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Abstract

Flow matching (FM) is a general framework for defining probability paths via
Ordinary Differential Equations (ODEs) to transform between noise and data
samples. Recent approaches attempt to straighten these flow trajectories to gen-
erate high-quality samples with fewer function evaluations, typically through
iterative rectification methods or optimal transport solutions. In this paper, we
introduce Consistency Flow Matching (Consistency-FM), a novel FM method
that explicitly enforces self-consistency in the velocity field. Consistency-FM
directly defines straight flows starting from different times to the same end-
point, imposing constraints on their velocity values. Additionally, we propose
a multi-segment training approach for Consistency-FM to enhance expressiveness,
achieving a better trade-off between sampling quality and speed. Experiments
demonstrate that our Consistency-FM significantly improves training efficiency
by converging 4.4x faster than consistency models and 1.7x faster than rectified
flow models while achieving better generation quality. Our code is available at
https://github.com/YangLing0818/consistency_flow_matching

1 Introduction

In recent years, deep generative models have provide an attractive family of paradigms that can
produce high-quality samples by modeling a data distribution, achieving promising results in many
generative scenarios, such as image generation [1-4]. As a general and deterministic framework,
Continuous Normalizing Flows (CNFs) [5] are capable of modeling arbitrary probability paths,
specifically including the probability paths represented by diffusion processes [6]. To scale up the
training of CNFs, many works propose efficient simulation-free approaches [7-9] by parameterizing a
vector field which flows from noise samples to data samples. Lipman et al. (2022) [7] proposes Flow
Matching (FM) to train CNFs based on constructing explicit conditional probability paths between
the noise distribution and each data sample. Taking inspiration from denoising score matching [10],
FM further shows that a per-example training objective can provide equivalent gradients without
requiring explicit knowledge of the intractable target vector field, thus incorporating existing diffusion
paths as special instances.

Straightness is one particularly-desired property of the trajectory induced by FM [9, 11-13], because
the straight path are not only the shortest path between two end points, but also can be exactly
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Figure 1: Comparison on CIFAR-10 dataset regarding the trade-off between generation quality and
training efficiency. Our Consistency-FM demonstrates the best trade-off compared to consistency
models [15] and rectified flow models [9, 16], converging 4.4 times faster than consistency models
and 1.7 times faster than rectified flow models while achieving better generation quality

simulated without time discretization. To learn straight line paths which transport distribution 7 to
w1, Liu et al. (2022) [9] learn a rectified flow from data by turning an arbitrary coupling of 7y and 7y
to a new deterministic coupling, and iteratively train new rectified flows with the data simulated from
the previously obtained rectified flow. Some works resort to optimizing with an optimal transport
plan by considering non-independent couplings of k-sample empirical distributions [14, 13]. For
example, OT-CFM [13] attempts to approximate dynamic OT, creating simpler flows that are more
stable to train and lead to faster inference.

However, despite their impressive generation quality, they still lack an effective trade-off between
sampling quality and computational cost in straightening flows. To be more specifically, iterative
rectification would suffer from accumulation error, and approximating an optimal transport plan in
each training batch is computationally expensive. Therefore, a question naturally arises, can one
learn an effective ODE model that maximally straightens the trajectories of probability flows without
increasing training complexity?

In this work, we propose a new fundamental FM method, namely Consistency Flow Matching
(Consistency-FM), to straighten the flows by explicitly enforcing self-consistency property in the
velocity field. More specifically, Consistency-FM directly defines straight flows that start from
different times to the same endpoint, and further constrains on their velocity values. To enhance
the model expressiveness and enable better transporting between complex distributions, we resort
to training Consistency-FM in a multi-segment approach, which constructs a piece-wise linear
trajectory. Moreover, this flexible time-to-time jump allows Consistency-FM to perform distillation
on pre-trained FM models for better trade-off between sampling speed and quality.

Comparison with Consistency Models Consistency Models (CMs) [15] learn a set of consistency
functions that directly map noise to data. While CMs can generate sample with one NFE, but they fail
to provide a satisfying trade-off between generation quality and computational cost [17]. Moreover,
enforcing consistency property at arbitrary points is redundant and potentially slows down the training
process. In contrast, our Consistency-FM enforces the consistency property over the space of velocity
field instead of sample space, which can be viewed as a high-level regularization for straightening
ODE trajectory. While CMs is able to learn consistency functions in a general form, Consistency-FM
parameterizes the consistency functions as straight flows, which enables faster training convergence
without the need for approximating the entire probability path.
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Figure 2: Training and sampling comparisons between flow matching (FM) [7], consistency model
(CM) [15] and consistency trajectory model (CTM) [17] and our Consistency-FM. While previous
methods can cause discretization errors or approximation errors, Consistency-FM mitigates these
issues by defining straight flows in simulation.

Main Contributions We summarize our contributions as follows: (i) We propose a new funda-
mental class of FM models that explicitly enforces the self-consistency in the space of velocity field
instead of sample space. (ii) We conduct sufficient theoretical analysis for our proposed Consistency-
FM, and enhance its expressiveness with multi-segment optimization. (iii) Preliminary experiments
on three classical image datasets demonstrate the superior generation quality and training efficiency
of our Consistency-FM (e.g., 4.4 times and 1.7 times faster than consistency model and rectified
flow).

2 Related Work and Discussions

Flow Matching for Generative Modeling Flow Matching (FM) aims to (implicitly) learn a vector
field {v¢ }4c[0,1], which generates an ODE that admits to the desired probability path {p; }+c(0,1) [7].
The training of FM does not require any computational challenging simulation, as it directly estimate
the vector field using a regression objective which can be efficiently estimated [7]. By the construction
of FM, it allows general trajectory of ODE and probability path, thus many effort have been dedicated
to design better trajectory with certain properties[14, 13, 18-20]. One particularly desired property
is the straightness of the trajectory, as a straight trajectory can be efficiently simulated with few
steps of Euler integration. Concurrent works Multisample FM [14] and Minibatch OT [13] propose
to generalize the independent coupling of data distribution py(x¢) and prior distribution p; (z1) to
optimal transport coupling plan 7(zg, 21 ). Under the optimal transport plan, the learned trajectory of
ODE will tend to be straight. However, their methods require constructing the approximated optimal
transport plan in each training batch, which is computationally prohibitive.

Rectified Flow [9, 11] can be viewed as a FM with specific trajectory. Rectified Flow proposes to
rewire and straighten the trajectory by iterative distillation, which requires multiple round of training
and may suffer from accumulation error. A recent work, Optimal FM [12] proposes to directly learn
the optimal transport map from p; to py and use it to calculate the vector field and straight trajectory.
However, computing the optimal transport map in high dimension is a challenging task [21], and
Optimal FM [12] only provides experiments on toy datasets. In this paper, we propose to straighten
the trajectory in a more flexible and effective approach by enforcing the self-consistency property in
the velocity field.

Learning Efficient Generative Models GANSs [22, 23], VAEs [24], Diffusion Models [25, 26, 1]
and Normalizing Flows [27, 28] have been four classical deep generative models. Among them,



GANSs and VAEs are efficient one-step models. However, GANs usually suffer from the training
instability and mode collapse issues, and VAEs may struggle to generate high-quality examples.
Therefore, recent works begin to utilize diffusion models and continuous normalizing flows [5] for
better training stability and high-fidelity generation, which are based on a sequence of expressive
transformations for generative sampling.

To achieve a better trade-off between sampling quality and speed, many efforts have been made to
accelerate diffusion models, either by modifying the diffusion process [26, 29-31, 4], with an efficient
ODE solver [32-34], or performing distillation between pre-trained diffusion models and their more
efficient versions (e.g., with less sampling steps) [35, 9, 36, 37]. However, most distillation methods
require multiple training rounds and are susceptible to accumulation errors. Recent Consistency
Models [15, 38] distill the entire sampling process of diffusion model into one-step generation, while
maintaining good sample quality. Consistency Trajectory Models (CTMs)[17] further mitigate the
issues about the accumulated errors in multi-step sampling. However, these method must learn to
integrate the full ODE integral, which are difficult to learn when it jumps between modes of the target
distribution. In this paper, we propose a new concept of velocity consistency with defined straight
probability flows, achieving most competitive results on both one- and multi-step generation.

3 Consistency Flow Matching

3.1 Preliminaries on Flow Matching

Let R¢ denote the data space with data point zo € R%, FMs aim to the learn a vector field vy (¢, z) :
[0,1] x R? — R?, such that the solution of the following ODE can transport noise o ~ pg to data

1 ~ p1:
dya(t)
dt = UG(t7’7z(t>)a

v:(0) =z
The solution of Eq. (1) is denoted by ~, (-), which is also called a flow, describing the trajectory of
the ODE from starting point x. Given the ground truth vector field u(¢, ) that generates probability

path p; under the two marginal constraints that p;—¢ = po and p;—1 = p1, FMs seek to optimize the
simple regression objective

ey

Eyp,|lvo(t,we) — u(t, z)|l3 @)
However, it is computational intractable to find such w, since v and p; are governed by the following
continuity equation [39]:
Opi(x) = =V - (u(t, z)pi(2)) (3)
Instead of directly optimizing Eq. (2), Conditional Flow Matching [7] regress vy (¢, ) on the condi-
tional vector filed u(¢, x¢|2z1) and probability path p;(z¢|z1) :

Et,q(zcl)EPt(i’t\wl) | |’09(t, xt) - ’U,(t, l’t|(L'1)H§ (4)

Two objectives Eq. (2) and Eq. (4) share the same gradient with respect to 6, while Eq. (4) can
be efficiently estimated as long as the conditional pair u(t, z¢|x1), p:(x¢|2z1) is tractable. Note that
recovering the marginal vector field and probability path from the conditioned one remains a complex
challenge [7].

3.2 Defining Straight Flows with Consistent Velocity

Motivation Recent FM methods for learning straight flows typically necessitate the approximation
the probability path p; and its marginal distributions py and p; [9, 11, 14, 40] , which are compu-
tational intensive and introduce additional approximation error. To address these challenges, we
introduce Consistency-FM, a general method to efficiently learn straight flows without the need for
approximating the entire probability path.

A straightforward approach to learn straight flows is to identify a consistent ground truth vector field
and then use objective in Eq. (2) for training. The definition of consistent velocity is v(t, v, (t)) =
v(0, x), indicating the velocity along the solution of Eq. (1) remains constant. However, due to the
intractability of original data distribution, it is also intractable to find such a vector field, or to design
a conditional vector field such that the corresponding marginal velocity is consistent [7, 14].
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Figure 3: Ilustration of training our consistency-FM.

Instead of directly regressing on the ground truth vector field, Consistency-FM directly defines straight
flows with consistent velocity that start from different times to the same endpoint. Specifically, we
have the following lemma (prove in Appendix A.1):

Lemma 1. Assuming the vector field is Lipschitz with respect to x and uniform in t, and are
differentiable in both input, then these two conditions are equivalent:

Condition 1. v(t,v,(t)) = v(s,v.(s)), Vt,s€0,1]

5
Condition 2. (1) + (1= £) (32 (1)) = 7(5) + (1= ) 0(s,70(5)), Ve, € [0,1],
where 7, (t) represents the solution of Eq. (1) at time ¢. Condition 2 specifies that starting from an
arbitrary time ¢ with data point -y, (¢), and moving in the direction of current velocity for a duration
of 1 — ¢, the resulting data will be consistent and independent with respect to ¢.

Velocity Consistency Loss While Condition 1 directly constraints the vector field to be consistent,
learning vector fields that only satisfy Condition I may lead to trivial solutions. On the other hand,
Condition 2 ensures the consistency of the vector field from a trajectory viewpoint, offering a way to
directly define straight flows. Motivated by this, Consistency-FM learns a consistency vector field to
satisfy both conditions:

Lo =Er B, oo, llfolt,ze) — fo- (t+ At zind) |3 + oo (t, 2e) — vo- (t+ At, iy ar)| |3

fot,xe) = x¢ + (1 —t) xvp(t, x¢), p
)
where U is the uniform distribution on [0, 1 — At], « is a positive scalar, At denotes a time interval
which is a small and positive scalar. #~ denotes the running average of past values of 6 using
exponential moving average (EMA), z; and x4 A follows a pre-defined distribution which can be
efficiently sampled, for example, VP-SDE [1] or OT path [7]. Note that by setting ¢ = 1, Condition
2 implies that v, (t) + (1 — t) * v(¢,v2(¢)) = 72(1) ~ p1, and thus training with Ly can not only
regularize the velocity but also learn the data distribution. Furthermore, if Condition 2 is met, then
the straight flows 7, (t) + (1 — ) * v(¢, 7. (¢)) can directly predict ; from each time point ¢ [15].

Below we provide a theoretical justification for the objective based on asymptotic analysis (proof in
Appendix A.3).

Theorem 1. Consider no exponential moving average, i.e., 0~ = 0. Assume there exists ground truth
velocity field u; that generates p; and satisfies the continuity Eq. (3). Furthermore we assume vy is
bounded and twice continuously differentiable with bounded first and second derivatives, the ground
truth velocity u; is bounded. Then we have:

Bllfo(t, ze)—fo(t-+ At zpn)|5 = (At)QEllve(t,xt)—u(t,xt)—(l—t)(atve+u-vxve)|I§+o(((%;)2)

Remark 1. The objective in Eq. (7),
El|vg(t, ;) — u(t,z¢) — (1 —t)(Ovg + u - Vov)||3,



can be seen as striking a balance between exact velocity estimation and adhering to consistent velocity
constraints. On the one hand, the objective aims to minimize the discrepancy between learned and
ground truth velocity vg(t, x:) — u(t, x4), aligning with the goal of FM-based methods [7]. On
the other hand, it also considers the consistency of the velocity. By Lemma 2 in the Appendix,
Orvg + u - V vy serves as a constraint for velocity consistency, which measures the changes of the
velocity after taking a infinitesimal step along the direction of ground truth velocity. Given the ground
truth velocity may not be consistent, this objective provides a trade-off between the sampling quality
and computational cost with straight flow.

3.3 Multi-Segment Consistency-FM

To enhance the expressiveness of Consistency-FM for transporting distributions in general probability
path, we introduce Multi-Segment Consistency-FM. This approach relaxes the requirement for
consistent velocity throughout the flow, allowing for more flexible adaptations to diverse distribution
characteristics. Multi-Segment Consistency-FM divides the time interval into equal segments,
learning a consistent vector field v} within each segment. After recombining these segments, it
constructs a piece-wise linear trajectory to transport noise to data distribution. Specifically, given a
segment number K, the time interval [0, 1] is divided with [0,1] = X '[i/K, (i + 1)/K]. Then
the training objective is defined as

Lo = BN By sl fo(tw0) = fo- (8 + Atozead) 15 + allvg(t, m0) — vp- (t+ Atz an) |3
folt,x) = o + ((i 4+ 1)k — t) x vh(t, x),

, (3)
where i denotes the i*" segment, ¢{* is the uniform distribution on [i/K, (i + 1)/K — At], 24, T4y A
follow a pre-defined distribution, At is a small and positive constant . v (¢, z;) are the flow and

the consistent vector field in segment i, respectively. A’ is a positive weighting scalar for different
segment, as vector field in the middle of [0, 1] is more difficult to train [41].

Below we provide a theoretical justification for multi-segment training. First, we analysis the optimal
solution for objective Eq. (8) and provide a explicit formula for the estimation error in Multi-Segment
Consistency-FM (proof in Appendix Appendix A.4):

Theorem 2. Consider training consistency-FM on segment i which is defined in time interval S, T).
Assume there exists ground truth velocity field u, that generates p, and satisfies the continuity equation
Eq. (3), let v*(t, x) denote the oracle consistent velocity such that

xr =z + (T — t)v*(t, x¢). 9)

Then the learned v} (t, 1) that minimize Eq. (8) in segment i at time t € [S, T — At] has the following
error:
vg(t, xe) — 0™ (¢, x4) :7(T I (V*(t+ Aty xppar) — 0 (8, 24))

“(
(T —t—A)(T —t) +
+ (T-t)+«

( é(t + Ata zt+At> - 'U*(t + At, It+At))
(10)

Remark 2. The mismatch between the learned velocity v} (¢, ;) and oracle velocity v* (¢, x) is
composed of two parts. The first part is the inconsistency of the oracle v* (¢t + At, xy1a¢) — v* (¢, x¢),
which is due to the fact that the ground truth velocity u(t, x;) might not be consistent. If u(t, ;)
is consistent within the time interval [S, T, then the oracle velocity is the ground truth velocity
v*(t,x) = u(t,x:) and v* (¢, z) is consistent, and thus the error in the first part will vanish. The
second part is the accumulated error from prior time step ¢ + At, and by induction, we can deduce
that this part will also vanish if the u(t, z;) is consistent. As a result, Consistency-FM can learn
the ground truth velocity with objective Eq. (4) on any time interval [S, T where the ground truth
velocity is consistent.

Corollary 2.1. Consider training consistency-FM on segment i which is defined in time interval
[S,T). Assume there exists ground truth velocity field u; that generates p; and satisfies the continuity
equation Eq. (3). If the ground truth velocity u is consistent within [S, T, then Consistency-FM can
learn the ground truth velocity, i.e., the learned vg(t, x1) = u(t, x) almost everywhere.



3.3.1 Distillation with Consistency-FM

Consistency-FM can also be trained with pre-trained FMs. For distillation from a pre-trained FM
uy(t, z¢), the consistency distillation loss for Consistency-FM is defined as

Loy = EvrEx,||fo(t,xe) — fo- (t+ At 37, 013 + allvg(t, z0) — vg- (t+ At, 37 5,113,
fot, ) = oy + (1 — t) xvg(t, x¢),

£f+At =z + At xug(t, ),

(11)
where U[0,1 — At] is the uniform distribution, u4(t, x) is the pre-trained FM, x; follows the
distribution from which u is trained, if ¢ is the one-step prediction using pre-trained model. For
distillation from a pre-trained FMs, we set the segment number K = 1, as evidences show that the
flows in pre-trained FMs are relatively straight [9, 14].

3.3.2 Sampling with Consistency-FM

Consistency-FM facilitates both one-step and multi-step generation. With a well-trained Consistency
FM vy(+, -) , we can generate sample by sampling from prior distribution 29 = pg and then evaluating
the model to transport the data through k£ segments:

Ti/k = T(i—1)/k T 1/k * Ué((l — 1)/k,l‘(i,1)/k),i =1,2,...k—1 (12)

Alternatively, iterative sampling can be employed with the standard Euler method within each segment
[42]:

Topar = Ty + At xvh(t, ), t € [i/k, (i + 1) /k — At] (13)

This approach offers a versatile framework that facilitates a balanced trade-off between sample quality
and sampling efficiency.

4 Experiments

Experimental Settings We evaluate our Consistency-FM on unconditional image generation tasks
for preliminary experiments. Specifically, we use the CIFAR-10 [43] and two high-resolution
(256x256) datasets CelebA-HQ [44] and AFHQ-Cat [45]. To make a fair comparison with previous
methods, we evaluate the sample procedure with NFE = {2, 6, 8}, adopt the U-Net architecture of
DDPM++ [25] as Rectified Flow [9] and use Frechet inception distance (FID) score [46] to measure
the quality of generated image samples. All models are initialized randomly, and more experimental
settings can be found in Table 1.

Table 1: Experimental details for training Consistency-FM.

Training Details CIFAR-10 AFHQ-Cat 256 x 256  CelebA-HQ 256 x 256
Training iterations 180k 250k 250k

Batch size 512 64 64
Optimizer Adam Adam Adam
Learning rate 2e-4 2e-4 2e-4

EMA decay rate 0.999999 0.999 0.999
Dropout probability 0.0 0.0 0.0

ODE solver Euler Euler Euler

Baseline Methods To demonstrate the effectiveness of our Consistency-FM, we follow previous
work [15] and compare Consistency-FM with some representative diffusion models and flow models,
such as Consistency Model [15] and Rectified Flow [9]. In the experiments on AFHQ-Cat and
CelebA-HQ datasets, we also add recent Bellman Sampling [16] for flow matching models as the
baseline.



4.1 Consistency-FM Beats Rectified Flow and Consistency Model

As demonstrated in Table 2, on CIFAR-10 dataset, Consistency-FM ’s NFE 2 FID (5.34) not only
surpasses representative efficient generative models like Consistency Model (5.83) and Rectified
Flow (378) on unconditional generation, but also is comparable to those mainstream diffusion models
with NFE > 30. Notably, in Fig. 1, our Consistency-FM significantly advances training efficiency,
converging 4.4 times faster than consistency model and 1.7 times faster than rectified flow while
achieving superior sampling quality. These evaluation results sufficiently show that our Consistency-
FM provides a more efficient way to model data distribution, proving the efficacy of our proposed
learning paradigm of velocity consistency for FM models.

Table 2: Comparing Consistency-FM with previous diffusion models and flow models on CIFAR-10.

Method NFE () FID() IS (D
Score SDE [25] 2000 220  9.89
DDPM [1] 1000 3.17 946
LSGM [47] 147 2.10 -

PFGM [48] 110 235  9.68
EDM [49] 35 204 984
[-Rectified Flow [9] I 378 .13

Glow [50] 1 48.9 3.92

Residual Flow [51] 1 46.4 -

GLFlow [52] 1 44.6 -

DenseFlow [53] 1 34.9 -

Consistency Model [15] 2 5.83 8.85
2

Consistency Flow Matching 5.34 8.70

4.2 High-Resolution Image Generation

Table 3 shows the quantitative result of FM models and our Consistency-FM on high-resolution
(256 x 256) image generation, including AFHQ-Cat and CelebA-HQ. We can observe that our
Consistency-FM also outperform existing SOTA FM methods like rectified flow and rectified flow
+ Bellman sampling [16] by a significant margin with same NFEs. Furthermore, compared to
CIFAR-10, Consistency-FM shows a greater improvement in generating high-resolution images.
This phenomenon demonstrates that our Consistency-FM can potentially learn straighter flows for
modeling more complex data distribution, enabling faster and better sampling.

Table 3: Comparing Consistency-FM with previous flow matching models.

Method AFHQ-Cat 256 X 256 CelebA-HQ 256 X 256
NFE () FID (}) NFE (}) FID (})
Rectified Flow [9] 8 57.0 8 109.4
Rectified Flow + Bellman Sampling [16] 8 33.9 8 49.8
Rectified Flow [9] 6 61.5 6 127.0
Rectified Flow + Bellman Sampling [16] 6 36.2 6 72.5
Consistency Flow Matching 6 22.5 6 36.4

4.3 Qualitative Analysis

We provide three convergence processes of training our Consistency-FM in Fig. 4. We observe
that Consistency-FM converges faster on CIFAR-10 than on AFHQ-Cat and CelebA-HQ because
the latter two high-resolution datasets are more complex to model their data distributions. Overall,
Consistency-FM consistently converges fast, proving the efficacy of defining straight flows for
generative modeling. Additionally, we qualitatively compare our method with rectified flow in Fig. 5.
From the generation results, we can observe that our Consistency-FM is capable of generating more
realistic images than rectified flow with the same NFEs, revealing our Consistency-FM models data
distribution more effectively.
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Figure 5: Sampling comparison between Rectified Flow [9] and our Consistency-FM.

5 Future Work

This work theoretically and empirically presents our new fundamental flow matching model. While
we achieve some improvements in generated image quality and training efficiency. We here discuss a
few directions for advancing this research:

» Text-to-image generation: While we demonstrates superior performance and efficiency
on unconditional image generation, extending to large-scale datasets and more complex



generation scenarios (e.g. text-to-image generation [54, 55, 3]) is necessary to further
improve the capacity of our proposed velocity consistency.

* Distillation with pretrained models: In method part, we provide a loss function to distill
pretrained FMs with our Consistency-FM. From a more general perspective, it is worth to
explore whether our Consistency-FM is able to distill both pretrained DMs and FMs.
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A Theoretical Supports and Proofs

A.1 PROOF OF LEMMA 1

Proof of Lemma 1. If Condition I is meet, then ODE Eq. (1) associated with v becomes

d%)f(ﬂ = v(t,v,(t)) = v(0,z),

and the solution of which is v, (t) = = + t * v(0, x). Specifically, we have

Y:(1) =2+ 1 xv(0, )
=Yz (t) + (1 =) xv(0,72(0)) = 72(t) + (1 — t) * v(t, 7x(t))
=Y2(s) + (1 = 8) xv(0,72(0)) = 72 (s) + (1 — 8) x v(t,72(5))

and thus Condition 2 is meet.

On the other hand, if Condition 2 is meet, then we have
’Vx(t) - 'VI(S) =(1- S)U(Sa%s(s)) - (1- t)v(t,%g(t))

-/ sy ()

Divide both hands in the above equation with ¢ — s and let ¢ approaches s, we have:

v(s,7z(s)) = lim M

t—s t—s ’
~ lim (1- S)U(S,%(S)t)_— (1= t)v(t, 72 (1) (14)

dv(s,s)

= Jim vt 3a(1)) + (1 — s) » A (E) 70l 7(0)) o

lim p— = 0(s,7(5)) — (1 - 5)

Comparing the both sides in the above equation, we have % = 0, and thus Condition 1 is
meet. O

A.2 PROOF OF LEMMA 2

We provide an another lemma which describes the consistency constraint as partial differential
equations and supports the connection bewteen Consistency-FM with FMs.

Lemma 2. Assume v is continuously differentiable and consistent, then v satisfies the following
equation:
Ov(t,z) +v-Vyo=0 (15)
Proof of Lemma 2. By Lemma 1, if v is consistent then it can be written as:
v(t + Atz + At xv(t, x4)) = v(t, 74) (16)

Since v is differentiable, we can take derivatives with respect to ¢:

d
= O+ v Vo (17
Then by definition, if v is consistent we have
d
d%’:atvjuv-vwv:o (18)
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A.3 PROOF OF THEOREM 1

Proof of Theorem 1. By the first mean value theorem, there exist a t e [t,t + At], such that
t+AL ,
TipAr — Ty = / u(s, zs)du = At u(t ,z,) (19)
t

Then by the definition of fy(t, z;) = x¢ + (1 — t) % vg(t, x1), we have:

fo(t,xe) — fo(t + At xeiar)
=ar — Tepar + (1 =€) xvp(t, ) — (1 — t — At) xvg(t + At, Teint),

t+AL
= At xvg(t + At, Ty nr) — / u(s,xzs)ds + (1 —t) * (vo(t,x¢) — vo(t + At, x44n1)),
t

=1 At (gt + Aty zegng) —ult @) + (1 — 1) (vp(t, ) — vo(t + At, T nr)),
=2 At x [(va(t + At,zipat) —u(t',x)) — (1 — ) (Opvp(t, z¢) +u(t', x}) - Vavg(t, 2:))] + O((A1)?)

(
=3 At * [(vo(t, m¢) — u(t, ;) — (1 — )(Qpva(t, m¢) + ult, x;) - Vava(t, 7)) + O((At)?),

(20)
where in (1) we used the first mean value theorem, in (2) we used first-order Taylor approximation
and in (3) we used the boundedness of vy, derivatives of vy and u. Then the objective can be written
as:

E||fo(t,z¢) — fo(t + At,xt+At)H%7
= E||At * (vg(t, ) — u(t,zs) — (1 — t)(Osvp +u - Vovp)) + O((A)?)]|3
= (At)? % E||vg(t,z¢) — u(t, ;) — (1 — ) (Ogve +u - Vive)||3 + o((AL)?)

A.4 PROOF OF THEOREM 2

Proof of Theorem 2. As v} (t, ;) is the minimizer of Eq. (8) with respect to segment 4, it must
satisfies the first-order condition:

0= (BIlf5(t,we) = fo- (t + Atz ar)l3 + ol lvg(t, 20) — vp- (t+ A, zriae)|[3)

= E((T = )(fs(t,w0) = fo- (t + Aty e ar)) + alvy(t, @) — vy (t+ Aty x4 a0))) - Dovp(t, 1),
. . (21)
where f}(t, z;) = xy + (T — t)vy(t, ;) Note that in our assumption, 41 A, is generated by an ODE
and thus is a deterministic function of (¢, z), then the non-trivial solution to 21 satisfies the following
equation almost everywhere:

0= (T —t)(fo(t,me) — fo- (t+ At,mepnr)) + (vj(t, ze) — v (E+ Atz ar)), (22)
As the gradient at 6 is zero, then § = 67, thus the learned velocity can be derived from 22:

(T*t)(xt_FAt*I't) (T*t*At)(T*t)+a
(T-t)2+« (T-t)?2+«

vp(t, o) = vh(t + At ziin)  (23)
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Furthermore, we have:

Ué(t7xt)
- (T_t)(xt+At_xt) (T—t—At)(T—t)-’—Oé «
- (T—t)Q—FOL (T—t)Z—FOé v (t+Ataxt+At)
(T—t—A) T —t)+a | (T —t—At) (T —t) +«
F A — * A
T—1P+a vg(t + At, x4 Ar) T—t2+a v (t + At 24 A¢)
o (T — t)((T — (t —+ At))'l}*(t + At,ﬂft+At) —+ T+ At — l’t) CM’U*(t + At, xt—&-At)
(T—-t)2+« (T-t)?+«
T—t—A)T—-t)+a, N
( (T — t))Q Ta ) (Ué(t + At,.’L't+At) — v (t —+ At, (Et+At))
1 (T =O)(r —x) | v (t+ At xiar)
- (T—-t)2+a (T -t +a
T—t— AT —t)+a, .
( T t))(Q +a) (vp(t + Atz ne) — V™ (E+ At 2 a))
o (T =t (t,2y) | o (t+ Aty a)
(T-t)2+a« (T—-t)??+a
T—t— AT —t)+a, .
( = 2)(2 OOk At — 0+ A s)
. a(v*(t+ Aty xppar) — v (¢ 24))
=v"(t,x) +
(T—-t)?+«
T—t—A)T—-t)+a, .
( (T — t))(Q T a ) (U@(t —|— At,.’Et+At) — v (t —|— At,l‘t+At))

(24)
where in (1) and (2) we have use the assumption of oracle v* that xp = ¢ + (T — t)v*(¢t,z;) O

A.5 PROOF OF COROLLARY 2.1

Proof for Corollary 2.1. Note that z7 = z7 + 0 % v)(T, zr), and thus we can set arbitrary value
for v} (T, x7) without affecting the model. Specifically, we set v} (T, x7) = v*(T, zr). Then by
Theorem 2, the error at T' — At is:

vg(T — At,xp_py) — v (T — At, mp_ay)

=m0 (L)~ - Atar_a)
T o 25
A () — v (1) .

— G (" (Ton) (T = Atyar_)

Furthermore, as u is consistent within [S, T], by Lemma 1 we have :
xp = xr + (T —t) x u(t, z),
= 0" (t,x¢) = u(t, ) = uw(T, z7),
= v*(t,xt) = ’U*(t + At,It+At),Vt € [S,T - At]
And thus v}) (T — At,zp_at) — v* (T — At,zr_ar) = 0.
By Theorem 2, we can deduce by induction that
vt + Aty wppnr) = v (E+ At wppar) & 0" (G ) = vF(E+ At 24 ar)
= vj(t, ) = v*(t,x¢) = u(t, ), Yt € [S,T — At].
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