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In this supplementary material, we offer additional evaluations
of our proposed Asymmetric Co-Training (ACT) approach. We
conduct further analysis of hyper-parameters and qualitative anal-
yses to demonstrate the effectiveness of our method. Additionally,
we compare the robustness of sample selection between our ACT
and existing Symmetric Co-Training (SCT) methods across various
noise settings. Additional experiments are conducted and reported
according to the following themes:

• Qualitative analysis on real-world datasets. To enhance
the visualization of our method’s performance, we present
qualitative analyses on real-world datasets (i.e., Web-Aircraft,
Web-Bird, Web-Car, and Food101N). As depicted in Fig. 1
and Fig. 2, we showcase several visualization results of clean
and noisy samples selected by our sample selection methods
across various fine-grained categories.

• Sensitivity of Hyper-parameters. To achieve optimal per-
formance of our proposed method, we study the sensitivity
of hyper-parameters (i.e., 𝜏 and 𝜆) utilized in our ACT. 𝜏 is
adjusted to control the extent of label memorization of the
NTM for mining more valuable clean samples. Meanwhile, 𝜆
mainly governs the weight of the regularization term loss in
Eq. (11). We pressent the model performance under different
𝜌 and 𝜏 settings in Fig. 3 and Fig. 4 across various noisy
datasets (i.e., CIFAR100N and CIFAR80N) and different noise
settings (i.e., Sym-20% and Sym-80% and Asym-40%).

• Extended comparison with existing SCT methods. To
illustrate the superior label noise mitigation effects of our
proposed ACT compared to existing SCT methods (i.e., De-
coupling, Co-teaching, Co-teaching+, and JoCoR), we con-
duct extended comparisons using precision, recall, and F1
score metrics. Figs. 5-10 present the extend comparison re-
sults with the four metrics under different noise conditions
on CIFAR100N and CIFAR80N.

1 QUALITATIVE ANALYSIS
In this work, we introduce a novel asymmetric co-training approach
to alleviate the harmful effects of noisy labels. Specifically, we
introduce two criteria (i.e., Criteria 1 and 2) and formulate the
asymmetric sample selection and mining strategy based on the
relationship between model predictions and given labels in ACT. In
order to further visualize the performance of our proposed ACT, we
provide qualitative analysis of these real-world datasets (i.e., Web-
Aircraft, Web-Bird, Web-Car, and Food-101N). As shown in Fig. 1,
we provide several visualization results of clean and noisy samples
selected by our asymmetric sample selection methods on three
fine-grained categories (i.e., Yak-42, Carolina Wren, and Tesla Model
S Sedan 2012) from Web-Aircraft, Web-Bird, and Web-Car. Besides,
Fig. 2 shows other visualization results on other three fine-grained
categories (i.e., Apple Pie, Pizza, and Sushi) from Food101N.
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Figure 1: Some visualization results of clean and noisy sam-
ples selected by our ACT on Web-Aircraft, Web-Bird, and
Web-Car. The corresponding fine-grained class names are
Yak-42, Carolina Wren, and Tesla Model S Sedan 2012.
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Figure 2: Some visualization results of clean and noisy sam-
ples selected by our ACT on Food101N. The corresponding
fine-grained class names are Apple Pie, Pizza, and Sushi.

It is evident that our proposed asymmetric sample selection can
effectively distinguish between clean and noisy samples. In particu-
lar, our ACT method proves effective in addressing the intricate and
diverse noise scenarios present in real-world noisy datasets (e.g.,
the open-set noise). Furthermore, our ACT does not necessitate
prior knowledge like noise rates, thereby enhancing its practicality
in real-world scenarios.

2 SENSITIVITY OF HYPER-PARAMETERS
In this section, we study the sensitivity of hyper-parameters (i.e., 𝜏
and 𝜆) utilized in our ACT. In our ACT framework, we introduce
two novel criteria to select and mine clean samples more precisely.
Criterion 2 indicates that before the NTM suffers from label memo-
rization, more valuable clean samples can be mined for the RTM.
To ensure the precision of the clean subset participating in the
robust training of the RTM, we regulate the clean sample mining
process using 𝜏 . 𝜏 serves as a threshold to measure the extent of
label memorization for the NTM. It is evident that 𝜏 remains robust
across a range of values from 0.0 to 1.0. Furthermore, 𝜆 primarily
controls the weight of the regularization loss in Eq. (11). We present
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Figure 3: Effects of the hyper-parameters (i.e., 𝜆 and 𝜏) on CIFAR100N with various noise settings (i.e., Sym-20% (a), Sym-80% (b),
and Asym-40% (c)).
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Figure 4: Effects of the hyper-parameters (i.e., 𝜆 and 𝜏) on CIFAR80N with various noise settings (i.e., Sym-20% (a), Sym-80% (b),
and Asym-40% (c)).

the model performance under different 𝜏 and 𝜆 settings in Fig. 3
and Fig. 4 across various noise settings (i.e., Sym-20%, Sym-80%,
and Asym-40%) on CIFAR100N and CIFAR80N.

We can observe that a properly selected 𝜏 and 𝜆 can boost the
model performance further. When 𝜏 is 0.8, and 𝜆 is 0.2, our ACT
achieves the highest performance on the test set on synthetic noisy
CIFAR100N and CIFAR80N across nearly all noise settings. It is
noteworthy that in the Sym-80% noise settings, the higher noise
rate results in heightened sensitivity and volatility in performance
concerning hyper-parameters.

3 EXTENDED COMPARISON RESULTS
As discussed in the main paper, the SCT strategy finds wide ap-
plication in existing sample selection methods [1–7]. SCT meth-
ods typically involve the simultaneous training of two networks
with identical architectures but distinct weight initialization. Previ-
ous SCT methods have explored both agreement-based [1, 5] and
disagreement-based [2, 7] sample selection strategies for address-
ing noisy labels. However, the information gains associated with
SCT are significantly limited due to the divergence in capabilities
between the paired networks primarily stemming from distinct ini-
tialization. This limitation reduces their accuracy in selecting clean
samples, consequently leading to deteriorated model performance.

To further showcase the effectiveness of our ACT, we additionally
evaluate the performance of our asymmetric sample selection and

mining approach by comparing sample identification results with
classic SCT methods (i.e., Decoupling, Co-teaching, Co-teaching+,
and JoCoR). This evaluation is conducted using precision, recall,
and F1 score metrics on CIFAR100N and CIFAR80N datasets across
different noise settings (as shown in Figs. 5-10). It is evident that the
selection precision of our ACT surpasses that of other SCT methods
by a significant margin. Although the recall of our ACT initially
starts at a relatively lower level, reflecting the trade-off made to
ensure the reliability of selected clean samples, it eventually exceeds
that of its SCT counterparts. Furthermore, both the F1 score and test
accuracy of our ACT consistently outperform those of existing SCT
methods. Remarkably, our ACT maintains optimal performance
even under the most challenging noise settings, such as CIFAR100N-
Sym-80% and CIFAR80N-Sym-80%.
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Figure 5: The comparison between SOTA methods and our ACT on precision, recall, F1 score, and test accuracy vs. epochs.
Experiments are conducted on CIFAR100N with Sym-20%.
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Figure 6: The comparison between SOTA methods and our ACT on precision, recall, F1 score, and test accuracy vs. epochs.
Experiments are conducted on CIFAR100N with Sym-80%.
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Figure 7: The comparison between SOTA methods and our ACT on precision, recall, F1 score, and test accuracy vs. epochs.
Experiments are conducted on CIFAR100N with Asym-40%.
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Figure 8: The comparison between SOTA methods and our ACT on precision, recall, F1 score, and test accuracy vs. epochs.
Experiments are conducted on CIFAR80N with Sym-20%.
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Figure 9: The comparison between SOTA methods and our ACT on precision, recall, F1 score, and test accuracy vs. epochs.
Experiments are conducted on CIFAR80N with Sym-80%.
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Figure 10: The comparison between SOTA methods and our ACT on precision, recall, F1 score, and test accuracy vs. epochs.
Experiments are conducted on CIFAR80N with Asym-40%.
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