𝑁 ) and given labels 𝑦 can be categorized into

four situations: (1) 𝑦𝑅 = 𝑦 and 𝑦𝑁 = 𝑦, (2) 𝑦𝑅 ≠ 𝑦 but 𝑦𝑁 = 𝑦, (3)

𝑦𝑅 = 𝑦 but 𝑦𝑁 ≠ 𝑦, and (4) 𝑦𝑅 ≠ 𝑦 and 𝑦𝑁 ≠ 𝑦. As depicted in Fig. 3,

we compare the selection precision and the prediction accuracy

of corresponding samples w.r.t. their ground truth by conducting

experiments on a synthetically noisy dataset. Fig. 3 (a) demonstrates

the high selection precision (approaching 0.998) in situation (1). As

the samples selected by situation (1) exhibit agreement between

given labels and model predictions, it ensures the high accuracy of

RTM predictions. Inspired by the results in Fig. 3 (a), we introduce

a new criterion to select clean samples for RTM as follows:

Criterion 1. A sample 𝑥 is deemed clean if its predicted results
of RTM and NTM are consistent and aligned with its given label 𝑦
(i.e., 𝑦𝑅 = 𝑦𝑁 = 𝑦).

Therefore, the clean subset 𝐷𝑐 in our ACT that we select to partici-

pate in the training of 𝜃𝑅𝑇𝑀 and the corresponding noisy subset is

defined as follows:

𝐷𝑐 = {(𝑥,𝑦) | (𝑥,𝑦) ∈ 𝐷,𝑦𝑅 = 𝑦𝑁 = 𝑦}, 𝐷𝑛 = 𝐷 − 𝐷𝑐 . (6)

Fig. 3 (b), (c), and (d) depict the selection precision and prediction

accuracy for the latter three situations, where the predictions of

models and given labels exhibit disagreement. In Fig. 3 (b), we

observe the selection begins with high precision but exhibits a

notable decreasing trend. Meanwhile, the prediction accuracy of

𝜃𝑅𝑇𝑀 is consistently low. Essentially, this case has the potential to

mine additional clean samples that 𝜃𝑅𝑇𝑀 has not yet learned (i.e.,
𝑦𝑅 ≠ 𝑦). In Fig. 3 (c), both the selection precision and the prediction

accuracy are consistently high. This indicates that 𝜃𝑅𝑇𝑀 adeptly fits

this subset of samples, meaning that little additional information

can be unearthed from this subset. Results in Fig. 3 (d) demonstrate

that this portion of data is not conducive to the robustness of 𝜃𝑅𝑇𝑀 .

Indeed, the samples identified in scenario (2) hold greater impor-

tance for mining additional valuable clean samples to enhance the

robust training of the RTM before the NTM starts to suffer from
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label memorization. Since 𝜃𝑁𝑇𝑀 will memorize labels to fit noisy

samples in the later training stage, the training accuracy of the two

models gradually deviates. Accordingly, we design the following

self-adaptive metric to measure the extent of label memorization

for 𝜃𝑁𝑇𝑀 :

T =
𝐴𝑐𝑐 (𝜃𝑁𝑇𝑀 ) −𝐴𝑐𝑐 (𝜃𝑅𝑇𝑀 )

𝐴𝑐𝑐 (𝜃𝑅𝑇𝑀 ) , 𝐴𝑐𝑐 (𝜃 ) = 1

|𝐷 |
∑︁

(𝑥,𝑦) ∈𝐷
𝑦 = 𝑦𝜃 .

(7)

Inspired by the findings from Fig. 3 (b) and T , we additionally

introduce a novel criterion for mining more valuable clean samples:

Criterion 2. A sample 𝑥 will be mined as a clean sample if its
given label 𝑦 does not match the prediction of RTM, yet aligns with
that of NTM (i.e., 𝑦𝑅 ≠ 𝑦,𝑦𝑁 = 𝑦) before NTM starts to suffer from
label memorization (i.e., T ≤ 𝜏).

Once the condition T > 𝜏 is triggered, samples selected by 𝑦𝑅 ≠

𝑦,𝑦𝑁 = 𝑦 are no longer reliable and thus should be neglected from

the training of RTM. Formally, the subset of selected and mined

clean samples at the 𝐾-th epoch is defined as:

𝐷′
𝑐 = 𝐷𝑐 ∪ {(𝑥,𝑦) ∈ 𝐷𝑛 | 𝑦𝑅 ≠ 𝑦,𝑦𝑁 = 𝑦,T ≤ 𝜏}. (8)

3.4 Dynamic Sample Re-weighting
Some previous works have revealed that determining the cleanness

of samples solely based on the current model predictions could

bring potential risks in data reliability. The challenge arises from

the inevitable fluctuations in model training, making it difficult to

prevent a few noisy samples from being leaked into 𝐷′
𝑐 , especially

in scenarios with high noise rates.

To guarantee the efficacy of our ACTmethod, we further propose

a dynamic sample re-weighting approach to foster the reliability

of the selected and mined “clean” samples in 𝐷′
𝑐 . Specifically, we

introduce a memory bank (M) to store the selection results of all

samples throughout the training process as follows:

M𝐾 (𝑥) =
{
M𝐾−1 (𝑥) + 1, 𝑖 𝑓 (𝑥,𝑦) ∈ 𝐷′

𝑐

M𝐾−1 (𝑥) + 0, 𝑖 𝑓 (𝑥,𝑦) ∈ 𝐷 − 𝐷′
𝑐

. (9)

M𝐾 (𝑥) denotes the number of epochs that 𝑥 falls into 𝐷′
𝑐 at the

𝐾-th epoch. (M0 (𝑥) = 0, 0 ≤ M𝐾 (𝑥) ≤ 𝐾 .) Subsequently, we

leverage the stored value ofM for each clean sample as a weight

coefficient when training 𝜃𝑅𝑇𝑀 . The loss L𝜃𝑅𝑇𝑀
used for the RTM

can be re-write as:

L𝜃RTM = − 1

|𝐷′
𝑐 |

∑︁
(𝑥,𝑦) ∈𝐷 ′

𝑐

M(𝑥)
𝐾

𝑦𝑙𝑜𝑔(F (𝑥, 𝜃𝑅𝑇𝑀 )), (10)

in which 𝐾 denotes the 𝐾-th epoch in the training process.

Notably, existing sample selection methods often require dataset-

dependent prior knowledge [13, 45] (e.g., a pre-defined drop rate or

threshold). This nature makes it challenging to swiftly adapt them

to different real-world scenarios. In contrast, our ACT employs a

data-driven, self-adaptive sample selection strategy, rendering it

free from dataset-dependent priors. Thus, it is more suitable for

real-world applications. Moreover, by incorporating the reliability

of sample selection and mining into loss re-weighting, the risk of

overfitting to noisy labels is further mitigated, resulting in improved

model performance.

Algorithm 1 Our proposed algorithm

Input: The training set 𝐷 , the robust and non-robust networks

𝜃𝑅𝑇𝑀 and 𝜃𝑁𝑇𝑀 , warm-up epochs 𝐸𝑤 , total epochs 𝐸𝑡𝑜𝑡𝑎𝑙 , batch

size 𝑏𝑠 .

1: for 𝑒𝑝𝑜𝑐ℎ = 1, 2, . . . , 𝐸𝑡𝑜𝑡𝑎𝑙 do
2: if 𝑒𝑝𝑜𝑐ℎ ≤ 𝐸𝑤 then
3: for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1, 2, . . . do
4: Fetch a mini-batch 𝐵 = {(𝑥𝑖 , 𝑦𝑖 )}𝑏𝑠 from 𝐷 ;

5: Calculate L𝜃𝑅𝑇𝑀
= −∑

(𝑥,𝑦) ∈𝐵 𝑦 log 𝐹 (𝑥, 𝜃𝑅𝑇𝑀 );
6: Calculate L𝜃𝑁𝑇𝑀

= −∑
(𝑥,𝑦) ∈𝐵 𝑦 log 𝐹 (𝑥, 𝜃𝑁𝑇𝑀 );

7: Update 𝜃𝑅𝑇𝑀 , 𝜃𝑁𝑇𝑀 by optimizing L𝜃𝑅𝑇𝑀
, L𝜃𝑁𝑇𝑀

.

8: end for
9: end if
10: if 𝐸𝑤 < 𝑒𝑝𝑜𝑐ℎ ≤ 𝐸𝑡𝑜𝑡𝑎𝑙 then
11: for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1, 2, . . . do
12: Select “clean” samples using Eq. (6);

13: Mine more “clean” samples using Eq. (8);

14: Re-weight samples in 𝐷′
𝑐 using Eq. (9);

15: Calculate L𝜃𝑅𝑇𝑀
and L𝜃𝑁𝑇𝑀

using Eqs. (11) and (4);

16: Update 𝜃𝑅𝑇𝑀 , 𝜃𝑁𝑇𝑀 by optimizing L𝜃𝑅𝑇𝑀
, L𝜃𝑁𝑇𝑀

.

17: end for
18: end if
19: end for
Output: The updated robust network 𝜃𝑅𝑇𝑀 .

3.5 The Overall Framework
In summary, we introduce a novel asymmetric co-training approach

to alleviate the harmful effects of noisy labels. We simultaneously

train two models with identical architectures following different

training processes. The RTM is trained with a selected clean subset,

while the NTM is trained using the entire noisy training set. We

introduce two novel criteria to select and mine clean samples more

precisely. A metric is developed to evaluate the degree of label

memorization for the NTM, enabling our method to performmining

only before the NTM starts to memorize noisy labels. Moreover,

we propose a dynamic sample re-weighting strategy, incorporating

the reliability of sample selection and mining to further boost the

model performance. The overall learning procedure of our ACT is

illustrated in Fig. 2 and Algorithm 1. In practice, we follow [39, 56]

and further employ a consistency regularization loss for optimizing

𝜃𝑅𝑇𝑀 . Our final objective loss function for RTM is as follows:

L𝜃𝑅𝑇𝑀
= L𝜃𝑅𝑇𝑀

+ 𝜆L𝑅𝐸𝐺 , (11)

where 𝜆 is the weighting factor. L𝑅𝐸𝐺 denotes the consistency

regularization (CR) loss, which encourages prediction consistency

between weakly-augmented (𝐴𝑊 ) and strongly-augmented (𝐴𝑆 )

views of the input samples:

L𝑅𝐸𝐺 = − 1

|𝐷 |
∑︁

(𝑥,𝑦) ∈𝐷
𝑦𝐴𝑙𝑜𝑔(F (𝐴𝑆 (𝑥), 𝜃𝑅𝑇𝑀 )), (12)

in which

𝑦𝐴 = 𝑝 (𝐴𝑊 (𝑥), 𝜃𝑅𝑇𝑀 ) . (13)
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Table 1: Average test accuracy (%) on CIFAR100N and CIFAR80N over the last ten epochs. Experiments are conducted under
various noise conditions (“Sym” and “Asym” denote the symmetric and asymmetric label noise, respectively). † means we
re-implement the method using its open-sourced code and default hyper-parameters.

Methods Publication CIFAR100N CIFAR80N

Sym-20% Sym-80% Asym-40% Sym-20% Sym-80% Asym-40%

Standard - 35.14 4.41 27.29 29.37 4.20 22.25

Decoupling [28] NeurIPS 2017 33.10 3.89 26.11 43.49 10.1 33.74

Co-teaching [13] NeurIPS 2018 43.73 15.15 28.35 60.38 16.59 42.42

Co-teaching+ [61] ICML 2019 49.27 13.44 33.62 53.97 12.29 43.01

JoCoR [45] CVPR 2020 53.01 15.49 32.70 59.99 12.85 39.37

DivideMix [21] ICLR 2020 57.76 28.98 43.75 57.47 21.18 37.47

Jo-SRC [56] CVPR 2021 58.15 23.80 38.52 65.83 29.76 53.03

Co-LDL [38] TMM 2022 59.73 25.12 52.28 58.81 24.22 50.69

UNICON
†
[16] CVPR 2022 55.10 31.49 49.90 54.50 36.75 51.50

SOP
†
[26] ICML 2022 58.63 34.23 49.87 60.17 34.05 53.34

AGCE
†
[66] TPAMI 2023 59.38 27.41 43.04 60.24 25.39 44.06

DISC
†
[23] CVPR 2023 60.28 33.90 50.56 50.33 38.23 47.63

ANL
†
[57] NeurIPS 2023 60.20 23.39 44.15 61.35 20.74 47.31

NPN
†
[35] AAAI 2024 62.76 31.69 57.11 63.78 25.25 58.50

Ours - 65.51 40.74 63.48 67.09 38.58 64.40
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Figure 4: The comparison between SOTA methods and our ACT on precision, recall, F1 score, and test accuracy vs. epochs.
Experiments are conducted on CIFAR100N with Sym-50%.

4 EXPERIMENTS
In this section, we first evaluate the effectiveness of ACT on various

synthetic datasets. Then, we perform experiments on real-world

benchmark datasets. Finally, we conduct ablation studies to investi-

gate each ingredient in ACT. Further studies, such as the analysis

of hyper-parameters, are provided in our supplementary material.

4.1 Experiment Setup
Synthetic Datasets: Following [56], we evaluate our ACT ap-

proach on two synthetic datasets (i.e., CIFAR100N and CIFAR80N).

CIFAR100N and CIFAR80N originate from CIFAR100 [17]. They

are created to simulate closed-set and open-set noisy scenarios,

respectively. Adhering to [56], we primarily study two types of

synthetic label noise: symmetric (Sym.) and asymmetric (Asym.).

Real-world Datasets: Web-Aircraft, Web-Bird, and Web-Car [37]

are three real-world noisy datasets whose training images are

crawled from web image search engines. In comparison to syn-

thetic datasets, they present more significant challenges due to

their unpredictable noise patterns. Moreover, it has been revealed

that they contain both closed-set and open-set noise. Food-101N

[18] is another benchmark dataset containing 101 food categories.

It comprises around 310k noisy training images. The noise rate and

structure are both unknown.

Implementation Details: We follow [56] to conduct experiments

on synthetic datasets using a seven-layer CNN network as the

backbone of our RTM and NTM. Accordingly, models are trained

using SGD with a momentum of 0.9 for 150 epochs (including 50

warm-up epochs). To further promote the asymmetricity between

the two models, we set the learning rates for the RTM and NTM as

0.01 and 0.08, respectively. The batch size is 128, and the learning

rates decay in a cosine annealing manner. When experimenting

on real-world datasets, we leverage ResNet50 [14] pre-trained on
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Table 2: The comparison with SOTA approaches in test accuracy (%) on real-world noisy datasets: Web-Aircraft, Web-Bird,
Web-Car. † means we re-implement the method using its open-sourced code and default hyper-parameters.

Methods Publication Backbone Performances(%)
Web-Aircraft Web-Bird Web-Car Average

Standard - ResNet50 60.80 64.40 60.60 61.93

Decoupling [28] NeurIPS 2017 ResNet50 75.91 71.61 79.41 75.64

Co-teaching [13] NeurIPS 2018 ResNet50 79.54 76.68 84.95 80.39

Co-teaching+ [61] ICML 2019 ResNet50 74.80 70.12 76.77 73.90

PENCIL [58] CVPR 2019 ResNet50 78.82 75.09 81.68 78.53

JoCoR [45] CVPR 2020 ResNet50 80.11 79.19 85.10 81.47

AFM [32] ECCV 2020 ResNet50 81.04 76.35 83.48 80.29

DivideMix [21] ICLR 2020 ResNet50 82.48 74.40 84.27 80.38

Jo-SRC [56] CVPR 2021 ResNet50 82.73 81.22 88.13 84.03

Co-LDL [38] TMM 2022 ResNet50 81.97 80.11 86.95 83.01

UNICON
†
[16] CVPR 2022 ResNet50 85.18 81.20 88.15 84.84

SOP
†
[26] ICML 2022 ResNet50 84.06 79.40 85.71 83.06

AGCE
†
[66] TPAMI 2023 ResNet50 84.22 75.60 85.16 81.66

DISC
†
[23] CVPR 2023 ResNet50 85.27 81.08 88.31 84.89

ANL
†
[57] NeurIPS 2023 ResNet50 81.78 79.46 86.47 82.57

NPN
†
[35] AAAI 2024 ResNet50 83.65 79.36 85.46 82.82

Ours - ResNet50 86.56 81.43 88.75 85.58

ImageNet-1K as our backbone. The batch size, the initial learning

rate, and the weight decay are 16, 0.005, and 0.0005, respectively.

Evaluation Metrics:We adopt test accuracy as the primary metric

to assess our model performance. Moreover, to enable a more com-

prehensive analysis, we additionally evaluate the results of sample

selection by using the precision, recall, and F1 score metrics. Our

reported performances are averaged results of five repeated runs.

Baselines: For synthetic datasets, we compare our ACT with fol-

lowing SOTA methods: Decoupling [28], Co-teaching [13], Co-

teaching+ [61], JoCoR [45], DivideMix [21], Jo-SRC [56], Co-LDL

[38], UNICON [16], SOP [26], AGCE [66], DISC [23], ANL [57] and

NPN [35]. For real-world datasets, we additionally compare ACT

with other competing methods (e.g., PENCIL [58], AFM [32], PLC

[64] and DivideMix+SNSCL [47]). Moreover, we perform conven-

tional training using the entire noisy dataset as a baseline (denoted

as Standard). Results of SOTA methods in Tables 1, 2 and 3 are

mainly obtained from [56], [38] and [40].

4.2 Evaluation on Synthetic Datasets
Table 1 presents the comparison results on the synthetic datasets

(i.e., CIFAR100N and CIFAR80N) under various noise types (i.e.,
symmetric and asymmetric) and noise rates (i.e., 20%, 40% and 80%).

Observing Table 1, we find it is evident that our ACT consistently

outperforms all competing methods in various noisy conditions

on these synthetic noisy datasets. Especially on CIFAR100N, the

performances of our ACT excel existing approaches by notable

margins (i.e., 2.75%↑ on Sym-20%, 6.51%↑ on Sym-80%, and 6.37%↑
on Asym-40%), verifying the effectiveness of our method in coping

with various closed-set noisy labels. Compared to CIFAR100N, CI-

FAR80N is undoubtedly more challenging since it is generated to

mimic real-world cases where closed-set and open-set noisy labels

simultaneously exist. Our ACT remains the top performer when

Table 3: The comparison with SOTA approaches in test accu-
racy (%) on Food101N.

Methods Publication Backbone Acc (%)
Standard - ResNet50 84.50

Decoupling [28] NeurIPS 2017 ResNet50 85.53

Co-teaching [13] NeurIPS 2018 ResNet50 61.91

Co-teaching+ [61] ICML 2019 ResNet50 81.61

JoCoR [45] CVPR 2020 ResNet50 77.94

DivideMix [21] ICLR 2020 ResNet50 85.88

Jo-SRC [45] CVPR 2021 ResNet50 86.66

PLC [64] ICML 2021 ResNet50 85.28

SNSCL [47] CVPR 2023 ResNet50 86.40

Ours - ResNet50 86.81

compared with competing approaches on CIFAR80N. Although our

method only achieves 0.35% performance improvement compared

to the second-best counterpart (i.e., DISC [23]) on CIFAR80N (Sym-

80%), our ACT obtains remarkable performance gains in the other

two cases (i.e., 3.31%↑ on Sym-20% and 5.90%↑ on Asym-40%). This

substantiates the efficacy of our proposed ACT method in adeptly

tackling diverse challenging noisy labels.

To further demonstrate the efficacy of our ACT, we additionally

investigate the performance of our asymmetric sample selection

and mining by performing a comparison of sample identification

results with existing SCT methods (i.e., Decoupling, Co-teaching,
Co-teaching+, and JoCoR), using the precision, recall, and F1 score

metrics. Fig. 4 shows the comparison results on CIFAR100N with

Sym-50% label noise. From Fig. 4 (a), it is evident that the selection

precision of our ACT is significantly higher than that of other

SCT methods. This observation suggests that the clean samples
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Table 4: Effects of different modules in test accuracy (%) on CIFAR100N and CIFAR80N under various noise conditions.

# Model CIFAR100N CIFAR80N
Sym-20% Sym-80% Asym-40% Sym-20% Sym-80% Asym-40%

1 Standard 35.14 4.41 27.29 29.37 4.20 22.25

2 Standard+ASS 59.30 28.59 41.69 59.90 26.70 42.08

3 Standard+ASS+ASM 63.25 33.91 54.82 64.66 32.81 56.66

4 Standard+ASS+DSRW 61.44 29.88 42.81 61.75 28.48 56.03

5 Standard+ASS+ASM+DSRW 63.66 35.89 59.77 65.46 34.42 60.41

6 Standard+ASS+ASM+DSRW+CR 65.51 40.74 63.48 67.09 38.58 64.40

discovered by our method are highly reliable. While the recall of our

ACT starts at a relatively low level (which is the cost of ensuring

the reliability of selected clean samples), it eventually surpasses its

SCT counterparts, as shown in Fig. 4 (b). This demonstrates the

effectiveness and robustness of our method in identifying clean

samples. Consequently, the F1 score of ACT consistently excels

all competing methods throughout the entire training process, as

shown in Fig. 4 (c). Lastly, Fig. 4 (d) further demonstrates the leading

performance of our method in test accuracy during training.

4.3 Evaluation on Real-world Datasets
Table 2 shows the comparison result between our ACT and exist-

ing SOTA methods on three real-world datasets (i.e., Web-Aircraft,

Web-Bird, and Web-Car). These datasets contain at least 25% of

unknown noisy labels and do not provide any label verification

information, rendering them both practical and challenging. Table

2 shows that our ACT consistently outperforms these competing

methods. Specifically, ACT achieves 86.56%, 81.43%, and 88.75%

accuracy on Web-Aircraft, Web-Bird, and Web-Car, respectively,

surpassing the second-best performer DISC [23] by 1.29%, 0.35%,

and 0.44%. The average test accuracy outperforms DISC by 0.69%.

In particular, compared with classic SCT methods (i.e., Decopuling,
Co-teaching, Co-teaching+, JoCoR, and Co-LDL), ACT achieves

an evidently significant performance improvement. The results,

as depicted in Table 2, provide evidence for the robustness and

generalization ability of our ACT method in handling real-world

noisy labels.

Table 3 presents the performance comparison with SOTA meth-

ods on the Food101N dataset. As shown in Table 3, ACT achieves

the best score and outperforms the state-of-the-art SNSCL [47] by

0.41%, validating the effectiveness of our approach in dealing with

large-scale, real-world noisy cases.

4.4 Ablation Studies
This section, as illustrated in Table 4, investigates the effective-

ness and impact of each ingredient (ASS, ASM, DSRW, and CR) in

our method through ablation studies. Standard represents the con-

ventional forward training using the cross-entropy loss. ASS and

ASM denote the asymmetric sample selection and mining in our

ACT. DSRW indicates the dynamic sample re-weighting process.

CR means consistency regularization.

Effects of Asymmetric Sample Selection and Mining: Existing
SCT methods often face challenges of model convergence, limiting

the knowledge acquired frommodel interactions. In our framework,

we introduce two criteria (i.e., Criteria 1 and 2) and formulate the

asymmetric sample selection (ASS) and mining (ASM) strategy

based on the relationship between model predictions and given

labels. From the second row (#2) of Table 4, we can observe a

striking and consistent performance improvement when employing

our proposed ASS module. This confirms the capability of ASS in

selecting clean samples from the consensus between RTM and NTM.

Moreover, as depicted in the third row (#3) of Table 4, we can find

that our proposed ASM also achieves remarkable performance gains.

This validates the effectiveness of ASM in mining more valuable

clean samples from the discrepancy between the two models.

Effects of Dynamic Sample Re-weighting: Due to the lack of

ground truth for noisy labels, the identified “clean” samples are

never necessarily reliable. Therefore, in our ACT method, we pro-

pose a dynamic sample re-weighting (DSRW) module that incor-

porates the reliability of selected clean samples in the process of

loss weighting. DSRW introduces a surrogate metric to measure

the reliability of selected samples based on training history, deter-

mining their weights in loss back-propagation. This further boosts

the robustness against label noise. Table 4 demonstrates that DSRW

brings consistent benefit to the model performance.

Effects of Consistency Regularization: Our proposed ACT em-

ploys consistency regularization (CR) to pursue additional perfor-

mance gains. Consistency regularization enables us to unearth more

knowledge from samples, including those discarded “unclean” and

“unmined” ones. Consequently, as shown in Table 4, our model

performance is further promoted.

5 CONCLUSION
In this paper, we proposed an asymmetric co-training (ACT)method

to address noisy labels. ACT trained two models (i.e., RTM and

NTM) simultaneously in an asymmetric manner, equipping them

with distinctive capabilities. We accordingly introduced an asym-

metric sample selection and mining strategy to reliably identify and

mine valuable clean samples. We established a metric based on the

divergence between RTM and NTM to quantify label memorization,

thereby guiding our ACT on the optimal juncture to cease sample

mining. Moreover, a dynamic sample re-weighting scheme was pro-

posed to incorporate the reliability of selected samples in the loss

re-weighting process. Comprehensive experiments and ablation

studies on various noisy datasets substantiated the effectiveness

and superiority of our approach.
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