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ABSTRACT

Long-term time series forecasting poses significant challenges due to the com-
plex dynamics and temporal variations, particularly when dealing with unseen
patterns and data scarcity. Traditional supervised learning approaches, which rely
on cleaned and labeled data, struggle to capture these unseen characteristics, lim-
iting their effectiveness in real-world applications. In this study, we propose a
semi-supervised approach that leverages multi-view setting on augmented data
without requiring explicit future values as labels to address these limitations. By
introducing a consensus promotion framework, our method enhances agreement
among multiple single-view models on unseen augmented data. This approach
not only improves forecasting accuracy but also mitigates error accumulation in
long-horizon predictions. Furthermore, we explore the impact of autoregressive
and non-autoregressive decoding schemes on error propagation, demonstrating the
robustness of our model in extending prediction horizons. Experimental results
show that our proposed method not only surpasses traditional supervised models
in accuracy but also exhibits greater robustness when extending the prediction
horizon. Code is available at this repository: https://github.com/yjucho1/CoMRes

1 INTRODUCTION

Time series forecasting has seen significant advancements in recent years, with research making
substantial progress in capturing the complex dynamics inherent in time-series data (Zhou et al.,
2022; Nie et al., 2023; Chen et al., 2024; Liu et al., 2024a; Challu et al., 2023; Das et al., 2023; Wang
et al., 2024; Zeng et al., 2023). Due to the complex and non-stationary nature of real-world systems,
observed time series often exhibit intricate temporal patterns, such as multi-scale dependencies and
diverse fluctuations. To capture the multi-scale characteristics effectively, several advanced models
structurally incorporate multi-scale features(Chen et al., 2024; Shabani et al., 2023; Wang et al., 2024;
Challu et al., 2023). This approach generally increases model capacity, allowing for the learning of
complex patterns across different scales through an increase in parameters. However, this increased
capacity also increases the risk of overfitting, especially when training on small or low-diversity
datasets. Addressing these challenges is essential for developing stable and reliable multi-resolution
forecasting models.

In time series analysis, several data augmentation methods have been proposed to enhance model’s
generalization performance (Wen et al., 2021b; Iglesias et al., 2023; Debnath et al., 2021; Semenoglou
et al., 2023). Despite their widespread use, labeling augmented data remains a significant challenge,
particularly in forecasting tasks. This challenge arises because the augmented data may alter the
underlying dynamics of the time series and often introduce noise. Consequently, assigning accurate
labels for future predictions becomes difficult, as the augmented past values represent artificial,
potentially noisy data rather than actual observations. Even slight shifts in trends or periodic patterns
can lead to increased prediction errors, thereby limiting the direct applicability of augmented data in
time series forecasting. However, the use of diverse and previously unseen data is essential to address
the complex dynamics and time-varying heterogeneity of long-term time series data. Therefore,
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reducing the risk of model overfitting and enhancing generalization ability without manually assigning
future values to augmented data is crucial for effectively utilizing data augmentation in time series
forecasting.

This study investigates the use of augmented data in long-term time series forecasting through a
multi-view learning approach. Multi-view data has demonstrated considerable success in various
domains, such as computer vision and natural language processing (Chen et al., 2021; Lim et al.,
2020), by leveraging different manifestations of the same data to improve performance. In time
series analysis, multi-view data can be represented by features such as varied temporal resolutions or
distances, allowing for the extraction of temporal characteristics and dependencies across multiple
time intervals, ultimately enhancing the accuracy and robustness of forecasts (Challu et al., 2023; Liu
et al., 2022; Shabani et al., 2023; Chen et al., 2024). Many multi-scale modeling techniques integrate
features from different time scales but are limited to labeled data. By employing semi-supervised
learning, which leverages unlabeled data, we can fully utilize multi-scale features across diverse
patterns.

Thus, we propose a semi-supervised approach that improves individual single-view models by
enhancing consensus among them using unseen data. Inspired by traditional co-training methods
(Blum & Mitchell, 1998; Lim et al., 2020), this approach leverages augmented unseen data to ensure
that models not only capture multi-resolution patterns but also provide consistent predictions when
faced with new, unseen data. The core of this CoMRes (Consensus promotion of Multi-Resolution)
lies in maximizing agreement among multi-view models on unseen data, thereby improving the
overall performance and reliability of long-term time series forecasting.

In addition, we address the issue of error accumulation in long-horizon forecasting. In transformer-
based research for long-term time series forecasting, a common approach is the use of a non-
autoregressive decoding scheme, which projects future horizons all at once. Zhang et al. (2023)
were the first to conduct a comparative evaluation of several models in terms of autoregressive and
non-autoregressive decoding schemes. Motivated by their work, we evaluate our model with respect
to both decoding styles. Specifically, we investigate how non-autoregressive models can be employed
to minimize error accumulation when predicting values further into the future than the forecast range
on which they were trained.

In summary, our contributions are as follows:

• We propose CoMRes (Consensus promotion of Multi-Resolution), a novel semi-supervised
time series forecasting that utilizes consensus promotion of multi-resolution information
and augmented data without requiring explicit future values as labels to enhance long-term
time series forecasting. To the best of our knowledge, this is the first work to investigate the
influence of a semi-supervised framework in the context of long-term time series forecasting.

• We propose evaluating the forecasting model using both autoregressive and non-
autoregressive decoding schemes. Our study focuses on how a forecasting model can
extend its prediction horizon beyond the trained range while minimizing error accumulation,
particularly when non-autoregressive models are used to generate autoregressive forecasts.

• To further understand CoMRes, we conduct ablation study the impact of incorporating
data augmentation and consensus promotion strategies in semi-supervised and supervised
learning.

• We evaluate the impact of our CoMRes under various training data size and analyze the
effect of different data augmentation techniques to enhance model performance.

2 RELATED WORK

Long-term Time Series Forecasting Recent research has made significant progress in improving
model architectures for time-series forecasting. Transformer based model such as FEDformer (Zhou
et al., 2022) and Autoformer (Wu et al., 2021), apply attention mechanisms to multivariate time
series data. These models address the quadratic complexity of traditional attention mechanisms by
introducing novel mechanisms to reduce computational complexity. PatchTST (Nie et al., 2023)
utilized patch-based representations to enhance local pattern recognition, while iTransformer (Liu
et al., 2024a) and Crossformer (Zhang & Yan, 2023) pushed forward by capturing multivariate
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correlations through sophisticated attention mechanisms. Meanwhile, several recent works (Das et al.
(2023); Wang et al. (2023); Zeng et al. (2023); Wang et al. (2024)) demonstrate the effectiveness of
non-transformer-based methods, offering competitive alternatives.

Multi-scale Modeling for Time Series Real-world time series often exhibit diverse variations
and fluctuations across different temporal scales. To address this, recent research has increasingly
focused on leveraging multi-scale information to better capture these complex temporal patterns.
NHITS (Challu et al., 2023) employs multi-rate data sampling and hierarchical interpolation to
model features of different resolutions. Pyraformer (Liu et al., 2022) and Scaleformer (Shabani
et al., 2023) advanced the field with pyramidal attention mechanisms and iterative scale-refinement
mechanisms, respectively, to capture multi-scale dependencies. TimeMixer (Wang et al., 2024)
introduce a new multi-scale mixing architecture with decomposable mixing strategy. Pathformer
(Chen et al., 2024) takes a more comprehensive approach by considering time series features from
both different resolutions and temporal distances. Most previous methods integrate complementary
forecasting capabilities through an ensemble of multiple predictions that rely on labeled data. By
employing semi-supervised learning, which leverages unlabeled data, our approach effectively tackles
the challenge of reconciling diverse representations, particularly in the context of unseen data.

Time Series Data Augmentation Comprehensive reviews of the most popular data augmentation
approaches in time series analysis mostly focus on classification and anomaly detection tasks (Wen
et al., 2021b; Iglesias et al., 2023). Data augmentation is easily applicable for time series classification
and anomaly detection as small perturbations typically do not change the data label. Nonetheless,
it is not straightforward to apply data augmentation techniques in time series forecasting as even
small perturbations can lead to significant changes in the observations. Several studies (Debnath
et al., 2021; Semenoglou et al., 2023; Zhou et al., 2023; Nochumsohn & Azencot, 2025) have
examined the impact of data augmentation on forecasting, consistently finding that its effectiveness
depends on data characteristics. Similarly, Wen et al. (2021a) survey time series augmentation
methods, noting their benefits for classification and anomaly detection but reporting negative effects
for certain data/model pairs in forecasting. Our findings (Table 1) align with these observations,
showing that naive augmentation often degrades performance rather than improving it. Nochumsohn
& Azencot (2025) propose an automated augmentation approach for long-term forecasting, iteratively
searching across diverse time series transformations to optimize augmentation policies using Bayesian
optimization. In contrast, our study applies simple augmentation solely for consensus promotion,
achieving improvements in most experiments without requiring costly search procedures or complex
augmentation techniques.

3 METHODOLOGY

In this paper, we study the problem of long-term time-series forecasting: Given historical data of a
multivariate time series with a look-back window L : (xt−L, . . . , xt), where xt denotes the observation
at timestamp t, our objective is to predict the future values for H timestamps (xt+1, . . . , xt+H ). We
use a similar model architecture to Pathformer, introduced by Chen et al. (2024), as our base model
and extend it to leverage unseen data. Our model architecture for long-term time series forecasting is
depicted in Figure 1.

To effectively capture multi-scale characteristics, we employ multi-scale patch division with various
patch sizes (P1, P2, . . . , Pm) and dual attention transformer. The multi-scale patch division provides
different views of the time series at different resolutions. These patches are fed into the transformer
encoder, which comprises intra-patch attention within each divided patch and inter-patch attention
across different patches. Following the transformer encoder, Multi-Layer Perceptrons (MLPs) generate
individual predictions (x̂i) for each patch size. These predictions are then aggregated using an equal
weighted aggregation strategy, resulting in a single comprehensive prediction (x̂∗). Unlike Chen et al.
(2024), we use equal weighted aggregator to combine these multi-scale characteristics.

During supervised learning, we train the model to minimize the mean squared error (MSE) between
the predictions and the ground truth. Given that there are m+ 1 predictions, we average the errors of
each prediction. The supervised loss is optimized as follows:

Ls =
1

m+ 1

(
||x̂∗t+1:t+H − xt+1:t+H ||2 +

m∑
i=1

||x̂it+1:t+H − xt+1:t+H ||2
)
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Figure 1: Overall architecture of multi-resolution transformer, CoMRes and MRes. There are m
individual blocks and a aggregation block. Each individual block predict individual prediction, x̂i.
The aggregation block produce comprehensive prediction, x̂∗.

In the following sections, we provide a detailed description of consensus promotion learning on
unseen data and the process of generating unseen data. Subsequently, we explain how to extend
prediction horizons beyond the training ranges.

3.1 CONSENSUS PROMOTION LEARNING

Due to the complex dynamics of long-term time series data, learning models from diverse and unseen
data is crucial for improving forecasting accuracy. However, determining the future values of unseen
augmented data is challenging, as this data is synthetic and potentially noisy. To address this issue, we
propose a method inspired by standard multi-view learning approaches, which aim to jointly optimize
multiple models derived from distinct perspectives, each providing complementary information.
Drawing from the concept of one model teaching others, as introduced by Blum & Mitchell (1998)
and Lim et al. (2020), we suggest using a consistency loss that encourages mutual agreement among
the models. This approach leverages the unique information provided by different views to enhance
comprehensive predictions (x̂∗), effectively capturing the complex, multi-resolution patterns inherent
in long-term time series forecasting.

To achieve this, we propose that each individual-view model learns from the comprehensive prediction
(x̂∗) by optimizing the following unsupervised loss:

Lu =
1

m

(
m∑
i=1

||x̂it+1:t+H − x̂∗t+1:t+H ||2
)

This encourages the individual-view models to align their predictions with the comprehensive
prediction, thereby enhancing mutual agreement among the models. The overall objective for training
the model combines the supervised loss and the unsupervised consistency loss as follows:

L = Ls + wuLu

where wu represents the weight ot the unsupervised consistency loss Lu. This joint objective ensures
that the model not only minimizes the prediction error with respect to the ground truth(Ls) but also
aligns the individual model predictions with the comprehensive prediction(Lu).

The core principle of consensus promotion learning is to achieve best possible forecasting results
on unseen data. By leveraging the complementary information from multiple views and aligning
individual model predictions with a comprehensive prediction, it reduces the variance of individual
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Figure 2: Extending Prediction Horizons Beyond Training Ranges. Figure (a) shows error rising with
longer horizons. Figure (b) uses block-wise forecasting for the entire horizon, while Figure (c) adopts
a step-by-step fine-grained approach. Both methods apply autoregression with a non-autoregressive
trained model, but the fine-grained approach utilizes the initial prediction due to its relatively small
error.

predictions(see Appendix A.2), leading to more stable and reliable results on unseen data. This is
because the consensus or ensemble of predictions can help mitigate the biases and errors that may
be present in any single model, allowing for better generalization to new, previously unobserved
patterns.

3.2 UNSEEN DATA GENERATION

We generate unseen data via augmentations (time warping, interpolation, noise injection). The
objective of generating unseen data is to construct a synthetic data that explores new areas of the input
space. In supervised learning, data augmentation typically assumes that the relationship between
the lookback period and the prediction horizon is well-defined, with known ground-truth labels. In
contrast, our approach does not require defining ground truth for augmented data, offering greater
flexibility for complex time series.

Time series data augmentation for forecasting has been extensively studied (Wen et al., 2021b;
Debnath et al., 2021; Iglesias et al., 2023; Semenoglou et al., 2023; Zhou et al., 2023; Nochumsohn
& Azencot, 2025), but we focus on simpler techniques for their ease of implementation. We include
three variants of CoMRes: interpolation, time warping, and noise injection. Combining multiple
augmentation techniques to enhance model performance will be discussed in Section 4.3.2.

Interpolation involves estimating values between known data points to produce a smoother and more
continuous time series. For example, linear interpolation estimates values between two known points
using a straight line. In this study, we adopt linear interpolation.

Time Warping includes techniques such as stretching or compressing the time window of data. Simi-
lar to dynamic time warping (DTW), this method selects a random time range and then compresses
(down-samples) it. In this study, we compress the time window by a factor of 3.

Noise Injection adds random noise to the data to introduce variability. This includes injecting
Gaussian noise, spike, step-like trend, and slope-like trend, etc. In this study, Gaussian noise, which
consists of random values drawn from a normal distribution, is used. After normalization, we add
normal noise with a mean of 0 and a standard deviation of 0.01

3.3 EXTENDING PREDICTION HORIZONS BEYOND TRAINING RANGES

In addition to the typical evaluation of forecasting performance, which involves measuring the
prediction error over H timestamps (training horizon), we also assess our model’s performance when
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predicting beyond this training horizon. For applications requiring long-term future predictions, such
as stock prices or energy consumption, autoregressive forecasting is essential. However, autoregressive
forecasting inherently suffers from error accumulation, especially when the model has not been trained
autoregressively over an extended horizon, such as with teacher forcing. As depicted in Figure 2(a),
our non-autoregressive model’s prediction errors escalate as the prediction horizon lengthens. Our
objective is to explore methods that can extend the prediction horizon while minimizing error
accumulation in autoregressive forecasting scenarios.

In this study, we evaluate the model trained with consensus promotion through two approaches:
Block-wise autoregressive prediction and fine-grained autoregressive prediction. The block-wise
autoregressive prediction method, illustrated in Figure 2(b), extends the prediction horizon by utilizing
the entire prediction range at once. In contrast, fine-grained autoregressive prediction involves a
step-by-step process where the output of one step serves as the input for the next step, emphasizing a
recurrent or sequential processing approach, as shown in Figure 2(c). This progression demonstrates
the iterative application of the model to refine predictions over multiple steps.

4 EXPERIMENTS

4.1 TIME SERIES FORECASTING

Datasets. We evaluate our model on 8 popular datasets, including 4 ETT datasets (ETTh1, ETTh2,
ETTm1, ETTm2), Weather, Traffic, Electricity, ILI. These datasets have been extensively utilized
for benchmarking and publicly available on Wu et al. (2021) and the data statistics are shown in
Appendix A.1.1.

Baseline. We compare CoMRes with Pathformer Chen et al. (2024), one of the state-of-the-art long-
term forecasting models, which uses a multi-resolution division architecture with adaptive pathways.
Pathformer outperforms most other models, such as TimeMixer, NLinear, and others (as shown in
Appendix Table 8). Additionally, results for another baseline model, TimeMixer, are provided in
Appendix A.5 to demonstrate the general application of CoMRes.

Ablations. To evaluate the impact of two core strategies—consensus promotion and data augmenta-
tion—on both labeled and unlabeled data, our proposed model (CoMRes) and its ablation models
(MRes, short for Multi-Resolution aggregation transformer) share the same architecture, as illustrated
in Figure 1. We established the following three ablation models:

• MRes (SL): MRes trained exclusively on labeled datasets using supervised learning (SL).

• MRes w. augmentation: MRes trained on pseudo-labeled datasets augmented with Time
Warping.

• MRes w. consensus: MRes trained on labeled datasets with consensus promotion but without
data augmentation. Predictions on labeled data are learned not only from the ground truth
but also from the comprehensive prediction.

MRes with both data augmentation and consensus promotion applied to all augmented data corre-
sponds to CoMRes.

Experimental Setup. To assess the impact of different unseen data generation methods, we include
three variants of CoMRes: interpolation, time warping, and noise injection. Each dataset was split
into training, validation, and test sets. Mean squared error (MSE) and mean absolute error (MAE)
were used as evaluation metrics, with each experiment repeated five times, and the average values
reported (see Appendix A.4 for error bars). Following the setup from the Pathformer paper, all models
used the same input and prediction lengths: L = 36 for the ILI dataset and L = 96 for the others.
Prediction lengths were H ∈ {24, 36, 48, 60} for ILI and H ∈ {96, 192, 336, 720} for the others.
More experimental details are in Appendix A.1.

Results. The experimental results, summarized in Table 1, indicate that our proposed model outper-
forms the baselines on most datasets. Notably, CoMRes, which incorporates consensus promotion
on unseen data significantly enhanced the model’s generalization ability, as evidenced by lower
MSE scores on the test sets. Although MRes with consensus promotion showed good results in
some datasets, these improvements were inconsistent across others. Both CoMRes and MRes with
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Table 1: Multivariate time series forecasting results (MSE). The input length L = 96 (L = 36 for
the ILI dataset). The best results are highlighted in bold, and the second-best results are underlined.
The ∆ column shows the difference between CoMRes’s best results and the ablation models or the
baseline, with blue indicating that CoMRes outperforms and red indicating otherwise.

Method CoMRes (ours) MRes

Pathformer ∆
Time Warping Interpolation Noise Injection w. augmentation ∆ w. consensus ∆ MRes (SL) ∆

Consensus Promotion ◦ ◦ ◦ × ◦ ×
Leveraging augmented Data ◦ ◦ ◦ ◦ (pseudo label) × ×

ETTh1

96 0.378 0.379 0.379 0.406 0.028 0.379 0.001 0.382 0.004 0.382 0.004
192 0.436 0.436 0.436 0.455 0.019 0.436 0.000 0.439 0.003 0.440 0.004
336 0.452 0.452 0.452 0.482 0.030 0.452 0.000 0.451 -0.001 0.454 0.002
720 0.474 0.478 0.478 0.475 0.001 0.478 0.004 0.481 0.007 0.479 0.005
Avg. 0.435 0.436 0.436 0.455 0.020 0.436 0.001 0.438 0.003 0.439 0.004

ETTh2

96 0.275 0.275 0.275 0.278 0.003 0.275 0.000 0.277 0.002 0.279 0.004
192 0.347 0.346 0.346 0.355 0.009 0.346 0.000 0.348 0.002 0.349 0.003
336 0.326 0.328 0.326 0.346 0.020 0.330 0.004 0.332 0.006 0.348 0.022
720 0.393 0.398 0.397 0.404 0.011 0.405 0.012 0.406 0.013 0.398 0.005
Avg. 0.335 0.337 0.336 0.346 0.011 0.339 0.004 0.341 0.006 0.344 0.009

ETTm1

96 0.311 0.311 0.311 0.326 0.016 0.311 0.001 0.312 0.001 0.316 0.005
192 0.362 0.364 0.364 0.367 0.005 0.364 0.002 0.361 -0.001 0.366 0.004
336 0.386 0.386 0.387 0.404 0.018 0.386 0.000 0.381 -0.005 0.386 0.000
720 0.456 0.456 0.456 0.467 0.011 0.456 0.000 0.454 -0.002 0.460 0.004
Avg. 0.379 0.379 0.380 0.391 0.013 0.379 0.001 0.377 -0.002 0.382 0.003

ETTm2

96 0.163 0.163 0.163 0.168 0.005 0.166 0.003 0.167 0.004 0.170 0.007
192 0.229 0.229 0.229 0.230 0.001 0.229 0.000 0.231 0.002 0.238 0.009
336 0.291 0.292 0.292 0.295 0.004 0.292 0.001 0.292 0.001 0.293 0.002
720 0.369 0.369 0.369 0.385 0.016 0.383 0.014 0.369 0.000 0.390 0.021
Avg. 0.263 0.263 0.263 0.270 0.007 0.268 0.005 0.265 0.002 0.273 0.010

Electricity

96 0.152 0.153 0.153 0.162 0.010 0.156 0.004 0.150 -0.002 0.145 0.007
192 0.167 0.167 0.166 0.173 0.007 0.169 0.002 0.164 -0.002 0.167 0.001
336 0.181 0.181 0.181 0.186 0.005 0.184 0.003 0.181 0.000 0.186 0.005
720 0.210 0.211 0.214 0.218 0.008 0.214 0.004 0.223 0.013 0.231 0.021
Avg. 0.178 0.178 0.179 0.185 0.007 0.181 0.003 0.180 0.002 0.182 0.004

ILI

24 1.957 1.907 1.956 1.760 -0.147 1.986 0.029 1.976 0.069 1.587 -0.320
36 1.640 1.599 1.538 1.569 0.031 1.540 -0.100 1.551 0.013 1.429 -0.109
48 1.529 1.516 1.490 1.514 0.024 1.456 -0.073 1.497 0.007 1.505 0.015
60 1.693 1.739 1.715 1.727 0.034 1.679 -0.014 1.714 0.021 1.731 0.038

Avg. 1.705 1.690 1.675 1.643 -0.032 1.665 -0.039 1.685 0.010 1.563 0.112

Traffic

96 0.468 0.470 0.470 0.475 0.007 0.479 0.011 0.478 0.010 0.479 0.011
192 0.465 0.466 0.466 0.482 0.017 0.479 0.014 0.476 0.011 0.484 0.019
336 0.493 0.494 0.494 0.511 0.018 0.501 0.008 0.501 0.008 0.503 0.010
720 0.535 0.535 0.535 0.540 0.537 0.005 0.556 0.002 0.021 0.537 0.002
Avg. 0.490 0.491 0.491 0.502 0.012 0.499 0.009 0.503 0.013 0.501 0.011

Weather

96 0.151 0.151 0.151 0.155 0.004 0.154 0.003 0.152 0.001 0.156 0.005
192 0.199 0.200 0.200 0.203 0.004 0.201 0.002 0.199 0.000 0.206 0.007
336 0.244 0.246 0.246 0.248 0.010 0.246 0.004 0.245 0.002 0.254 0.010
720 0.335 0.335 0.334 0.334 0.000 0.333 -0.002 0.334 0.000 0.340 0.006
Avg. 0.232 0.233 0.233 0.235 0.003 0.234 0.001 0.233 0.001 0.239 0.007

consensus incorporate consensus promotion; however, CoMRes applies it to unseen data, whereas
MRes with consensus applies it to labeled data. This distinction is critical, as adding a consistency
loss term alongside supervised loss can improve performance but also carries the risk of conflicting
signals when applied to labeled data. Additionally, MRes with augmentation where augmented data
is artificial and potentially noisy data performs poorly. Our results indicate that CoMRes consistently
outperforms the baselines across multiple datasets. The case of ILI, where CoMRes underperforms
compared to Pathformer, is discussed in detail in Appendix A.9. Interestingly, MRes (SL) outper-
formed Pathformer in most cases, suggesting that Pathformer’s strengths lie in its ability to process
multi-resolution information and its inter- and intra-attention design, rather than in the use of adaptive
pathways. Among the unseen data generation techniques of CoMRes, time warping achieved slightly
better performance compared to interpolation and noise injection. Overall, these findings demonstrate
the efficacy of our approach in improving time series forecasting performance. Complementary
results for mean absolute error(MAE) are provided in the Appendix A.3.

Figure 3 illustrates the mean error against the prediction horizon, demonstrating how prediction errors
increase as the forecast extends further into the future from the lookback period. As shown in Figure
3, our proposed model consistently outperforms the baseline model in terms of prediction accuracy,
especially over longer horizons. This comparison underscores the effectiveness of our approach in
reducing errors in long-term time series forecasting.

4.2 ERROR ACCUMULATION IN AUTO-REGRESSIVE FORECASTING

Experimental Setting. In this section, we conduct experiments to evaluate our proposed model
(CoMRes, Time Warping) and the ablation model (MRes, SL) on test data, focusing on predictions
beyond the training horizon. The datasets used are described in Section 4.1.

We employ two approaches for autoregressive prediction. In both approaches, the extended prediction
horizon is 96 sequences beyond the model’s initial prediction horizon.
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Figure 3: Prediction error along with the prediction horizon. The orange line representing the mean
error of the proposed method is lower than that of MRes (SL), the blue line.

Table 2: Auto-regressive forecasting result. MSE on the extended horizon beyond the trained horizon.
The best results are highlighted in bold. In both (a) and (b), CoMRes predicts more accurately than
MRes. Additionally, (a) block-wise approach produces more accurate predictions compared to (b)
fine-grained approach.

Method (a) Block-wise Auto-regressive (b) Fine-grained Auto-regressive
Data Horizon CoMRes, Time Warp MRes (SL) CoMRes, Time Warp MRes (SL)

ETTh1

96 + 96 0.465 0.477 0.469 0.490
192 + 96 0.476 0.490 0.481 0.499
336 + 96 0.473 0.491 0.481 0.506
720 + 96 0.505 0.513 0.500 0.507

ETTh2

96 + 96 0.420 0.453 0.429 0.465
192 + 96 0.428 0.451 0.430 0.455
336 + 96 0.430 0.463 0.429 0.468
720 + 96 0.445 0.437 0.448 0.469

ETTm1

96 + 96 0.412 0.414 0.424 0.442
192 + 96 0.416 0.418 0.421 0.429
336 + 96 0.426 0.429 0.430 0.432
720 + 96 0.449 0.451 0.454 0.455

ETTm2

96 + 96 0.332 0.336 0.351 0.416
192 + 96 0.358 0.355 0.361 0.404
336 + 96 0.374 0.377 0.384 0.378
720 + 96 0.417 0.420 0.420 0.421

Weather

96 + 96 0.280 0.285 0.303 0.425
192 + 96 0.303 0.305 0.303 0.425
336 + 96 0.323 0.347 0.331 0.356
720 + 96 0.358 0.361 0.361 0.372

• Block-wise Autoregressive Prediction: The model generates predictions for the entire
extended horizon in one step. Specifically, the model uses part of its own prediction as input
to produce predictions beyond this range at once.

• Fine-grained Autoregressive Prediction: The model generates predictions step-by-step,
where each output serves as the input for the next prediction step.As depicted in Figure 2(a),
the initial prediction error over the prediction horizon is relatively small. Therefore, if we
use the initial prediction as an input to extend the horizon step by step, we can expect to
refine the predictions over multiple steps. In this approach, we update the input with the last
k=1 value using the previous prediction.

Auto-regressive Forecasting Results. Table 2 presents the results of our auto-regressive forecasting
evaluation. Compared to the errors shown in Table 1, the mean errors increased due to error accu-
mulation. This issue is inherent in auto-regressive forecasting, particularly when the model has not
been trained auto-regressively over an extended horizon, such as with teacher forcing. Despite these
challenges, CoMRes consistently outperformed the MRes(SL) across all prediction horizons and both
auto-regressive methods, demonstrating superior predictive accuracy. The block-wise auto-regressive
method generally shows smaller error accumulation compared to the fine-grained auto-regressive
method. This suggests that the block-wise approach handles auto-regressive error accumulation better.

To investigate the accumulation of errors in block-wise autoregressive forecasting, we compared
the prediction error over the entire horizon between a model trained on a longer forecast range and
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Figure 4: Error Propagation. The red line(CoMRes, Time Warp, 96 block-wise AR) shows less error
accumulation in long-term forecasting compared to the orange line(MRes(SL), 96 block-wise AR),
indicating that the our proposed method is more effective at mitigating error accumulation.

one using block-wise autoregressive predictions made with a shorter model. Figure 4 illustrates the
performance of block-wise autoregressive forecasting with a shorter predictor model, specifically
one trained to predict 96 steps, which is iteratively applied 8 times to forecast longer horizons (up to
768 time points). This approach is compared against the ablation model trained to predict 720 steps
directly.

In the block-wise autoregressive setup, MRes (represented by the orange lines in the 96-step block-
wise autoregressive approach) suffers from a substantial increase in error as the prediction horizon
extends, especially when iterating the shorter model. This greater error accumulation in the supervised
learning makes it more susceptible to compounding small errors with each iteration. On the other
hand, the CoMRes (shown by the green and red lines) demonstrates a stronger capacity to reduce error
accumulation, maintaining significantly lower error rates even when using block-wise autoregressive
forecasting. While error accumulation occurs in CoMRes, for some data, the block-wise autoregressive
model’s error is comparable to that of the longer horizon non-autoregressive model. This indicates
that it is feasible to effectively extend the prediction horizon of CoMRes using a shorter model.

4.3 ABLATION STUDY

4.3.1 LIMITED-RESOURCE SCENARIOS

Real-world time series often exhibit complex temporal variations, making it crucial to effectively
leverage training data under resource constraints. We evaluated limited-data scenarios by system-
atically reducing labeled training data (20%, 50%, 80%) and comparing our CoMRes Time Warp
against MRes across multiple datasets.

The results in Table 3 demonstrate that CoMRes consistently achieves the best performance across all
label sizes and prediction horizons compared to the baseline1. Due to temporal variations, the temporal
dynamics in distant periods may differ from those in the test period, leading to irrelevant information
being included and causing worse predictions even with a large amount of data. Furthermore, on the
ETTh2 and ETTm2 datasets, CoMRes delivers comparable performance to MRes, even at smaller
label sizes.

4.3.2 COMBINING MULTIPLE UNSEEN DATA GENERATION TECHNIQUES

In this section, we evaluate the impact of combining multiple unseen data generation techniques. We
examine two approaches: (1) Combining all three augmentation techniques—Time Warp, Interpola-
tion, and Noise Injection—and (2) applying Multi Time Warp, using compression factors of 3, 5, and
7. These methods are compared against the best results achieved by CoMRes in 4.1, primarily using
Time Warp, which we refer to as Single Time Warp.

The results in Table 4 indicate that the effectiveness of augmentation techniques depends on the
dataset’s characteristics. With high variability over time, such as ETTh1, combining multiple augmen-
tation techniques did not lead to noticeable performance gains. However, with clear and consistent

1The Traffic results were obtained using H100 GPUs during the rebuttal period.
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Table 3: Result in Limited-Resource scenarios. The best results among the compared methods are
highlighted in bold, while the best result of the remaining methods is underlined. Label size is a
fraction of the original training data (e.g., 0.5 uses only the most recent half).

Method CoMRes, Time Warp MRes (SL)
Label Size 0.2 0.5 0.8 1.0 0.2 0.5 0.8 1.0

ETTh1

96 0.390 0.377 0.378 0.378 0.393 0.379 0.381 0.382
192 0.444 0.435 0.437 0.436 0.448 0.436 0.438 0.439
336 0.452 0.448 0.444 0.452 0.449 0.447 0.445 0.451
720 0.504 0.489 0.469 0.474 0.474 0.481 0.470 0.481

ETTh2

96 0.296 0.277 0.276 0.275 0.295 0.280 0.277 0.277
192 0.377 0.356 0.348 0.345 0.377 0.363 0.349 0.347
336 0.375 0.359 0.334 0.329 0.376 0.358 0.334 0.330
720 0.452 0.438 0.404 0.399 0.460 0.434 0.416 0.409

ETTm1

96 0.336 0.310 0.313 0.310 0.337 0.311 0.311 0.312
192 0.376 0.357 0.361 0.362 0.377 0.357 0.361 0.361
336 0.401 0.378 0.390 0.386 0.399 0.378 0.384 0.381
720 0.471 0.446 0.467 0.456 0.471 0.447 0.454 0.454

ETTm2

96 0.178 0.171 0.168 0.163 0.179 0.170 0.168 0.166
192 0.248 0.234 0.231 0.229 0.248 0.234 0.232 0.229
336 0.313 0.299 0.295 0.291 0.312 0.299 0.294 0.292
720 0.409 0.400 0.386 0.383 0.408 0.401 0.386 0.383

Weather

96 0.164 0.160 0.155 0.151 0.175 0.163 0.156 0.152
192 0.213 0.223 0.204 0.199 0.223 0.210 0.204 0.199
336 0.265 0.257 0.250 0.244 0.258 0.257 0.250 0.245
720 0.351 0.342 0.338 0.335 0.343 0.343 0.338 0.334

Traffic

96 0.536 0.486 0.446 0.468 0.583 0.501 0.470 0.478
192 0.512 0.492 0.536 0.465 0.529 0.484 0.562 0.476
336 0.566 0.501 0.526 0.493 0.550 0.503 0.589 0.501
720 0.578 0.539 0.548 0.535 0.597 0.540 0.561 0.556

periodic patterns over time, such as ETTm2, improvements were observed at certain prediction
horizons, although rapid long-term trend shift caused performance declines at the 720-horizon. In
the Weather dataset, which features inter-variable correlations, combining augmentation techniques
resulted in performance gains. Overall, while multi-augmentation approaches do not universally
improve performance, they can be beneficial for some datasets. The degree of improvement, varies
according to the specific features of the dataset and the forecasting task at hand.

Table 4: Results of combining unseen data generation techniques. Performance improvements com-
pared to the Single Time Warp method are in blue, while declines are in red.

Method Combine all three Multi Time Warp Single Time Warp

ETTh1

96 0.378 0.379 0.378
192 0.436 0.436 0.436
336 0.452 0.452 0.452
720 0.474 0.476 0.474

ETTm2

96 0.164 0.163 0.163
192 0.228 0.227 0.229
336 0.289 0.288 0.291
720 0.384 0.382 0.369

Weather

96 0.149 0.150 0.151
192 0.198 0.199 0.199
336 0.244 0.244 0.244
720 0.330 0.334 0.334

5 CONCLUSION

This paper introduces a multi-view learning strategy for long-term time series forecasting, demon-
strating superior prediction accuracy and robustness compared to traditional supervised learning
approaches. This approach leverages augmented unseen data to ensure that models not only cap-
ture multi-resolution patterns but also provide consistent predictions when faced with new, unseen
data. Our comprehensive experiments highlight the model’s ability to generalize well across various
datasets and handle challenging forecasting scenarios effectively, especially in autoregressive setups,
where it mitigates the issue of error accumulation.
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A APPENDIX

A.1 EXPERIMENTAL DETAILS

A.1.1 DATASETS

We use eight popular datasets from Wu et al. (2021) for forecasting. The ETT dataset2 includes data
from two electricity transformers at two stations, capturing metrics such as load and oil temperature.
This dataset is recorded at both 15-minute and 1-hour intervals, and is labeled as ETTh1, ETTh2,

2https://github.com/zhouhaoyi/ETDataset
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ETTm1, and ETTm2. The Electricity dataset3 contains hourly electricity consumption data from
321 users. The ILI dataset4 collects weekly reports of patients with influenza-like illness, spanning
2002 to 2021, from the Centers for Disease Control and Prevention of the United States. The Traffic
dataset5 records road occupancy rates from various sensors on San Francisco freeways. Finally, the
Weather dataset6 comprises 21 meteorological indicators collected every 10 minutes in Germany.

Table 5: Statistics of popular datasets for benchmark.

Datasets ETTh1 ETTh2 ETTm1 ETTm2 Electricity ILI Traffic Weather

Features 7 7 7 7 321 7 862 21
Timesteps 17,420 17,420 69,680 69,680 26,304 966 17,544 52,696
Split Ratio 6:2:2 6:2:2 6:2:2 6:2:2 7:1:2 7:1:2 7:1:2 7:1:2

A.1.2 DETAILS OF IMPLEMENTATION

To ensure fair comparisons, we use the same hyperparameters as Pathformer in Chen et al. (2024).
The model is trained using the Adam optimizer (Kingma, 2014) with a learning rate of 10−3. The
default loss function is L1 Loss, and early stopping is applied after 10 epochs if no improvement is
observed. All experiments are implemented in PyTorch and executed on a NVIDIA A6000 48GB
GPU.

The baseline model, MRes, includes four different patch sizes, same to those used in Pathformer
repository7. These patch sizes are selected from the following options: {2, 3, 6, 12, 16, 24, 32}. Unlike
Pathformer, which is composed of three multi-scale blocks, MRes does not utilize a hierarchical
architecture. This allows us to argue that MRes achieves comparable predictive performance with
fewer model parameters, offering a more efficient design.

CoMRes and MRes atgenerates one comprehensive prediction and m individual predictions, so for
the final model performance evaluation, m + 1 predictions were used in an ensemble. First, the
average value of the m individual predictions was calculated, and then it was averaged with the
comprehensive prediction to form the final prediction.

A.2 VARIANCE OF INDIVIDUAL-VIEW MODEL

The Figure 5 provides clear evidence that applying consistency loss improves consistency between
individual-view models compared to MRes (SL). MRes with consensus and CoMRes exhibits a
consistently smoother and lower trend than MRes(SL), indicating reduced variability in predictions.
This smoother trend suggests that individual models are more aligned and consistent with one another
after applying the consistency loss, effectively achieving the intended effect of consensus promotion.

A.3 TIME SERIES FORECASTING

In section 4.1, we reported the model performance using Mean Squared Error (MSE). Additionally,
Table 6 presents the results based on Mean Absolute Error (MAE), providing a complementary
evaluation of the model’s predictive accuracy.

A.4 ERROR BARS

In this paper, we repeat all the experiments five times. In Table 7, we report the standard deviation
of our model and the baseline model. CoMRes exhibits smaller standard deviations compared to
Pathformer 8, indicating less variability in its predictions.

3https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
4https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
5https://pems.dot.ca.gov/
6https://www.bgc-jena.mpg.de/wetter/
7https://github.com/decisionintelligence/pathformer
8We were unable to reproduce Pathformer results on the ILI dataset. Therefore, we use the mean values of

the metrics as reported in the original Pathformer paper and could not obtain the corresponding error bars.
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Figure 5: Comparison of individual-view model variability between MRes(SL), MRes with consensus
and CoMRes across three datasets (ETTh1, ETTh2, and Weather) with a forecast horizon of h=96.
MRes with consensus and CoMRes demonstrates consistently reduced variability compared to
MRes(SL).

Table 6: Multivariate time series forecasting results (MAE). The input length L = 96 (L = 36 for ILI
dataset). The best results are highlighted in bold, and the second-best results are underlined. The ∆
column represents the difference between CoMRes best result and the baselines such as MRes with
ablated components and Pathformer.

Method CoMRes (ours) MRes

Pathformer ∆
Time Warping Interpolation Noise Injection w. augmentation ∆ w. consensus ∆ MRes (SL) ∆

Consensus Promotion ◦ ◦ ◦ × ◦ ×
Leveraging Augmented Data ◦ ◦ ◦ ◦ (pseudo-labeled) × ×

ETTh1

96 0.386 0.386 0.386 0.415 0.029 0.386 0.000 0.387 0.001 0.400 0.014
192 0.415 0.415 0.415 0.439 0.024 0.415 0.000 0.416 0.001 0.427 0.012
336 0.421 0.421 0.421 0.458 0.037 0.421 0.000 0.421 0.000 0.432 0.011
720 0.453 0.453 0.451 0.476 0.025 0.453 0.002 0.454 0.003 0.461 0.010
Avg. 0.419 0.419 0.418 0.447 0.029 0.419 0.001 0.420 0.002 0.430 0.012

ETTh2

96 0.327 0.327 0.327 0.332 0.005 0.327 0.000 0.329 0.002 0.331 0.004
192 0.373 0.374 0.373 0.382 0.009 0.374 0.001 0.375 0.002 0.380 0.007
336 0.369 0.370 0.369 0.385 0.016 0.371 0.002 0.373 0.004 0.382 0.013
720 0.422 0.422 0.419 0.430 0.011 0.426 0.007 0.427 0.008 0.424 0.005
Avg. 0.373 0.373 0.372 0.382 0.010 0.375 0.003 0.376 0.004 0.379 0.007

ETTm1

96 0.339 0.339 0.339 0.360 0.021 0.339 0.000 0.341 0.002 0.346 0.007
192 0.365 0.365 0.365 0.383 0.018 0.365 0.000 0.366 0.001 0.370 0.005
336 0.387 0.387 0.387 0.404 0.017 0.387 0.000 0.387 0.000 0.394 0.007
720 0.424 0.425 0.425 0.439 0.015 0.425 0.001 0.426 0.002 0.432 0.008
Avg. 0.379 0.379 0.379 0.397 0.018 0.379 0.000 0.380 0.001 0.386 0.007

ETTm2

96 0.245 0.246 0.246 0.250 0.005 0.246 0.001 0.247 0.002 0.248 0.002
192 0.290 0.291 0.290 0.292 0.002 0.289 -0.001 0.290 0.000 0.295 0.005
336 0.330 0.330 0.330 0.334 0.004 0.330 0.000 0.330 0.000 0.331 0.001
720 0.378 0.378 0.378 0.389 0.011 0.385 0.007 0.378 0.000 0.389 0.011
Avg. 0.311 0.311 0.311 0.316 0.006 0.313 0.002 0.311 0.000 0.316 0.005

Electricity

96 0.240 0.240 0.239 0.247 0.008 0.243 0.004 0.237 -0.002 0.236 -0.003
192 0.252 0.252 0.252 0.258 0.006 0.254 0.002 0.250 -0.002 0.256 0.004
336 0.267 0.267 0.267 0.272 0.005 0.269 0.002 0.269 0.002 0.275 0.008
720 0.293 0.293 0.292 0.299 0.007 0.294 0.002 0.302 0.010 0.309 0.017
Avg. 0.263 0.263 0.263 0.269 0.006 0.265 0.002 0.265 0.002 0.269 0.007

ILI

24 0.830 0.823 0.834 0.799 -0.024 0.837 0.014 0.840 0.010 0.758 -0.065
36 0.755 0.764 0.778 0.741 -0.014 0.749 -0.006 0.758 0.003 0.711 -0.044
48 0.766 0.769 0.767 0.749 -0.017 0.744 -0.022 0.761 -0.005 0.742 -0.024
60 0.811 0.821 0.808 0.811 0.003 0.808 0.000 0.810 0.002 0.799 -0.009

Avg. 0.791 0.794 0.797 0.775 -0.016 0.785 -0.006 0.792 0.001 0.753 -0.038

Traffic

96 0.270 0.271 0.271 0.275 0.005 0.275 0.005 0.273 0.003 0.283 0.013
192 0.285 0.286 0.286 0.292 0.007 0.282 -0.003 0.284 -0.001 0.292 0.007
336 0.295 0.295 0.295 0.300 0.005 0.295 0.000 0.296 0.001 0.299 0.004
720 0.324 0.324 0.324 0.333 0.009 0.323 -0.001 0.321 -0.003 0.322 -0.002
Avg. 0.294 0.294 0.294 0.300 0.007 0.294 0.000 0.294 0.000 0.299 0.006

Weather

96 0.190 0.190 0.190 0.195 0.005 0.193 0.003 0.190 0.000 0.192 0.002
192 0.237 0.237 0.236 0.239 0.002 0.237 0.000 0.236 0.000 0.240 0.004
336 0.276 0.276 0.275 0.279 0.003 0.276 0.000 0.276 0.001 0.282 0.007
720 0.331 0.332 0.332 0.333 0.002 0.330 -0.001 0.331 0.000 0.336 0.005
Avg. 0.259 0.259 0.258 0.262 0.003 0.259 0.001 0.258 0.000 0.263 0.005

A.5 ADDITIONAL APPLICATION OF COMRES TO TIMEMIXER

To examine the general applicability of the proposed CoMRes, we explore the applicability of consen-
sus promotion on augmented data to other architectures, particularly TimeMixer(Wang et al., 2024).
Table 8 demonstrates that applying consensus promotion on augmented data enhances TimeMixer’s
forecasting accuracy in most cases. The best-performing CoMRes results (across different augmen-
tations) are compared against the reproduced TimeMixer results in the Δ column. In the majority
of datasets, TimeMixer + CoMRes achieves lower MSE than the reproduced TimeMixer, indicat-
ing improved forecasting performance. While CoMRes generally contributes to better results, its
effectiveness varies depending on the dataset and forecasting horizon.

In our adaptation of TimeMixer, we treat downpooled series as individual views. TimeMixer derives
its final prediction by summing single-scale predictions, whereas Pathformer generates its final
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Table 7: We provide standard deviation for our method and the MRes baselines over 5 independent
runs. The asterisk (*) denotes statistically significant differences at the 95% confidence level.

Method CoMRes (ours) MRes

PathformerTime Warping Interpolation Noise Injection w. augmentation w. consensus MRes (SL)
Consensus Promotion ◦ ◦ ◦ × ◦ ×
Leveraging Augmented Data ◦ ◦ ◦ ◦ (pseudo-labeled) × ×

ETTh1

96 0.378±0.001 0.379±0.001 0.379±0.001 0.406±0.006* 0.379±0.001 0.382±0.001* 0.382±0.002*
192 0.436±0.002 0.436±0.001 0.436±0.001 0.455±0.006* 0.436±0.001 0.439±0.001 0.440±0.001*
336 0.452±0.001 0.452±0.001 0.452±0.001 0.482±0.005* 0.452±0.001 0.451±0.001* 0.454±0.002*
720 0.474±0.003 0.478±0.003 0.478±0.003 0.475±0.004 0.478±0.003* 0.481±0.002* 0.479±0.001*

ETTh2

96 0.275±0.002 0.275±0.002 0.275±0.002 0.278±0.005 0.275±0.004 0.277±0.003 0.279±0.005
192 0.347±0.002 0.346±0.002 0.346±0.001 0.355±0.009 0.346±0.003 0.348±0.001 0.349±0.003
336 0.326±0.001 0.328±0.005 0.326±0.001 0.346±0.006* 0.330±0.004 0.332±0.008 0.348±0.003*
720 0.393±0.002 0.398±0.009 0.397±0.009 0.404±0.015 0.405±0.006* 0.406±0.009* 0.398±0.012*

ETTm1

96 0.310±0.001 0.311±0.001 0.311±0.001 0.326±0.002* 0.311±0.001 0.312±0.001 0.316±0.002
192 0.362±0.001 0.364±0.001 0.364±0.001 0.367±0.002* 0.363±0.002 0.361±0.002 0.366±0.002
336 0.386±0.001 0.386±0.001 0.387±0.001 0.404±0.004* 0.386±0.001 0.381±0.001 0.386±0.003
720 0.456±0.001 0.456±0.002 0.456±0.001 0.467±0.002* 0.456±0.002 0.454±0.001* 0.460±0.003

ETTm2

96 0.163±0.000 0.163±0.000 0.163±0.000 0.168±0.001* 0.166±0.001 0.167±0.001* 0.170±0.001*
192 0.229±0.001 0.229±0.001 0.229±0.001 0.230±0.000 0.229±0.001 0.231±0.001 0.238±0.002*
336 0.291±0.001 0.292±0.001 0.292±0.001 0.295±0.001* 0.292±0.002 0.292±0.001 0.293±0.003*
720 0.369±0.003 0.369±0.003 0.369±0.003 0.385±0.002* 0.383±0.002* 0.369±0.003 0.390±0.004*

Electricity

96 0.152±0.004 0.153±0.003 0.153±0.003 0.162±0.003 0.156±0.003 0.150±0.003 0.145±0.006
192 0.167±0.001 0.167±0.001 0.166±0.002 0.173±0.003 0.169±0.003 0.164±0.003 0.167±0.001*
336 0.181±0.009 0.181±0.007 0.181±0.007 0.186±0.006 0.184±0.006 0.181±0.006 0.186±0.001
720 0.210±0.002 0.211±0.002 0.214±0.003 0.218±0.005 0.214±0.005 0.223±0.005 0.231±0.002

ILI

24 1.957±0.072 1.907±0.062 1.956±0.080 1.760±0.067* 1.986±0.112 1.976±0.051 1.587
36 1.640±0.036 1.599±0.076 1.538±0.124 1.569±0.079 1.540±0.055* 1.551±0.137 1.429
48 1.529±0.097 1.516±0.075 1.490±0.101 1.514±0.126 1.456±0.048 1.497±0.040 1.505
60 1.693±0.091 1.739±0.064 1.715±0.049 1.727±0.047 1.679±0.092 1.714±0.048 1.731

Traffic

96 0.468±0.004 0.470±0.003 0.470±0.003 0.475±0.003 0.479±0.003 0.478±0.003 0.479±0.007
192 0.465±0.001 0.466±0.001 0.466±0.002 0.482±0.003 0.479±0.003 0.476±0.003 0.484±0.004
336 0.493±0.009 0.494±0.007 0.494±0.007 0.511±0.006 0.501±0.006 0.501±0.006 0.503±0.004
720 0.535±0.002 0.535±0.002 0.535±0.003 0.540±0.005 0.537±0.005 0.556±0.005 0.537±0.004

Weather

96 0.151±0.000 0.151±0.000 0.151±0.000 0.155±0.001 0.154±0.000* 0.152±0.001 0.156±0.002
192 0.199±0.001 0.200±0.003 0.200±0.003 0.203±0.001 0.201±0.001 0.199±0.001 0.206±0.002
192 0.244±0.001 0.246±0.002 0.246±0.002 0.248±0.002 0.246±0.000 0.245±0.001 0.254±0.002
192 0.335±0.004 0.335±0.004 0.334±0.004 0.334±0.003 0.333±0.002 0.334±0.004 0.340±0.003

prediction through an additional projection layer after aggregating individual predictions. To facilitate
complementary learning at the individual prediction level while avoiding conflicting ground truth
signals, we apply the supervised loss only to TimeMixer’s final prediction, rather than enforcing an
ensemble-supervised loss on individual predictions.

The reported TimeMixer results could not be fully replicated with the hyperparameters provided in
the official code (https://github.com/kwuking/TimeMixer). For a fair comparison, we performed a
hyperparameter search to reproduce TimeMixer as a baseline and applied the same hyperparameter
(e.g., learning rate, batch size) for expanding TimeMixer with CoMRes’s consensus promotion on
augmented data, maintaining consistency in experimental conditions. As our reporeduced results are
slightly lower than the reported TimeMixer results, we also display the originally reported results in
the last column a reference.

A.6 ADDITIONAL BASELINES

To provide additional evaluation results and contextualize current progress in long-term time series
forecasting, we include several advanced baselines in Table 9: Pathformer (Chen et al., 2024),
PatchTST (Nie et al., 2023), TimeMixer (Wang et al., 2024), NLinear (Zeng et al., 2023), Scaleformer
(Shabani et al., 2023), and TiDE (Das et al., 2023). All models use the same input length (H = 36
for the ILI dataset and H = 96 for others) and prediction lengths (F ∈ {24, 36, 48, 60} for the ILI
dataset and F ∈ {96, 192, 336, 720} for others). We evaluate model performance using two common
metrics in time series forecasting: Mean Absolute Error (MAE) and Mean Squared Error (MSE). The
results for TimeMixer are taken from Wang et al. (2024), those for PatchTST are sourced from Nie
et al. (2023), and the remaining results are obtained from Chen et al. (2024).

A.7 LIMITED-RESOURCE SCENARIOS

As noted in Section 4.3.1, CoMRes consistently outperforms MRes across all label sizes and prediction
horizons in limited resource scenarios. Not only does CoMRes achieve the best scores, as presented
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Table 8: Results of Applying Consensus Promotion on Augmented Data to TimeMixer. The reported
TimeMixer results are taken from the original paper, while the reproduced results are obtained through
our replication. The ∆ column shows the difference between CoMRes’s best results and TimeMixer,
with blue indicating that CoMRes outperforms and red indicating otherwise.

Method TimeMixer + CoMRes (ours) TimeMixer
Time Warping Interpolation Noise Injection Reproduced ∆ Reported ∆

ETTh1

96 0.379 0.376 0.376 0.377 0.001 0.375 -0.001
192 0.436 0.431 0.430 0.431 0.001 0.429 -0.001
336 0.486 0.484 0.484 0.485 0.001 0.484 0.000
720 0.499 0.489 0.489 0.498 0.009 0.498 0.009
Avg. 0.450 0.445 0.445 0.448 0.003 0.447 0.002

ETTh2

96 0.294 0.294 0.294 0.295 0.001 0.289 -0.005
192 0.374 0.374 0.374 0.375 0.001 0.372 -0.002
336 0.388 0.388 0.388 0.388 0.000 0.386 -0.002
720 0.419 0.419 0.419 0.422 0.003 0.412 -0.007
Avg. 0.369 0.369 0.369 0.370 0.001 0.365 -0.004

ETTm1

96 0.322 0.331 0.331 0.331 0.009 0.320 -0.002
192 0.364 0.364 0.364 0.369 0.006 0.361 -0.003
336 0.398 0.396 0.397 0.398 0.002 0.390 -0.006
720 0.465 0.458 0.460 0.461 0.004 0.454 -0.004
Avg. 0.387 0.387 0.388 0.390 0.003 0.381 -0.006

ETTm2

96 0.175 0.174 0.174 0.175 0.001 0.175 0.001
192 0.239 0.240 0.240 0.242 0.003 0.237 -0.002
336 0.294 0.295 0.295 0.294 0.000 0.298 0.004
720 0.390 0.389 0.389 0.393 0.003 0.391 0.002
Avg. 0.274 0.275 0.275 0.276 0.002 0.275 0.001

Weather

96 0.164 0.165 0.165 0.165 0.001 0.163 -0.001
192 0.210 0.209 0.209 0.209 0.000 0.208 -0.001
336 0.262 0.264 0.264 0.263 0.001 0.251 -0.011
720 0.341 0.342 0.342 0.341 0.000 0.339 -0.002
Avg. 0.244 0.245 0.245 0.244 0.000 0.240 -0.004

Traffic

96 0.462 0.461 0.459 0.477 0.018 0.462 0.003
192 0.453 0.456 0.458 0.496 0.043 0.473 0.020
336 0.475 0.475 0.461 0.516 0.054 0.498 0.037
720 0.502 0.502 0.505 0.538 0.036 0.506 0.004
avg. 0.473 0.473 0.471 0.507 0.036 0.484 0.013

in Table 3, but it also demonstrates higher prediction accuracy when trained on the same amount of
labeled data. This suggests that CoMRes possesses generalization ability.

The table 10 shows the results of training with distant data from the test period. Compared to Table
3, the overall best scores have changed due to intricate temporal variations. This suggests that the
relevance of the data is more important than the amount of data used. As the same as result of the
recent data, CoMRes consistently achieves the best performance across all label sizes and prediction
horizons compared to the baseline.

A.8 DISCUSSION - MORE RELATED WORKS

Semi-supervised learning in other domain Semi-supervised learning have been extensively studied
in domains such as natural language processing (NLP) (Lim et al., 2020; Chen et al., 2020; Sawhney
et al., 2021; Park & Caragea, 2024) and image classification (Laine & Aila, 2017; Xie et al.,
2020; Zhang et al., 2021; Chen et al., 2023). In these fields, acquiring unlabeled data is relatively
straightforward due to the availability of large-scale datasets comprising sentences or images from the
web. Ensemble-based loss functions, which effectively leverage unlabeled data, have been shown to
enhance model performance by capitalizing on this abundance. Moreover, data augmentation offers
a computationally efficient and accessible approach in resource-constrained scenarios. Techniques
such as augmentation with pseudo-labels have been particularly effective in expanding training sets
for classification tasks, further boosting model performance.

However, extending these approaches to time series forecasting introduces unique challenges. Unlike
NLP or image classification, time series data often lacks the diversity and abundance of high-
quality unlabeled data. Additionally, the temporal and continuous nature of time series data makes
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Table 9: Multivariate time series forecasting results for additional baselines. The input length L = 96
(L = 36 for the ILI dataset). The best results are highlighted in bold. CoMRes’s performance
represents the average values over 5 runs. The results for TimeMixer are taken from Wang et al.
(2024), the results for PatchTST are sourced from Nie et al. (2023), and the remaining results are
obtained from Chen et al. (2024).

Method CoMRes Pathformer PatchTST TimeMixer Nlinear Scaleformer TiDE
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.378 0.386 0.382 0.400 0.394 0.408 0.375 0.400 0.386 0.392 0.396 0.440 0.427 0.450
192 0.436 0.415 0.440 0.427 0.446 0.438 0.429 0.421 0.440 0.430 0.434 0.460 0.472 0.486
336 0.452 0.421 0.454 0.432 0.485 0.550 0.484 0.458 0.480 0.443 0.462 0.476 0.527 0.527
720 0.474 0.453 0.479 0.461 0.495 0.474 0.498 0.482 0.486 0.472 0.494 0.500 0.644 0.605
Avg. 0.435 0.419 0.439 0.430 0.455 0.468 0.447 0.440 0.448 0.434 0.447 0.469 0.518 0.517

ETTh2

96 0.275 0.327 0.279 0.331 0.294 0.343 0.289 0.341 0.290 0.339 0.364 0.407 0.304 0.359
192 0.346 0.373 0.349 0.380 0.378 0.394 0.372 0.392 0.379 0.395 0.466 0.458 0.394 0.422
336 0.326 0.369 0.348 0.382 0.382 0.410 0.386 0.414 0.421 0.431 0.479 0.476 0.385 0.421
720 0.393 0.419 0.398 0.424 0.412 0.433 0.412 0.434 0.436 0.453 0.487 0.492 0.463 0.475
Avg. 0.335 0.372 0.344 0.379 0.367 0.395 0.365 0.395 0.382 0.405 0.449 0.458 0.387 0.419

ETTm1

96 0.310 0.339 0.316 0.346 0.324 0.361 0.320 0.357 0.339 0.369 0.355 0.398 0.356 0.381
192 0.362 0.365 0.366 0.370 0.362 0.383 0.361 0.381 0.379 0.386 0.428 0.455 0.391 0.399
336 0.386 0.387 0.386 0.394 0.39 0.402 0.390 0.404 0.411 0.407 0.524 0.487 0.424 0.423
720 0.456 0.424 0.460 0.432 0.461 0.438 0.454 0.441 0.478 0.442 0.558 0.517 0.48 0.456
Avg. 0.379 0.379 0.382 0.386 0.384 0.396 0.381 0.396 0.402 0.401 0.466 0.464 0.413 0.415

ETTm2

96 0.163 0.245 0.170 0.248 0.177 0.260 0.175 0.258 0.177 0.257 0.182 0.275 0.182 0.264
192 0.229 0.290 0.238 0.295 0.248 0.306 0.237 0.299 0.241 0.297 0.251 0.318 0.256 0.323
336 0.291 0.330 0.293 0.331 0.304 0.342 0.298 0.340 0.302 0.337 0.34 0.375 0.313 0.354
720 0.369 0.378 0.390 0.389 0.403 0.397 0.391 0.396 0.405 0.396 0.435 0.433 0.419 0.410
Avg. 0.263 0.311 0.273 0.316 0.283 0.326 0.275 0.323 0.281 0.322 0.302 0.350 0.293 0.338

Electricity

96 0.152 0.239 0.145 0.236 0.18 0.264 0.153 0.247 0.185 0.266 0.182 0.297 0.194 0.277
192 0.166 0.252 0.167 0.256 0.188 0.275 0.166 0.256 0.189 0.276 0.188 0.300 0.193 0.280
336 0.181 0.267 0.186 0.275 0.206 0.291 0.185 0.277 0.204 0.289 0.210 0.324 0.206 0.296
720 0.210 0.292 0.231 0.309 0.247 0.328 0.225 0.310 0.245 0.319 0.232 0.339 0.242 0.328
Avg. 0.177 0.263 0.182 0.269 0.205 0.290 0.182 0.273 0.206 0.288 0.203 0.315 0.209 0.295

ILI

96 1.907 0.830 1.587 0.758 1.724 0.843 - - 2.725 1.069 0.232 0.339 2.154 0.992
192 1.538 0.755 1.429 0.711 1.536 0.752 - - 2.530 1.032 2.745 1.075 2.436 1.042
336 1.490 0.766 1.505 0.742 1.821 0.832 - - 2.510 1.031 2.748 1.072 2.532 1.051
720 1.693 0.811 1.731 0.799 1.923 0.842 - - 2.492 1.026 2.793 1.059 2.748 1.142
Avg. 1.657 0.791 1.563 0.753 1.751 0.817 - - 2.564 1.040 2.130 0.886 2.468 1.057

Traffic

96 0.468 0.270 0.479 0.283 0.492 0.324 0.462 0.285 0.645 0.388 2.678 1.071 0.568 0.352
192 0.465 0.285 0.484 0.292 0.487 0.303 0.473 0.296 0.599 0.365 0.564 0.351 0.612 0.371
336 0.493 0.295 0.503 0.299 0.505 0.317 0.498 0.296 0.606 0.367 0.57 0.349 0.605 0.374
720 0.535 0.324 0.537 0.322 0.542 0.337 0.506 0.313 0.645 0.388 0.576 0.349 0.647 0.410
Avg. 0.490 0.294 0.501 0.299 0.507 0.320 0.485 0.298 0.624 0.377 1.097 0.530 0.608 0.377

Weather

96 0.151 0.19 0.156 0.192 0.177 0.218 0.163 0.209 0.168 0.208 0.288 0.365 0.202 0.261
192 0.199 0.236 0.206 0.24 0.224 0.258 0.208 0.250 0.217 0.255 0.368 0.425 0.242 0.298
336 0.244 0.275 0.254 0.282 0.277 0.297 0.251 0.287 0.267 0.292 0.447 0.469 0.287 0.335
720 0.334 0.331 0.340 0.336 0.35 0.345 0.339 0.341 0.351 0.346 0.640 0.574 0.351 0.386
Avg. 0.232 0.258 0.239 0.263 0.257 0.280 0.240 0.272 0.251 0.275 0.436 0.458 0.271 0.320

it difficult to generate meaningful augmented data. These challenges necessitate tailored strategies
to successfully adopt semi-supervised learning and data augmentation in the context of time series
forecasting.

Semi-supervised learning for Time Series Classification The concepts of consensus promotion with
pseudo-labeling have also been explored in the context of semi-supervised learning for time series
classification (Jawed et al., 2020; Liu et al., 2023; Shin et al., 2023; Bae et al., 2024; Liu et al., 2024b).
For instance, Jawed et al. (2020) leverage features learned from self-supervised tasks on unlabeled
data, while Shin et al. (2023) propose context-attached augmentation to generate augmented instances
with varying contexts that preserve the target instance. Liu et al. (2024b) introduce the Scale-Teaching
paradigm, which captures discriminative patterns in time series while mitigating noisy labels. Bae
et al. (2024) explore consistency regularization by artificially downsampling high-sampling-rate time
series to generate augmented versions. These studies demonstrate the effectiveness of leveraging
augmented data with pseudo labeling in time series classification.

Despite these advances, the application of semi-supervised learning and consensus promotion to
time series forecasting remains underexplored. In this work, we argue that forecasting poses unique
challenges distinct from classification tasks, such as the prediction of continuous outputs rather than
discrete labels. Additional complexities include long-term temporal dependencies, seasonality, and
error propagation in autoregressive settings. These factors make direct application of pseudo-labeling
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Figure 6: Comparison figures between CoMRes and MRes, evaluated using the same label sizes and
dataset

and traditional augmentation techniques problematic, as evidenced by conflicting signals in the
lookback context observed during our experiments (Table 1).

To address these challenges, we propose a novel approach that emphasizes consensus promotion
on augmented data without relying on pseudo-labels. While our framework may initially seem
straightforward, it addresses the non-trivial challenge of integrating ideas from two different fields:
semi-supervised learning and time series forecasting. By integrating ideas from semi-supervised learn-
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Table 10: Results in Limited-Resource Scenarios: When using the oldest data. The best results among
the compared methods are highlighted in bold, while the best result of the remaining methods is
underlined. The label size is represented as a ratio of the original training data. For example, a value
of 0.5 indicates that only the first half of the original data was used for training, meaning that the
most oldest portion of the training data was used.

Method SSL, Time Warp (ours) SL, Baseline
Label Size 0.2 0.5 0.8 1.0 0.2 0.5 0.8 1.0

ETTh1

96 0.412 0.398 0.378 0.378 0.409 0.396 0.381 0.382
192 0.486 0.455 0.437 0.436 0.482 0.456 0.438 0.439
336 0.533 0.478 0.454 0.452 0.523 0.479 0.452 0.451
720 0.579 0.502 0.481 0.474 0.544 0.506 0.484 0.481

ETTh2

96 0.286 0.278 0.270 0.275 0.286 0.279 0.271 0.277
192 0.357 0.353 0.343 0.345 0.361 0.357 0.347 0.347
336 0.343 0.334 0.333 0.329 0.346 0.338 0.333 0.330
720 0.453 0.385 0.389 0.399 0.434 0.388 0.395 0.409

ETTm1

96 0.383 0.387 0.312 0.310 0.381 0.382 0.318 0.312
192 0.412 0.416 0.368 0.362 0.412 0.416 0.371 0.361
336 0.436 0.438 0.392 0.386 0.436 0.436 0.397 0.381
720 0.513 0.511 0.458 0.456 0.514 0.508 0.466 0.454

ETTm2

96 0.180 0.172 0.166 0.163 0.180 0.170 0.168 0.166
192 0.242 0.233 0.231 0.229 0.243 0.234 0.232 0.229
336 0.306 0.297 0.292 0.291 0.305 0.294 0.292 0.292
720 0.409 0.390 0.386 0.383 0.406 0.389 0.384 0.383

ing and time series forecasting, our framework effectively balances the complexities of forecasting
with the benefits of consensus promotion, offering a meaningful contribution.

A.9 DISCUSSION - RESULT ON ILI DATASET

The ILI dataset presents unique challenges due to its highly non-stationary patterns, which make
accurate prediction particularly difficult. While CoMRes demonstrates strong performance across
most datasets, its performance on the ILI dataset is less competitive compared to Pathformer, es-
pecially when h = 24 and h = 36, as shown in Table 1. Notably, we were unable to reproduce
Pathformer’s reported performance on the ILI dataset; however, crediting the authors, Table 1 includes
the performance metrics as reported in the original Pathformer paper.

The ILI dataset is characterized by a rapid long-term uptrend, which poses significant challenges for
forecasting models. Recent advanced models, such as those proposed by Shabani et al. (2023) and
Nie et al. (2023), exhibit high prediction errors (MSE above 2), while others, such as Wang et al.
(2024) and Das et al. (2023), exclude the ILI dataset from their experiments, further reflecting its
inherent difficulty.

We hypothesize that the rapid long-term uptrend in the ILI dataset limits the advantages of multi-scale
modeling, as long-term dependency patterns may not effectively leverage multi-resolution features.
Nonetheless, our experimental results show that CoMRes improves prediction accuracy compared to
MRes (SL). This suggests that the unsupervised consistency promotion mechanism in CoMRes has a
positive impact on enhancing model generalization, even in challenging scenarios like the ILI dataset.

A.10 DISCUSSION - COMPARISON ON A PER-AUGMENTATION BASIS

To better understand the impact of different augmentation strategies, we conducted a per-augmentation
analysis, comparing the performance of CoMRes with MRes across three augmentation techniques:
Time Warping, Interpolation, and Noise Injection in Table 11.

The results indicate that the effectiveness of each augmentation depends on both the characteristics of
the data and the context in which the augmentation is applied. Augmentations in a supervised learning
scenario (e.g., MRes w. augmentation) tend to degrade performance, likely due to overfitting or
mismatched data distributions. In contrast, CoMRes utilizes augmented data within a semi-supervised
learning framework, which mitigates overfitting and enhances generalization. This distinction is
evidenced by CoMRes consistently achieving better results across all tested scenarios.
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In conclusion, the per-augmentation analysis highlights the robustness of CoMRes across various
augmentation strategies, while demonstrating the critical role of applying augmentations within a
semi-supervised framework to achieve consistent and significant improvements over MRes.

Table 11: Results of per-augmentation analysis.

Method Time Warping Interpolation Noise Injection MRes(SL)CoMRes MRes ∆ CoMRes MRes ∆ CoMRes MRes ∆
Consensus Promotion ◦ × ◦ × ◦ × ×
Leveraging Augmented Data unlabel pseudo-label unlabel pseudo-label unlabel pseudo-label ×

ETTh1

96 0.378 0.406 0.028 0.379 0.414 0.035 0.379 0.416 0.037 0.382
192 0.436 0.455 0.019 0.436 0.459 0.023 0.436 0.440 0.004 0.439
336 0.452 0.482 0.030 0.452 0.448 -0.004 0.452 0.446 -0.006 0.451
720 0.474 0.475 0.001 0.478 0.473 -0.005 0.478 0.447 -0.031 0.481
Avg. 0.435 0.455 0.020 0.436 0.449 0.012 0.436 0.437 0.001 0.438

ETTh2

96 0.275 0.278 0.003 0.275 0.280 0.005 0.275 0.280 0.005 0.277
192 0.347 0.355 0.008 0.346 0.355 0.009 0.346 0.352 0.006 0.348
336 0.326 0.346 0.020 0.328 0.335 0.007 0.326 0.336 0.010 0.332
720 0.393 0.404 0.011 0.398 0.402 0.004 0.397 0.402 0.005 0.406
Avg. 0.335 0.346 0.011 0.337 0.343 0.006 0.336 0.343 0.007 0.341

ETTm1

96 0.310 0.326 0.016 0.311 0.418 0.107 0.311 0.418 0.107 0.312
192 0.362 0.367 0.005 0.364 0.430 0.066 0.364 0.436 0.072 0.361
336 0.386 0.404 0.018 0.386 0.456 0.070 0.387 0.518 0.131 0.381
720 0.456 0.467 0.011 0.456 0.504 0.048 0.456 0.532 0.076 0.454
Avg. 0.379 0.391 0.013 0.379 0.452 0.073 0.380 0.476 0.097 0.377

ETTm2

96 0.163 0.168 0.005 0.163 0.175 0.012 0.163 0.176 0.013 0.167
192 0.229 0.230 0.001 0.229 0.240 0.011 0.229 0.241 0.012 0.231
336 0.291 0.295 0.004 0.292 0.308 0.016 0.292 0.308 0.016 0.292
720 0.369 0.385 0.016 0.369 0.405 0.036 0.369 0.401 0.032 0.369
Avg. 0.263 0.270 0.007 0.263 0.282 0.019 0.263 0.282 0.018 0.265

Weather

96 0.151 0.155 0.004 0.151 0.159 0.008 0.151 0.163 0.012 0.152
192 0.199 0.203 0.004 0.200 0.205 0.005 0.200 0.208 0.008 0.199
336 0.244 0.248 0.004 0.246 0.25 0.004 0.246 0.252 0.006 0.245
720 0.335 0.334 -0.001 0.335 0.334 -0.001 0.334 0.338 0.004 0.334
Avg. 0.232 0.235 0.003 0.233 0.237 0.004 0.233 0.240 0.008 0.233

A.11 DISCUSSION - COMPUTATION COST

In this section, we analyze the computational efficiency of CoMRes in comparison to Pathformer,
with a focus on both the training and inference stages.

Training Time Pathformer’s training involves operations such as temporal decomposition using
the Discrete Fourier Transform (DFT) and weight generation with two learnable parameters. In
contrast, CoMRes utilizes M + 1 Multi-Layer Perceptrons (MLPs) and integrates data augmentation
as a fundamental component of its design. Although CoMRes introduces additional parameters
due to the extra MLPs, the capabilities of modern GPUs effectively mitigate potential performance
limitations, ensuring the computational requirements remain practical. Runtime metrics confirm
that the increased burden is manageable (see Table 12). Notably, the longer training time observed
for CoMRes is primarily due to the overhead associated with on-the-fly data augmentation. This
additional cost can be reduced by employing precomputed augmentations or optimizing the pipeline
through parallelization.

Table 12: Quantitative comparison of training and inference times for CoMRes and Pathformer.
Results are based on a lookback window (L = 96), prediction horizon (h = 96), M = 4 views, and
identical configurations (e.g., patch sizes) for both models.

#parameters Train (seconds per epoch) Inference(seconds for all test sample)
CoMRes pathformer batch size CoMRes pathformer #test samples CoMRes pathformer

ETTh1 379,054 231,222 512 4.17 3.56 2,785 1.89 1.67
ETTm2 2,752,162 2,161,962 512 18.81 12.47 11,425 5.64 4.45
Weather 627,408 332,120 256 47.57 33.40 10,444 7.43 7.35
Traffic 3,212,905 2,622,705 8 478.51 269.08 3,413 37.83 32.23

Inference Time During inference, Pathformer performs a top-k weighted sum operation followed by
an MLP to produce its final predictions. In comparison, CoMRes employs an equal-weight sum, which
is computationally simpler, followed by an MLP. The computational overhead for CoMRes during
inference is minimal, and the additional complexity introduced by its design does not significantly
impact overall performance. CoMRes has the flexibility to use the comprehensive prediction directly
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as the final output, bypassing the need for M individual MLP computations for each view. This
approach further reduces the computational burden in practical scenarios, making CoMRes efficient
for inference.

To provide empirical context, we measured the training and inference times for both models under a
standardized experimental setup on an NVIDIA A6000 GPU. The results in Table 12 indicate that
while computational differences between CoMRes and Pathformer exist, they are manageable and
can be further optimized in practical scenarios.

A.12 VISUALIZATION

We visualize the prediction results of CoMRes and Pathformer on ETTh1, Weather, Traffic dataset. As
shown in Figures 7, 8 and 9, the prediction curve closely aligns with the ground truth, demonstrating
the excellent predictive performance of CoMRes. Additionally, we present the prediction results of
CoMRes, MRes, and Pathformer in an autoregressive forecasting scenario. Figure 10 illustrates that
CoMRes effectively mitigates error accumulation.

Figure 7: Visualization of CoMRes’s and Pathformer’s prediction results on ETTh1. The input length
H = 96

A.13 LIMITATIONS AND FUTURE WORK

CoMRes has demonstrated favorable performance in long-term time series forecasting; however, there
is room for further exploration and refinement of its design options. First, our framework assumes a
Euclidean distance to measure consensus between the aggregated prediction and each view. While
this approach is straightforward and widely used, it may not be optimal for all scenarios. Alternative
metrics, such as soft-DTW (Dynamic Time Warping, Cuturi & Blondel (2017)), which better capture
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Figure 8: Visualization of CoMRes’s and Pathformer’s prediction results on ETTh2. The input length
H = 96

temporal alignment and dependencies, or differentiable loss functions, could be investigated to
improve performance. Additionally, this study focuses on three basic augmentation strategies—time
warping, noise injection, and interpolation. Although these techniques are effective and simple to
implement, they may not fully leverage the potential of more complex augmentation methods. As
demonstrated in Section 4.3.2, the effectiveness of augmentation techniques varies depending on
the dataset’s characteristics. Future work could explore the performance of our framework with
advanced augmentation strategies, such as learned augmentations or domain-specific transformations,
to provide deeper insights and enhance the applicability and robustness of the proposed approach.
Lastly, we employ multi-scale patch division with various patch sizes, which is similar to the model
architecture used in Pathformer (Chen et al., 2024). In contrast, other multi-scale models, such as
TimeMixer(Wang et al., 2024) and Scaleformer(Shabani et al., 2023), generate multi-scale time
series through pooling. Incorporating consensus mechanisms between these pooled series could be a
promising direction for extending our framework.

For future research, we aim to explore further improvements in non-Markovian frameworks, where
the model would benefit from considering the entire history rather than relying on limited past
observations. Another promising direction is investigating how to ensure consistency in multi-scaling
predictions across different time horizons, enhancing the overall reliability of forecasts. These studies
could further strengthen the capability of our multi-view learning strategy as a tool for long-term time
series forecasting across diverse applications.
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Figure 9: Visualization of CoMRes’s and Pathformer’s prediction results on Weather. The input
length H = 96

Figure 10: Visualization of CoMRes’s, MRes’s and Pathformer’s autoregressive prediction results on
ETTh1, ETTh2 and Weather.
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