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In this material, we present the proofs of all analytical results in the paper and additional comments
in Section A. More experimental details and results are also provided in Section B. We also provide
the broader impacts of our work in Section C.

A Theoretical Proofs

In this section, we provide the proofs of all analytical results presented in the paper, covering Theorem
3.2, Remark 3.3, and Lemma 4.2. Additional comments are also provided following each proof in
this material.

A.1 Proof of Theorem 3.2

Proof of Theorem 3.2. Given the matrix X ∈ RN×d consists of sequence data {xi ∈ Rd}Ni=1,
the primal optimization problem in self-attention of KSVD with the constructed data-dependent
projection weights is formulated as follows, i.e., (6) in the paper:

max
We,Wr,ei,rj

J =
1

2

∑N

i=1
e⊤i Λei +

1

2

∑N

j=1
r⊤j Λrj − Tr

(
W⊤

e Wr

)
s.t. ei = (f(X)⊤We)

⊤ϕq(xi), i = 1, . . . , N,

rj = (f(X)⊤Wr)
⊤ϕk(xj), j = 1, . . . , N,

(1)

where the projection weights of the feature maps ϕq(·), ϕk(·) : Rd → Rp can be further denoted as
f(X)⊤We =: We|X ∈ Rp×s, f(X)⊤Wr =: Wr|X ∈ Rp×s relying on parameters We,Wr ∈ RN×s

and the constant transformation matrix f(X) =: FX ∈ RN×p, the regularization coefficient denoted
by Λ ∈ Rs×s is a positive diagonal matrix.

The Lagrangian of (1) is

L(We,Wr, ei, rj ,hei ,hrj ) =
1

2

∑N

i=1
e⊤i Λei +

1

2

∑N

j=1
r⊤j Λrj − Tr

(
W⊤

e Wr

)
−
∑N

i=1
h⊤
ei

(
ei −W⊤

e f(X)ϕq(xi)
)
−

∑N

j=1
h⊤
rj

(
rj −W⊤

r f(X)ϕk(xj)
)
,

(2)
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where two sets of dual variable vectors, i.e., hei ,hrj ∈ Rs, are introduced to the equality constraints
regarding the projection scores ei and rj , for i, j = 1, . . . , N , respectively.

By taking the partial derivatives to the Lagrangian (2), the Karush-Kuhn-Tucker (KKT) conditions
then lead to: 

∂L
∂We

= 0 =⇒ Wr =
∑N

i=1
f(X)ϕq(xi)h

⊤
ei ,

∂L
∂Wr

= 0 =⇒ We =
∑N

j=1
f(X)ϕk(xj)h

⊤
rj

∂L
∂ei

= 0 =⇒ Λei = hei , i = 1, . . . , N,

∂L
∂rj

= 0 =⇒ Λrj = hrj , j = 1, . . . , N,

∂L
∂hei

= 0 =⇒ W⊤
e f(X)ϕq(xi) = ei, i = 1, . . . , N,

∂L
∂hrj

= 0 =⇒ W⊤
r f(X)ϕk(xj) = rj , i = 1, . . . , N.

(3)

By eliminating the primal variables We, Wr in KKT conditions (3), we then have
∑N

j=1
hrjϕk(xj)

⊤f(X)⊤f(X)ϕq(xi) = Λ−1hei , i = 1, . . . , N,∑N

i=1
heiϕq(xi)

⊤f(X)⊤f(X)ϕk(xj) = Λ−1hrj , j = 1, . . . , N,

which can be expressed in the matrix form as[
0N×N

[
ϕq(xi)

⊤f(X)⊤f(X)ϕk(xj)
][

ϕk(xj)
⊤f(X)⊤f(X)ϕq(xi)

]
0N×N

] [
He

Hr

]
=

[
He

Hr

]
Λ−1,

with He = [he1 , . . . ,heN ]⊤ ∈ RN×s and Hr = [hr1 , . . . ,hrN ]⊤ ∈ RN×s.

Therefore, the optimization problem of KSVD in the dual yields the following shifted eigenvalue
problem with an asymmetric kernel matrix K, such that:

KHr = HeΣ,

K⊤He = HrΣ,
(4)

which collects the solutions corresponding to the non-zero entries in Λ such that Σ ≜ Λ−1. The
asymmetric kernel K contains the entries induced as Kij := ⟨f(X)ϕq(xi), f(X)ϕk(xj)⟩ =:〈
ϕ′
q(xi), ϕ

′
k(xj)

〉
, i, j = 1, . . . , N . From the Lanczos Decomposition Theorem [29], i.e., The-

orem 2.2 in the paper, we can see that the solutions to the dual problem of KSVD in self-attention,
i.e., He and Hr, correspond to the left and right singular vectors of the asymmetric kernel matrix K,
where Σ serves as the corresponding singular values. This completes the proof.

Comments on Theorem 3.2 With the primal problem in (6) in the paper, Theorem 3.2 provides
the corresponding dual problem of KSVD formulated for self-attention. In [27], a novel variational
principle is proposed for SVD with LSSVMs, where a primal-dual formulation for the matrix (linear)
SVD is derived. Our KSVD leverages the kernel-based learning framework from [27], however, in
addition to our specific application of interpreting self-attention, there are other significant differences
and non-trivial novelties in our work:

i) [27] mainly addresses the original SVD given any data matrix, while we formulate the
non-linear extension leading to the asymmetric attention matrix in relation to the queries
and keys. Additionally, [27] presents the optimization w.r.t. a single projection direction in
the linear SVD, while we generalize the formulation to multiple projection directions in the
matrix form.
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ii) The data sources for the two non-linear feature maps are related to the queries and keys, as
opposed to [27] that specifies the two data sources as the rows and columns of the given
data matrix. Therefore, our KSVD is more general in the data setups.

iii) Rather than using only the data-independent projection weights We,Wr as linear mappings
in [27], we propose the generalized form that allows extra transformation matrix dependent
non-linearly on the sequence data for self-attention.

In particular, the benefits and motivations of our data-dependent projection weights are as follows:

i) In the canonical self-attention, the values vary for different input sequence data, and later in
Remark 3.3, we show that the values can be regarded as playing the role of the dual variables
in KSVD. Inspired by this property, we introduce input sequence data information to the
corresponding primal variables.

ii) In the proposed Primal-Attention, the data-dependent projection weights provide more
degrees of freedom to improve model’s representation ability.

iii) Using data-dependent projection weights does not affect the derivation of the shifted eigen-
value problem in the dual. Specifically, when the transformation matrix FX is chosen as an
identity matrix for a simpler structure, it boils downs to the data-independent case, where the
kernel K in self-attention is obtained with entries Kij = ⟨ϕq(xi), ϕk(xj)⟩, i, j = 1, . . . , N .

Provided with the general form of the projections weights in (1), practitioners can flexibly adjust
the KSVD setups for the self-attention implementation. Related empirical studies can be referred to
Section B.2 in this material.

A.2 Proof of Remark 3.3

With the derivations of the primal-dual optimization problems above, the primal-dual model represen-
tation of our KSVD problem can be provided correspondingly. The proof of Remark 3.3 in the paper
closely follows the proof of Theorem 3.2, and we show it as follows.

Proof of Remark 3.3. The primal model representations for the self-attention outputs in (1) are

Primal:
{

e(x) = (f(X)⊤We)
⊤ϕq(x),

r(x) = (f(X)⊤Wr)
⊤ϕk(x).

(5)

The dual model representations for the self-attention outputs can be derived by eliminating the primal
variables with (3):

Dual:



e(x) = W⊤
e f(X)ϕq(x) =

(∑N

j=1
f(X)ϕk(xj)h

⊤
rj

)⊤
f(X)ϕq(x)

=
∑N

j=1
hrjϕq(x)

⊤f(X)⊤f(X)ϕk(xj),

r(x) = W⊤
r f(X)ϕk(x) =

(∑N

i=1
f(X)ϕq(xi)h

⊤
ei

)⊤
f(X)ϕk(x)

=
∑N

i=1
heiϕq(xi)

⊤f(X)⊤f(X)ϕk(x).

(6)

Further, with the kernel trick in the dual optimization problem (4), i.e.,

κ(xi,xj) := ⟨f(X)ϕq(xi), f(X)ϕk(xj)⟩ , i, j = 1, . . . , N,

we then attain the primal-dual representations of KSVD that allows data-dependent projection weights
for self-attention as follows:

Primal:

{
e(x) = W⊤

e|Xϕq(x)

r(x) = W⊤
r|Xϕk(x)

, Dual:

{
e(x) =

∑N
j=1 hrjκ(x,xj)

r(x) =
∑N

i=1 heiκ(xi,x)
,

where We|X := f(X)⊤We ∈ Rp×s, Wr|X := f(X)⊤Wr ∈ Rp×s.
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Comments on Remark 3.3 With Remark 3.3, we can equivalently represent the projection scores
in different ways, i.e., either through the feature maps in the primal or the kernel matrix in the dual.
Under the framework of KSVD, the existing attention outputs can be interpreted as the projection
scores e(x) in the dual representation, where the values correspond to the dual variables hrj . The
primal-dual models provide versatile alternatives to represent and understand the attention outputs.
Notably, the primal representation can avoid the computation of the kernel matrix which is widely
considered as an obstacle to the computational efficiency of attention. In addition, we find that there
exists another set of projections reflecting the asymmetry information, i.e., r(x). Motivated by the
above, we propose our new self-attention mechanism, i.e., Primal-Attention in Section 4 in the paper.

A.3 Proof of Lemma 4.2

Lemma 4.2 evaluates the objective value J in the primal optimization problem (1) when the solutions
satisfy the stationarity conditions in (4).

Proof of Lemma 4.2. Based on the KKT conditions in (3), by eliminating the primal variables
We,Wr, ei, rj , the optimization objective J is given by

J =
1

2

∑N

i=1
e⊤i Λei +

1

2

∑N

j=1
r⊤j Λrj − Tr

(
W⊤

e Wr

)
=

1

2

∑N

i=1
e⊤i Λei +

1

2

∑N

j=1
r⊤j Λrj − Tr

(
W⊤

r We

)
=

1

2

∑N

i=1
(Λ−1hei)

⊤ΛΛ−1hei +
1

2

∑N

j=1
(Λ−1hrj )

⊤ΛΛ−1hrj

− Tr
((∑N

i=1
f(X)ϕq(xi)h

⊤
ei

)⊤ ∑N

j=1
f(X)ϕk(xj)h

⊤
rj

)
=

1

2

∑N

i=1
h⊤
eiΛ

−1hei +
1

2

∑N

j=1
h⊤
rjΛ

−1hrj

− Tr
((∑N

i=1
f(X)ϕq(xi)h

⊤
ei

)⊤ ∑N

j=1
f(X)ϕk(xj)h

⊤
rj

)
=

1

2

∑N

i=1
h⊤
eiΛ

−1hei +
1

2

∑N

j=1
h⊤
rjΛ

−1hrj − Tr
(
H⊤

e KHr

)
(4)
=

1

2

∑N

i=1
h⊤
eiΣhei +

1

2

∑N

j=1
h⊤
rjΣhrj − Tr

(
H⊤

e HeΣ
)

=
1

2

∑s

l=1
σlh

⊤
e,lhe,l +

1

2

∑s

l=1
σlh

⊤
r,lhr,l −

∑s

l=1
σlh

⊤
e,lhe,l,

(7)

where in the last equation, we denote the dual variables corresponding to the l-th projection direction,
i.e., singular vectors in relation to the singular value σl, as he,l := He[:, l] = [he1 [l], . . . ,heN [l]]⊤ ∈
RN , hr,l := Hr[:, l] = [hr1 [l], . . . ,hrN [l]]⊤ ∈ RN , and Σ = diag{σ1, . . . , σs} ≜ Λ−1.

Based on both (7) and Theorem 3.2 in the paper, we have the following equations:

K⊤Khr,l = σlK
⊤he,l = σ2

l hr,l,

KK⊤he,l = σlKhr,l = σ2
l he,l.

Hence, we can rewrite

h⊤
e,lhe,l =

1

σ2
l

(KK⊤he,l)
⊤he,l =

1

σ2
l

h⊤
e,lKK⊤he,l =

1

σ2
l

h⊤
e,l(KK⊤he,l)

=
1

σ2
l

h⊤
e,l(σlKhr,l) =

1

σl
h⊤
e,lKhr,l =

1

σl
(K⊤he,l)

⊤hr,l

= h⊤
r,lhr,l,

(8)
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which leads to

J =
1

2

∑s

l=1
σlh

⊤
e,lhe,l +

1

2

∑s

l=1
σlh

⊤
r,lhr,l −

∑s

l=1
σlh

⊤
e,lhe,l

(8)
=

1

2

∑s

l=1
σlh

⊤
e,lhe,l +

1

2

∑s

l=1
σlh

⊤
e,lhe,l −

∑s

l=1
σlh

⊤
e,lhe,l

= 0.

(9)

Note that (7), (8) and (9) also hold for the data-independent projection weights case where f(X)
is an identity matrix. In this case, the entries in the induced asymmetric kernel K become Kij =
⟨f(X)ϕq(xi), f(X)ϕk(xj)⟩ = ⟨ϕq(xi), ϕk(xj)⟩, i, j = 1, . . . , N . This completes the proof.

Comments on Lemma 4.2 With Lemma 4.2, we validate that the objective J (1) in the primal opti-
mization problem reaches zero when the stationarity conditions are satisfied, i.e., the singular vectors
and their corresponding singular values in (4) are obtained. In the paper, the KSVD optimization for
self-attention is realized by incorporating the objective J as an additional regularization loss to the
original task-oriented loss, and then minimizing the total loss to zero as shown in (10) and (11) in
the paper. In this manner, we avoid solving the dual optimization that involves a SVD problem on a
kernel matrix. Moreover, as in the proof of Theorem 3.2, we note that the regularization coefficient Λ
in the primal optimization (1) corresponds to the singular values in the dual optimization (4). With
the SGD-based or AdamW-based algorithm, we flexibly integrate the hyper-parameter selection of Λ
into the optimization by setting Λ as a learnable parameter. In this case, Λ can be optimized together
with other model parameters by simply minimizing the total loss in (10) in the paper.

B More Experimental Results

B.1 Setup Details

This section provides the implementation details of all experiments included in the paper. Firstly, we
outline the main algorithm of our Primal-Attention mechanism in Algorithm 1 for clarity. Note that
in data-dependent cases with f(X), we take a subset of X by uniformly sampling n points from X
for efficiency aspects, as the main patterns of a matrix can be retained with random linear projections
shown by the Johnson–Lindenstrauss lemma [30]. This will be illustrated in details in the following.

Algorithm 1 Learning with Primal-Attention

Require: X := [x1, . . . ,xN ]⊤ ∈ RN×d is the input sequence to the attention block in Transformer,
mappings gq(·) : Rdq → Rp, gk(·) : Rdk → Rp defined in (6) in the paper, number of projection
directions s defined in (6) in the paper, regularization coefficient η defined in (10) in the paper,

Ensure: Transformation matrix f(X) =: FX ∈ RN×p defined in (6) in the paper is required if
data-dependent projection weights are used.
if Data-dependent projection weights then

q(xi) = Wqxi, k(xi) = Wkxi; ▷ Wq ∈ Rdq×d, Wk ∈ Rdk×d

e(xi) = (f(X)⊤We)
⊤gq(q(xi)); ▷ compute e-score for i = 1, . . . , N

r(xi) = (f(X)⊤Wr)
⊤gk(k(xi)); ▷ compute r-score for i = 1, . . . , N

oi = Wo[e(xi); r(xi)]; ▷ compute concatenated output with Wo ∈ Rdv×(2s)

else if Data-independent projection weights then
q(xi) = Wqxi, k(xi) = Wkxi; ▷ Wq ∈ Rdq×d, Wk ∈ Rdk×d

e(xi) = W⊤
e gq(q(xi)); ▷ We ∈ Rp×s, compute e-score for i = 1, . . . , N

r(xi) = W⊤
r gk(k(xi)); ▷ Wr ∈ Rp×s, compute r-score for i = 1, . . . , N

oi = Wo[e(xi); r(xi)]; ▷ compute concatenated output with Wo ∈ Rdv×(2s)

end if

UEA Time Series The UEA time series benchmark [31] consists of 30 datasets. Following the
setup in [11], we select 10 datasets for evaluation. For all experiments of our PrimalFormer and
Primal.+Trans., we adopt the data-dependent projection weights for Primal-Attention, i.e., we have
We|X := f(X)⊤We ∈ Rp×s and Wr|X := f(X)⊤Wr ∈ Rp×s. On account that some datasets
consist of long sequence samples, e.g., EthanolConcentration of length 1751, SelfRegulationSCP1 of
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Table 1: Ablation study on the two main hyper-parameters η and s. We report test accuracy (%) of
PrimalFormer on the UEA time series classification archive benchmark [31].

Dataset s
η Dataset s

η

0 0.1 0.2 0.5 0 0.1 0.2 0.5

EthanolConcentration
20 32.3 31.6 30.8 32.7

FaceDetection
20 64.2 67.1 66.2 66.4

30 30.0 33.1 31.9 30.4 30 65.0 65.3 65.2 65.7
40 30.8 32.3 33.1 31.9 40 64.5 65.6 66.5 66.7

HandWriting
20 26.7 28.4 27.3 26.9

HeartBeat
20 75.1 72.7 74.2 75.1

30 28.2 26.9 29.6 25.9 30 75.6 75.6 75.6 76.1
40 26.0 26.5 27.7 27.5 40 76.1 75.1 72.2 74.6

JapaneseVowels
20 98.1 98.1 97.3 97.8

PEMS-SF
20 86.1 85.6 83.8 84.4

30 98.1 97.6 97.3 97.6 30 83.8 86.7 82.1 86.7
40 98.1 98.1 97.6 98.4 40 86.1 89.6 86.7 85.0

SelfRegulationSCP1
20 91.5 92.5 90.8 91.8

SelfRegulationSCP2
20 57.2 53.9 55.6 56.1

30 92.2 91.8 92.2 92.5 30 55.6 53.9 55.6 55.8
40 91.8 91.8 91.5 91.8 40 52.9 56.1 53.9 53.3

SpokenArabicDigits
20 100 100 100 100

UWaveGestureLibrary
20 86.3 83.8 83.8 84.7

30 100 100 100 100 30 85.3 85.0 85.0 84.1
40 100 100 100 100 40 86.3 84.1 84.1 85.9

length 896, SelfRegulationSCP2 of length 1152, our choice of f(X) should include more information
about X for greater model flexibility while maintaining computational efficiency. In this regard,
we set f(X) := X ′ where X ′ ∈ Rn×p is a subset of the sequence data X ∈ RN×d by uniformly
sampling n = min{s ∗ rank_multi, N} points (rows) from X . We set rank_multi = 10 for most
cases, and set rank_multi = 5 for datasets including FaceDetection, HandWriting, JapaneseVowels,
PEMS-SF and SpokenArabicDigits, since they have shorter sequence lengths. In this manner, the
size of the transformation matrix f(X) is implemented as Rn×p with n ≪ N , reducing memory
requirements especially for long sequence data with large N .

Long-Range Arena Long-Range Arena (LRA) [39] consists of long-sequence scenarios: ListOps
of 2K sequence length, Text of 4K length, Retrieval of 4K, Image of 1K and Pathfinder of 1K.
With joint consideration of performance and efficiency, for all experiments of our PrimalFormer and
Primal.+Trans. in the paper, we adopt Primal-Attention with data-dependent projection weights and
set n = min{s ∗ 10, N}, i.e., rank_multi = 10, for all cases.

Reinforcement Learning D4RL [47] is a suite of continuous control tasks and datasets for bench-
marking progress in offline reinforcement learning. In this experiment, we consider Primal.+DT with
Decision Transformer (DT) [10] as the backbone. Specifically, we consider a three-layer DT with its
self-attention in third layer replaced by our Primal-Attention. As DT utilizes a causal self-attention
mask which predicts actions autoregressively, to align with the causal structure, we propose the
causal-version of Primal-Attention, namely, Causal Primal-Attention. For clarity, we attach the corre-
sponding PyTorch-like pseudo code in Listing 1 in this material. Note that for this task, we utilize
Causal Primal-Attention with the simpler data-independent projection weights, i.e., We,Wr ∈ Rp×s,
which helps to prevent overfitting in learning rewards in the RL training process.

Image Classification ImageNet-100 [48] contains 100 classes of images from ImageNet-1K [23].
On both ImageNet-100 and ImageNet-1K, we use Primal.+DeiT-Small/16 with standard DeiT-
Small/16 as the backbone. Specifically, the self-attention of the last layer of DeiT-Small/16 is replaced
by our Primal-Attention using data-dependent projection weights with the setup n = min{s ∗ 10, N},
i.e., rank_multi = 10.

Language Modelling We conduct the language modelling on the WikiText-103 [49], which aims to
estimate the probability distribution of a token given the previous ones. We replace the self-attention
in the last layer of the Transformer baseline with our Causal Primal-Attention using data-dependent
projection weights with the setup n = min{s ∗ 10, N}, i.e., rank_multi = 10.

6



Listing 1 PyTorch-like Pseudo Code of Causal Primal-Attention for RL
1 import torch
2 import torch.nn as nn
3 import torch.nn.functional as F
4
5 class CausalPrimalAttention(nn.Module):
6 def __init__(self, d_model, n_heads, low_rank, drop_out):
7 super(CausalPrimalAttention, self).__init__()
8 self.d_keys = d_model // n_heads # key dimension
9

10 self.query_projection = nn.Linear(d_model, self.d_keys * n_heads) # q(X)
11 self.key_projection = nn.Linear(d_model, self.d_keys * n_heads) # k(X)
12 self.out_projection = nn.Linear(self.d_keys * n_heads, d_model)
13 self.n_heads = n_heads
14 self.dropout = nn.Dropout(drop_out)
15
16 # data-independent projection weights
17 # "low_rank" is the number of projection directions "s" of KSVD
18 self.We = nn.Parameter(nn.init.orthogonal_(torch.Tensor(self.n_heads, self.d_keys, low_rank)))
19 self.Wr = nn.Parameter(nn.init.orthogonal_(torch.Tensor(self.n_heads, self.d_keys, low_rank)))
20 # projection after concatenating [e-score, r-score]
21 self.concate_weight = nn.Linear(2*low_rank, self.d_keys)
22
23 def feature_map(self, x):
24 # our cosine similarity kernel related feature maps
25 return F.normalize(x, p=2, dim=-1)
26
27 def forward(self, queries, keys, attention_mask=None):
28 B, L, _ = queries.shape # batch, length
29 _, S, _ = keys.shape # length
30
31 queries = self.query_projection(queries).view(B, L, self.n_heads, -1)
32 keys = self.key_projection(keys).view(B, S, self.n_heads, -1)
33
34 # transpose the queries and keys
35 queries = queries.transpose(1, 2)
36 keys = keys.transpose(1, 2)
37
38 # causal mechanism
39 # generate weights for Primal-Attention
40 normal = (((torch.arange(L)).float() + 1.0)).to(queries.device)
41 # conduct cumsum before the non-linear map (causal map)
42 queries = queries.cumsum(dim=2) / normal[None, None, :, None]
43 keys = keys.cumsum(dim=2) / normal[None, None, :, None]
44 # feature maps
45 queries = self.feature_map(queries)
46 keys = self.feature_map(keys)
47 # compute e-score and r-score
48 escore = torch.einsum('...nd,...de->...ne', queries, self.We.unsqueeze(0))
49 rscore = torch.einsum('...nd,...de->...ne', keys, self.Wr.unsqueeze(0))
50 score = torch.cat((escore, rscore), dim=-1)
51 out = self.concate_weight(score).transpose(1, 2).contiguous()
52 # final projection
53 out = out.reshape(B, L, -1)
54 out = self.out_projection(out)
55 out = self.dropout(out)
56 return out

B.2 Further Ablation Studies

Ablation on η and s The numerical investigations are conducted on the two main hyper-parameters
of our Primal-Attention, i.e., the coefficient η of the KSVD regularization loss and the number of
projection directions s. We consider the UEA time series datasets. The results of PrimalFormer, i.e.,
two-layer Transformer with Primal-Attentions, are given in Table 1 in this material. Firstly, compared
to η = 0, a rough tuning of η > 0 improves the performance for most of the datasets. For example,
η > 0 on FaceDetection leads to consistent improvement over η = 0. This indicates that the KSVD
optimization through the regularization loss J in (11) in the paper indeed brings performance boost
over its non-regularized counterpart. Secondly, even without the KSVD optimization, i.e., η = 0,
our Primal-Attention already leads to good performance, such as the results on SpokenArabicDigits,
SelfRegulationSCP2 with s = 20, and UWaveGestureLibrary with s = 20, 40. This verifies that the
new representation in Primal-Attention in (8) in the paper can effectively represent the self-attention
and conduct effective learning in the attention outputs. Thirdly, effective learning features can be
captured in less dimensions than the original embedding dimension and a performance boost can be
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Table 2: Ablation study on hyper-parameter s with η = 0.05. We report the rewards of Primal.+DT
on the D4RL datasets [47]. A higher reward indicates better performance.

Dataset /
Environment

Medium-Expert Medium Medium-Replay

s=32 s=64 s=96 s=32 s=64 s=96 s=32 s=64 s=96

HalfCheetah 56.9 73.1 75.6 42.9 43.1 42.8 39.5 37.9 39.3
Hopper 111.2 112.0 111.1 66.7 63.1 73.8 84.2 91.7 87.3
Walker 108.7 108.9 109.0 75.1 77.1 77.0 71.8 70.4 80.5

Table 3: Ablation on data-dependent and data-independent projection weights of our Primal-Attention
mechanism. We report the test accuracy (%) of Primal.+Trans. on UEA time series datasets [31].

Data-
dependent

Dataset Avg.
Acc.Ethanol

Concen.
Face

Detec.
Hand
Writ.

Heart
Beat

JPN
Vowels

PEMS
-SF

SelfRegu.
SCP1

SelfRegu.
SCP2

Spoken
ArabicDig.

UWave
GestureLib.

✗ 34.6 63.5 29.3 76.1 99.2 88.4 92.8 58.3 100 87.2 72.9
✓ 35.4 63.8 28.7 77.1 98.9 90.2 92.5 56.1 100 88.4 73.1

potentially gained with even fewer dimensions through our formulated KSVD. To be specific, the
embedding dimension for each head is 64, and we set s ∈ {20, 30, 40} in the experiments. Recall
that the average accuracy of the canonical Transformer is 71.9% in Table 1 in the paper, while our
PrimalFormer reaches 73.1%, which is 1.2% higher upon the canonical one. These results hence
show that an appropriate compression in the number of projection directions by KSVD could lead to
performance improvements when the low-rank property is desired. Note that since the kernel matrix
in the dual of our Primal-Attention is of size K ∈ RN×N , we limit s up to N , i.e., 0 < s ≤ N ,
as there exists at most N projection directions in the corresponding KSVD. In general, larger s
is preferred in more complicated tasks with more sophisticated dependency between samples in
the sequence data. For instance, the reward learning in RL is such a case where less information
compression is desired. This can be verified by the results given in Table 2 in this material, where the
best performance is attained with s as 64 or 96 in almost all cases.

Projection Weights We investigate the effects of projection weights in the data-dependent and
data-independent cases for Primal-Attention. Tables 3 and 4 in this material present the comparisons
between data-dependent and data-independent projection weights used in Primal.+Trans. on UEA
time series datasets [31] and also LRA benchmark [39]. On both benchmarks, data-dependent
projection weights case surpasses its data-independent counterpart. The reason of these results can
be that data-dependent projection weights help increasing the model’s representation ability and
capturing more informative features from the rather long sequences in these datasets. Furthermore,
for the data-dependent case, we set f(X) := X ′ where X ′ ∈ Rn×p is a subset of sequence data by
uniformly sampling n = min{s ∗ rank_multi, N} points from X ∈ RN×p. As shown in Table
1 in this material, for a given rank_multi in each dataset, the increase of s does not make the
results fluctuate much. Similar phenomenon is found on the LRA datasets during our experiments.
Therefore, for almost all experiments in the paper, we simply set n = min{s∗10, N} as default. This
can also serve as a mild suggestion for practitioners in implementation. We note that data-dependent
projection weights are not always in favor. For example, in the RL tasks, model is prone to overfit the
learning of rewards during training if we adopt the Primal-Attention with data-dependent projection
weights. Hence, we take the data-independent case instead. In the generalized form of the projection
weights with Primal-Attention, more possibilities of greater model representation ability are provided
to fit various tasks and datasets.

B.3 Further Remarks on Efficiency

Efficiency with Primal-Attention in architectures From our learning scheme in Figure 2 in the
paper and the empirical efficiency analysis with Tables 2, 4, 6 and 7 in the paper, we can see that the
efficiency gain of the Transformers implemented with Primal-Attention over canonical baselines is
influenced by two main factors, i) the number of Primal-Attention layers employed in the architecture,
i.e., the more the better; ii) sequence length of the training data, i.e., the longer the more significant:
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Table 4: Ablation on data-dependent and data-independent projection weights of our Primal-Attention
mechanism. We report the test accuracy (%) of Primal.+Trans. on the LRA benchmark [39].

Data-
dependent

Dataset Average Accuracy
ListOps Text Retrieval Image Pathfinder

✗ 37.0 40.2 74.3 80.8 65.6 59.6
✓ 37.3 43.9 74.3 81.0 65.4 60.4

Table 5: Architecture of Primal.+ on different datasets.

Primal.+ canonical_layer+[primal_layer] num_head head_dim

UEA 1+[1] 8 64
LRA 1+[1] 2 32

D4RL 2+[1] 4 64
WikiText-103 5+[1] 8 64

ImageNet 11+[1] 6 64

i) With deep architectures, the efficiency can be further improved by replacing more layers with
our Primal-Attention. Yet, in very deep Transformers, Primal-Attention is not necessarily
always superior in performance when being applied to all layers, as the learning in shallow
layers may not enjoy the benefits from the low-rank property from KSVD as much as the
higher layers do. It would be interesting to explore a more generic implementation setup for
Primal-Attention in very deep Transformers, as briefly mentioned in the last paragraph of
possible future work in this material.

ii) The length of the data sequence, i.e., N , is also a key factor influencing the efficiency.
By avoiding the computation of the N × N attention matrix, our Primal-Attention can
gain better efficiency on longer-sequence datasets. Although ImageNet-1K is large-scale,
currently Transformers treat each image as a sequence of length 197 (with cls token),
which is actually not too long (even compared to some UEA datasets as shown in Table
2 in the paper). Hence, this is also a reason why our Primal.+DeiT-Small/16 does not
improve the efficiency significantly in Table 7(a) in the paper. Similarly in WikiText-103,
the data sequence length is 512, which is also not really long, hence the efficiency of our
Primal.+Trans. is not always superior under the current setups.

Efficiency gain of Primal.+ in different Tasks The efficiency gain of Primal.+ over baseline is
more significant on UEA and LRA, as the backbone has only 2 layers, hence replacing one layer
makes a difference to the overall architecture. Moreover, UEA and LRA in general have longer
training sequence length, which would signalize Primal-Attention’s efficiency. In contrast, the
backbones on D4RL, WikiText-103 and ImageNet have more layers where canonical self-attention
layers are the majority structures in Primal.+ as shown in Table 5 in this material. Besides, the
efficiency gain is less significant also due to the shorter training sequence lengths on these datasets.

C Broader Impacts

Societal Impacts In this work, we provide a new perspective to interpret self-attention through a
KSVD problem with asymmetric kernels under the LSSVM framework. Compared to the canonical
Transformers, our method is more efficient in tackling long-sequence datasets with our more efficient
architectures that avoids the kernel matrix computation and also regularize the model with improved
low-rank properties. In this aspect, our method is more energy friendly as it can decrease the power
consumption during training.

Possible Future Works We introduce a new self-attention mechanism from the primal perspective
of the KSVD problem where feature maps are utilized rather than the kernels. We currently work on
the feature map corresponding to the Cosine similarity kernel in the paper that achieves state-of-the-art
performances on the evaluated benchmarks. For more general setups and applications, different
feature maps and backbone architectures can be further investigated. Therefore, it can extend our
method to a wider range of tasks and possibly gain better performance under practical scenarios.
These can be possible directions for future work.
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