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ABSTRACT

The goal of object-centric representation learning is to decompose visual scenes
into a structured representation that isolates the entities into individual vectors.
Recent successes have shown that object-centric representation learning can be
scaled to real-world scenes by utilizing features from pre-trained foundation models
like DINO. However, so far, these object-centric methods have mostly been applied
in-distribution, with models trained and evaluated on the same dataset. This is in
contrast to the underlying foundation models, which have been shown to be appli-
cable to a wide range of data and tasks. Thus, in this work, we answer the question
of whether current real-world capable object-centric methods exhibit similar levels
of transferability by introducing a benchmark comprising seven different synthetic
and real-world datasets. We analyze the factors influencing performance under
transfer and find that training on complex natural images improves generalization to
unseen scenarios. Furthermore, inspired by the success of task-specific fine-tuning
in foundation models, we introduce a novel fine-tuning strategy to adapt pre-trained
vision encoders for the task of object discovery. We find that the proposed approach
results in state-of-the-art performance for unsupervised object discovery, exhibiting
strong zero-shot transfer to unseen datasets.

1 INTRODUCTION

In the past decade, deep learning-based approaches have become ever more general, culminating in
models that exhibit broad and flexible vision (Dehghani et al., 2023; Oquab et al., 2023) and language
understanding (Brown et al., 2020; OpenAl Team, 2024). These so-called foundation models can
be applied to a variety of data and tasks in a zero-shot manner. An open challenge is how to equip
these models with the ability to robustly reason about visual inputs, that is, in a manner that supports
compositional generalization and causal reasoning (Scholkopf et al., 2021; Goyal & Bengio, 2022).
Evidence suggests that human cognition deals with these problems by dynamically binding raw
perceptual features into symbol-like entities that can be flexibly composed together and reasoned
over (Pinker, 1984; Spelke, 1990; 2000). Inspired by these findings, the field of object-centric
representation learning aims to replicate these abilities in deep learning models (Greff et al., 2020).
By mirroring the compositional generative process of the world (Brady et al., 2023), these methods
learn to decompose visual scenes into structured representations capturing the objects in the scene in
a fully unsupervised way. Not only can object-centric representations provably exhibit compositional
generalization (Wiedemer et al., 2024), they also support a diverse set of downstream tasks such as
world modeling (Ke et al., 2021; Wu et al., 2023a), robotic control (Zadaianchuk et al., 2020; Driess
et al., 2023; Didolkar et al., 2024; Haramati et al., 2024), visual question answering (Xu et al., 2024;
Mamaghan et al., 2024), and compositional generation in 2D (Singh et al., 2022a; Wu et al., 2023b;
Jiang et al., 2023) and 3D (Sajjadi et al., 2022; Jabri et al., 2023).
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While long con ned to simplistic synthetic datasets (Eslami et al., 2016; Greff et al., 2019; Engelcke

et al., 2020; Locatello et al., 2020), recent progress has scaled object-centric representations to
complex real-world image (Seitzer et al., 2023; Wu et al., 2023b; Jiang et al., 2023; Kakogeorgiou
etal., 2024; Lowe et al., 2024) and video datasets (Zadaianchuk et al., 2023b; Aydemir et al., 2023).
This success is enabled by the use of pre-trained features from self-supervised vision encoders such
as DINO (Caron et al., 2021). While it has been shown that the representations produced by such
self-supervised models are fairly robust to changes to the training distribution, it is wwbletirer the

same holds for an object-centric model trained on top of such representafibos, in this work, we

study the question of how well object-centric representations using pre-trained features transfer to new
data. This comprises (1) the ability of models to discover objects in unseen scenarios and (2) the robust-
ness of the object representation itself. In particular, we focus on the “zero-shot” setting, where models
are presented with object categories never seen during training. This setting is relevant as a model
with strong zero-shot abilities could serve as a “foundation model” for object-centric representations.

To this end, we introduce a benchmark consisting of 7 datasets comprising a diverse range of
synthetic and real-world scenes. Using this benchmark, we (1) seek to understand the zero-shot
transfer capabilities of existing models, and (2) study the properties of training datasets that in uence
generalization. The general conclusion we draw from this benchmark is that object-centric models
which are trained on naturalistic datasets consisting a variety of objects — s@ccas(Lin et al.,

2014) — usually exhibit decent zero-shot generalization.

Equipped with this knowledge, we aim to build a strong general-purpose object-centric model. To
achieve this, we rst make the observation that current approaches for real-world object-centric
learning (Seitzer et al., 2023; Wu et al., 2023b; Jiang et al., 2023; Zadaianchuk et al., 2023b; Aydemir
et al., 2023) usexed pre-trained encoders (e.g. with tBeno method (Caron et al., 2021)) to
encode the input. This may be limiting as, while the pre-trained encoders offer good general-purpose
features, they may not be optimal for the task of object discovery. Instead, we propose to netune
the encoder parameters for the target task; to this end, we introduce a suitable training recipe as well
as a novel decoder that reduces the increased computational costs from netuning. Building on the
DiNOSAUR model (Seitzer et al., 2023), our proposed netuning approach sets a new state-of-the-art
for real-world object-centric learning on ti@@co dataset, as well as in the zero-shot setting. Our
method shows zero-shot transfer across a multitude of diverse datasets, often achieving and even
surpassing the in-distribution performance on these datasets.

Our contributions are as follows:

» We introduce a benchmark to evaluate the transfer of real-world capable object-centric
learning methods (Sec. 3.1).

» Using the benchmark, we analyze the zero-shot capabilities of object-centric models
(Sec. 3.2) and investigate dataset properties for training generalizable models (Sec. 3.3).

* We propose a netuning approach applieddanoSAUR, which allows the stable adaptation
of the parameters of the pre-trained encoder for the task of object discovery (Sec. 4).

» The resulting method, FDINOSAUR, achieves state-of-the-art results across various in-
distribution and out-of-distribution scenarios (Sec. 5).

2 RELATED WORK

Object-Centric Learning on Real-World Datasets Originally, object-centric methods were mostly
applied to synthetic data with limited complexity (Johnson et al., 2017; Karazija et al., 2021; Greff
et al., 2022) and trained from scratch (Eslami et al., 2016; Burgess et al., 2019; Lin et al., 2020;
Locatello et al., 2020; Traub et al., 2023). Recently, there has been considerable interest (Elsayed
et al., 2022; Singh et al., 2022b; Seitzer et al., 2023; Zadaianchuk et al., 2023b; Wu et al., 2023b;
Didolkar et al., 2024; Léwe et al., 2024; Kakogeorgiou et al., 2024) in scaling those methods to
complex and unconstrained real-world image and video dataset€tike (Lin et al., 2014) or
YouTube-VIS (Yang et al., 2019). Current state-of-the-art techniques (Seitzer et al., 2023; Wu et al.,
2023b; Jiang et al., 2023; Kakogeorgiou et al., 2024; Aydemir et al., 2023; Zadaianchuk et al., 2023b)
rely on applying slot attention (Locatello et al., 2020) to frozen vision transformers (ViT) (Dosovitskiy

et al., 2021) pre-trained with contemporary self-supervised representation learning methods (Caron
etal., 2021; Oquab et al., 2023). Approaches differ by their learning objective; one line of models
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(a) Object discovery (FG-ARI). (b) Linear position probingR?).

Figure 1: Evaluating zero-shot transfer of current object-centric modelstrained on theCoco
dataset(a): object discovery performance in terms of FG-ARl): linear probing of object position
from slots in terms oR? score. We report results for mBO and category probing in Fig. A.1.

is based oDINOSAUR (Seitzer et al., 2023) and utilizes a feature reconstruction objective (Seitzer
et al., 2023; Zadaianchuk et al., 2023b; Kakogeorgiou et al., 2024; Aydemir et al., 2023), whereas
others apply diffusion objectives (Jiang et al., 2023; Wu et al., 2023b). Although these techniques
con rm that object-centric representation learnisgossible for complex real-world inputs, they

are also limited by the quality of self-supervised encoders, as those encoders remain frozen during
object-centric training. In contrast, our method, while starting from self-supervised features, adapts
them through object-centric netuning, making them more suitable for the task of object-centric
scene decomposition.

Zero-shot Transfer A paradigm rstintroduced by Larochelle et al. (2008), zero-shot transfer is

the application of models to tasks or datasets not seen during training. Recently, zero-shot transfer
has become more prevalent in deep learning due to the availability of large foundation models (Oquab
et al., 2023; Kirillov et al., 2023; OpenAl Team, 2024); these models utilize large-scale pre-training
to develop robust general-purpose abilities that can be applied zero-shot to various tasks and datasets.
In the context of object-centric learning, model transfer has been studied by testing models under
various types of distribution shifts, changing factors like object color, texture, or the number of
objects (Karazija et al., 2021; Dittadi et al., 2022; Wiedemer et al., 2024). Generally, these works only
change a single factor of variation between training and test data. However, in real-world settings,
distribution changes are much more uncontrolled than this: for instance, transferring to a novel
category of object might include (1) multiple simultaneous factor changes, aodr{f)letely new
factors of variation. Thus, in this work, we study this more challenging setting by evaluating the
zero-shot transfer to arbitrary object categories.

Task-Speci ¢ Finetuning While pre-training models on large and diverse datasets often offers
good baseline performance for zero-shot transfer (Radford et al., 2019; Kirillov et al., 2023; Oquab
et al., 2023), further improvement can be achieved by netuning the model for the target task. For
example, self-supervised vision representations (Caron et al., 2021) can be adapted by netuning for
the tasks of unsupervised semantic segmentation (Hamilton et al., 2022; Zadaianchuk et al., 2023a) or
multi-object tracking in videos (Salehi et al., 2023; Tumanyan et al., 2024). In this work, we similarly
propose to adapt pre-trained vision representations by netuning them for the task of object discovery.

3 WHAT MATTERS FORTRANSFER OFOBJECTFCENTRIC REPRESENTATIONS

In this section, our goal is to (1) measure the degree to which real-world capable object-centric
models support zero-shot transfer, and (2) understand the factors in uencing the models' transfer
ability. For (1), we introduce a benchmark for measuring zero-shot performance in Sec. 3.1 and
compare models in Sec. 3.2. For (2), we study the impact of training data on transfer in Sec. 3.3.
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3.1 BENCHMARK FORZERO-SHOT TRANSFER

Our goal is to test the zero-shot transfer of real-world capable object-centric models utilizing pre-
trained features. As this class of model is typically trained onGbeo dataset (Lin et al., 2014), we

also useCoco as the training dataset for our benchmark. For our benchmark, we interpret zero-shot
transfer to mean that a model can successfully discover objects of cetegloriesnot occurring

in the training data. Objects of different categories (e.g. humans; cars) have at least one factor of
variation that is not shared between them (e.g. eye color; number of wheels); thus, we use “category”
as a criterion to make sure there is suf cient difference between train and test sets.

Evaluation Datasets To obtain a test bed that robustly measures zero-shot performance, we gather
the evaluation splits of several datasets previously proposed by the object-centric community, with
diverse properties and increasing complex®reVvRTEX (Karazija et al., 2021)SCANNET and
YcBas used in Yang & Yang (2022), ahdlovi-C andMovi-E (Greff et al., 2022). Additionally,

we add the challenginBNTITY SEG dataset (Lu et al., 2023), consisting of in-the-wild real-world
images with high-quality mask annotations. WHHSTITY SEG includes images with categories

also occurring in th&€€oco dataset, it is an open world dataset without pre-de ned classes; thus, we
consider it adequate for the purpose of this benchmark. In total, we gathered 6 datasets with a total of
18874 images. For analysis, we also useRRscAL Voc (Everingham et al., 2012) dataset, but

do not include it in the zero-shot benchmark as its set of categories is fully included in the COCO
dataset used for training. For further details on the datasets, we refer to App. E.

Metrics  Similar to prior work (e.g. Dittadi et al., 2022), we evaluate the object representation in
terms of object discovery (do the masks associated with each object align with the true object masks?)
and downstream property prediction (are the representations informative about the objects?). To
aggregate results over different datasets, we computgetheample averageormalizing by the
dataset size (see Table E.9). We now provide a brief overview of the metrics; see App. F for detalils.

Forobject discoverywe compute the commonly uséateground AR(FG-ARI) (Rand, 1971; Hubert

& Arabie, 1985), measuring how well the discovered objects follow the separation prescribed by
the reference mask annotations. In addition, we computmtian best overlapmBO) (Pont-Tuset

et al., 2017), measuring how well the discovered masks t to objects. To measure (in-distribution)
performance on th€oco dataset, we additionally evalugpanoptic scene decompositiamto
“things” (objects) and “stuff” (background). This is sensible because on real-world images, there is
no clear distinction between objects and background from the model's point-of-view. To this end, we
computepanoptic ARI(P-ARI) andclass-agnostic panoptic qualiiPQ), where the latter measures
both mask quality and precision/recall (Kirillov et al., 2019). Bownstream property predictiomwe
closely stick to the protocol of Dittadi et al. (2022). In particular, we train linear predictors (probes)
on top of the object representation to predict position and category (where available) of the objects.
For position, we use thR? score as a metric; for classi cation, we use accuracy.

3.2 EVALUATING MODELS

Models We evaluate three recent methods capable of real-world object-centric learning, all using
pre-trainedDINO features as inputBINOSAUR (Seitzer et al., 2023), which also udesno features

as targets;SPoT (Kakogeorgiou et al., 2024), which builds up@nNOSAUR by improving the
decoder; and SlotDiffusion (Wu et al., 2023b), which uses a diffusion decoder. We limit ourselves
to pre-trained feature-based methods as other approaches have not shown scalability to real-world
data. To showcase the gap between state-of-the-art supervised and unsupervised methods for object
discovery, we evaluate the Segment Anything mo&eal\) (Kirillov et al., 2023), a supervised
segmentation foundation model known for its zero-shot capabilities. We use two con gurations: for
SAMm (best), we use the largest available model (ViT-Huge), and pick the mask con dence threshold
resulting in the best performance per-dataset; in contrast to current object-centric methods, this results
in a variable number of masks per-image. For better comparability, we also evaluate a faseline
(comp.), using a ViT-Base encoder and a xed number of masks. Please refer to App. D for details
about the models.

!Note that for our purposes, we are not going to take into account the data the utilized self-supervised
pre-trained models (e.@INO) were trained on (e.g. ImageNet). This is because our primary interest is in the
transfer of the object-centric components, which are trained on a distinct set of imagesoeq). C
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(a) Varying train datasets. (b) Varying train dataset size.

Figure 2: Effect of training data on transfer of the DINOSAUR model. Performance in FG-ARI,
see Fig. A.2 for corresponding plots with mB@): comparing transfer to in-distribution performance
for different training dataset¢b): scaling behavior for training on differently sized subset€ofco.

Results We present the results in Fig. 1 and Fig. A.1, with example predictions in App. G. For
object discoveryDINOSAUR and SlotDiffusion are on par in terms of FG-ARI, while SlotDiffusion
achieves the best mBO. Unsurprisingdam (best) outperforms the unsupervised methods; this is
especially pronounced in terms of mBO — the difference can be explain&diis ability to output

a variable number of masks, which allo®sMm to discover smaller objects not captured by methods
with a xed number of slots. If we remove that privilege, the SAM (comp.) baseline is inferior to the
unsupervised models on many datasets, with the exceptiGn®fRTEX. Fordownstream property
prediction we nd DINOSAUR to perform best on average, allowing for a decent property readout on
most datasets. We also evaluate property predictioDfaoSAUR models trained in-distribution

on each dataset. Comparing the average performance of the zero-shot model to the in-distribution
models, we see similar results for predicting categories (+1% rel. change), and only slight drops
for predicting positions (-11% rel. change). We conclude that object-centric models already exhibit
decent zero-shot generalization to unseen datasets.

3.3 BVALUATING TRAINING DATA

So far, we used the same training data for comparing the models — a natural question is how the
training dataaffects transfer behavior. To answer it, we trRBINOSAUR on different training datasets

and evaluate the zero-shot performance in terms of object discovery. We organize our experiments
into two groups: (1) varying the data distribution, and (2) varying the amount of samples from a
particular data distribution. The former allows us to identify properties of the data that in uence
zero-shot behavior, whereas the latter investigates how models scale with data.

Properties of the Data Distribution To obtain training datasets with different properties, we
utilize the training splits belonging to the benchmark datasets listed in Sec. 3.1. We characterize
the training datasets along three dimensiagaalism — in terms of the three categories synthetic
(CLEVRTEX), hybrid (Movi, SCANNET, Y cB) and naturalPASCAL Voc, COCO, ENTITY SEG);
diversity — on a spectrum from narrow to broad (rougl@yeVRTEX  SCANNET, Y CB, PASCAL

Voc Movi Coco ENTITYSEG); and theamount of objects— ranging from few PASCAL

VOC) to moderate (up to 8CLEVRTEX, SCANNET, Y CB) to many Movi, Coco, ENTITY SEG).

The results are shown in Fig. 2a.

First, we nd that training and evaluating in-distribution, i.e. on matching datasets, unsurprisingly
performs best in general. Training egntheticand hybrid datasets transfers well to datasets in
those categories, but not to natural data; converseliyral data transfers well to synthetic and
hybrid data. Next, we nd that the zero-shot performance is fairly similar when train€tao
andENTITY SEG (high diversity, many objects), dASCAL Voc (less diversity, few objects). This
shows that having complex natural data is more important for zero-shot performance compared to
data diversity. Moreover, even when trained on natural data with few object$fesgAaL VoOC),

the model transfers well to datasets with more objects sudl@gi, Coco, andENTITY SEG.
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Figure 3: Overview of our method “FT-DINOSAUR”. A Object-Centric Finetuning: starting from
DiNnov2, the encoder is netuned for the task of object discovery onGbeo datasetA High-Res

Adaptation: the model is further adapted to high-resolution image3ransfer: at test time, we
transfer the trained model to different datasets from our proposed benchmark (Sec. 3.1).

Overall, we can conclude that training on natural data leads to strong zero-shot performance of
current object-centric models.

Effect of Data Scale We now investigate the effect of the number of training data points. To
do so, we trairDINOSAUR on differently sized subsets of tli@@co dataset (up to 240k samples
when including the'unlabeled” split). From the results in Fig. 2b, we nd that in-distribution
performance plateaus around 8 192 samples, and zero-shot performance around 16282 (
samples. Intriguingly, this shows that current object-centric models can be very sample ef cient in
obtaining decent in-distribution and competitive zero-shot generalization. However, we do not nd
evidence of favorable data scaling laws.

3.4 SUMMARY

Our initial question was whether object-centric models based on pre-trained models inherit some of
their generality. Our results show that this is indeed the case, as the models weDestzsAUR,

Spor, SlotDiffusion) exhibit decent zero-shot transfer to unseen object categories. Furthermore, our
experiments show that training on complex natural data is an important component for zero-shot
transfer, which can be attributed to the inherent complexities associated with such data. In addition,
real-world datasets offer a signi cantly larger catalog of objects and instances to train on compared
to synthetic or hybrid datasets.

Equipped with this knowledge, we shift our focus to enhancing the performance of unsupervised
object-centric models. Speci cally, the question we askdan we improve object-centric represen-
tations by netuning pre-trained encoders for the task of object discovery?

4 OBJECTCENTRIC FINETUNING

Current methods for real-world object-centric learning (Seitzer et al., 2023; Jiang et al., 2023; Wu
et al., 2023b; Kakogeorgiou et al., 2024; Zadaianchuk et al., 2023b; Aydemir et al., 2023; Lowe et al.,
2024) are all based on pre-trained self-supervised features (Caron et al., 2021; Oquab et al., 2023).
While those features offer good performance for many downstream tasks out of the box, they are not
explicitly designed for theéask of object discoveryWe conjecture that this gap between training

and downstream objective leads to sub-optimal transfer performance. Thus, we propose to adapt the
pre-trained features ktpsk-speci ¢ netuning— Fig. 3 shows our approach.
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Figure 4. Visualization of encoder features inDINOSAUR (frozen DINO V2 features) and for fea-

tures adapted with object-centric netuning. We show the 1st to 3rd PCA components visualized

by different RGB channels (second column). The last column shows scene decomposition masks by
each method. More examples and additional PCA components are shown in Fig. A.4.

4,1 HNETUNED DINOSAUR

Finetuning We rst describe how we adapt tH2INOSAUR architecture (Seitzer et al., 2023) for
netuning. DINOSAUR uses a pre-trained ViT as the encoder that is kept xed during training. The
original work reported that unfreezing the encoder leads to a collapse; this is because the encoder
features are simultaneously used as the model's prediction targets. To sidestep this problem, we add
atarget encodethat is initialized to be a copy of the original encoder, but kept xed throughout
training. This allows us train the full model end-to-end without collapse.

We found that the encoder would initially drift away from its pre-trained initialization, likely induced

by the noisy gradients from the randomly initialized slot attention module. To reduce the effect of
this, we introduce blockwise exponentially decaying learning rates (Howard & Ruder, 2018) for
the encoder. Furthermore, we found a better set of hyperparameters, namely a lower learning rate,
switching to a cosine learning rate schedule (Loshchilov & Hutter, 2017), lower gradient clipping,
weight decay on the encoder and a higher batch size. We detail the exact settings in App. C.4. The
ef cacy of this improved setup is shown by the fact that we can now also train the model starting
from arandomly initializedViT encoder (42.3 FG-ARI, 27.3 mBO), a scenario which was previously
reported as leading to collapse by Seitzer et al. (2023). We further expand on this setup in Section
A. We also experimented with an EMA student-teacher setup to continuously adapt the targets
throughout training, but found that this leads to worse results (see App. A.2).

High Resolution Adaptation A further way to make more effective usage of data is to increase
the image resolution. Standard ViTs use a relatively low resolutid@®df 224 pixels, leading to a
patch resolution 016 16 when trained with patch size4. This hides details, inhibits capturing
smaller objects, and leads to coarser objects masks. Thus, after trai@i?gy a24resolution, we
add a short second stage of training, in which the model is adapted to image resol&tiéh t&18
(i.e.37 37 patches) over 10000 steps. This is simlanov2's training strategy (Oquab et al.,
2023), and adds signi cant improvements (Sec. 4.3) without a high computational burden.

Ef cient Top-K Decoding  Finetuning the encoder and high resolution adaptation both signi cantly
increase the costs in terms of computation and memory. To mitigate this, we introduce a novel
ef cient decoding approach based on the MLP decoder introduced by Seitzer et al. (2023), which
we calltop-k decodingFor each ofN patches, the MLP decoder produces an output by combining
the predictions ove€ slots using a slot-wise weighted average, resulting in a computational cost
of O(N C). Our insight is thamost of this computation is wasteals slots are localized and
mostly sparsely distributed across the image — instead, it suf ces to decolenbest likely slots
occupying a patch, reducing the cost&x(N ) for constank. While we do not have access to the
true occupation probabilities apriori, empirically we found that the masks from slot attention can
serve as a good proxy. We refer to App. C.3 for more details.
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Table 1: Ablation study on Coco. Starting fromDINOSAUR (Seitzer et al., 2023) ( rst row), we

ablate the impact of switching INOV2, netuning the encoder (FT), improving general (G-HP)

and encoder hyperparameters (E-HP), adding top-k decoding and high-resolution adaptation. Results
averaged over 3 random seeds besides last two rows, which use 5 seeds.

Model FT G-HP E-HP FG-ARI mBO P-ARlI pQ DINO *Diovz  +FT  +Hi-Res

DINO VIT-B/16 7 7 7 40.3 272 37.1 144

DiNOV2 ViT-S/14 7 7 7 425 288 395 16.3
7 3 7 429 29.1 39.8 16.8
3 7 7 46.5 29.8 422 179
3 3 7 48.0 30.6 42.8 18.8
3 3 3 48.5 30.7 42.6 19.0
+Top-k 3 3 3 46.4 32.0 435 195
+Top-k, +Hi-Res 3 3 3 46.6 356 49.6 23.6

4.2 ANALYSIS

Object-centric netuning adapts the pre-trained encoder such that the orginal?2 features can

be predicted better, with the slot representations acting as a bottleneck. To better understand the effect
of this procedure, we study how the encoder representations change after netuning. In Fig. 4 and
Fig. A.4, we show the rst PCA components obtained fremnov?2 features (used bR INOSAUR)

and from features after object-centric netuniriginov2 features mainly exhibit semantic similarity,

i.e. one component often corresponds to several different objects or parts of the same category (such
as human heads). In contrast, after object-centric netuning, PCA components are noticeably object-
centric, splitting instances of the same category and grouping together different object parts into
one component. To con rm this observation quantitatively, we apply per-image k-means clustering
to the two types of features. GDoco, we nd that the clustering of features from object-centric
netuning corresponds better to object instances, reaching 34.0 FG-ARI and 28.7 mBO in contrast to
27.4 FG-ARI and 24.7 mBO for the originaliRov2 features.

4.3 ABLATIONS

In Table 1, we analyze the contribution of different components of our model ddlo® dataset,
starting from the originaDINOSAUR model and ending with our nal model. First, we nd that
switching fromDINO to DINOV2 leads to moderate improvements (+2.2 FG-ARI and +1.6 mBO).
Adding netuningresults in a strong improvement of FG-ARI (+4.0), demonstrating the importance

of task-speci c adaptation. To evaluate dwyyperparameter changewe split them into two groups:
general hyperparameters (cosine schedule, lower learning rate, lower gradient clipping), and encoder
hyperparameters (blockwise learning rates, lower encoder learning rate, encoder weight decay).
The changes to the general hyperparameters result in moderate improvements (+1.5 FG-ARI, +0.8
mBO, +0.9 PQ), with the changed encoder hyperparameters contributing further small improvements.
Introducingtop-k decodingeduces FG-ARI (-2.1), but increases the other metrics (e.g. +1.3 mBO).
Finally, high-resolution adaptatioresults in further strong boosts (+3.6 mBO, +6.1 P-ARI, +4.1 PQ).

5 EVALUATION

To evaluate our approach, we use our benchmark to answer the following three questions:

« How does our proposed netuning methodology work on diverse datasets (Sec. 5.1)7?
* How does our method compare to prior methods for real-world object-centric learning (Sec. 5.2)?
« How does our method perform on the introduced zero-shot benchmark (Sec. 5.3)?

5.1 EvALUATION OF OBJECTCENTRIC FINETUNING

We rst validate our proposed netuning approach as a general methodology by training on diverse
datasets. In particular, we traillaNOSAUR model using éDINOvV2 backbone with and without
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Model FG-ARI mBO P-ARI PQ

DINOSAUR 40.5 277 37.1 144
SlotDiffusio¥  37.3 314 47.6 21.0
SpoTY 37.0 348 524 21.3
FT-DINOSAUR 48.8 36.3 49.4 239

SAM (comp.y 12,1 19.0 108 9.4
Sam (besty 449 569 54.4 10.9

Figure 5. Normalized performance when Table 22 Comparison to prior work on Coco.

adding netuning to DINOSAUR for in- We use a ViT-B/14 encoder with top-k de-

distribution training, using a ViT-S/14DINOV2  coding and hi-res. adaptation. Results for

encoder. Finetuning shows strong gains on al[FT-)DINOSAUR averaged over 3 seeds. Results

datasets. Numerical results in Table A.4. markedy evaluate of cial checkpoints, super-
vised models in gray. We compare to more base-
lines in Table A.5.

netuning on the training splits of the datasets we used for analysis in Sec. 3.3, and evaluate
in-distribution The results are listed in Fig. 5. We nd that adding netuning results in strong
improvements on both FG-ARI (up to 11 points) and mBO (up to 5 points) across all 8 datasets. First,
this demonstrates that netuning, when using our training recipe, is a general strategy to improve
performance of slot attention-based object-centric models with pre-trained backbones. This is in
contrast to Seitzer et al. (2023)'s ndings, who reported collapsing slots when netuning the pre-
trained ViT encoder. Second, this shows that while pre-trained features obtained from self-supervised
methods likeDINOV2 are powerful, it is possible to improve upon them with task-speci ¢ netuning.
Interestingly, even though the model's objective iptedict DiINOV2 features, the optimal input to

slot attention areot those exact features. Following our analysis in Sec. 4.2, we conjecture that
netuning adapts the features to simplify grouping under the inductive biases of the model.

5.2 COMPARISON TOPRIOR WORK ON REAL-WORLD OBJECTCENTRIC LEARNING

Second, in Table 2, we compare our full approach with prior work orCthe o dataset. We nd

that our method sets a new state-of-the-artGmco, achieving better results than all previous
unsupervised object-centric methods, except being slightly worsesanon the panoptic ARI
metric. Moreover, our method also outperforms 821 (comp.)baseline (ViT-Base encoder, same
number of masks) on all metrics. In particular, our method has strongly improved FG-ARI (+9),
indicating much better object discovery capabilities — it even achieves higher FG-ARI th8anhe
(best.)baseline (ViT-Huge encoder, variable number of masks). However, there is still a large gap
to SaM's mBO, which we attribute to 1pAM's generally higher mask quality, and 2) its ability to
capture a variable number of objects, which in particular leads to nding more small objects. We
refer to Fig. G.6 for example predictions.

5.3 ZERO-SHOT EVALUATION

Finally, we evaluate our method in terms of its zero-shot performance. First, in Fig. 6, we compare the
zero-shot performance of our model netunexlCoco (without top-k decoding or high-res. adap-
tation) to the performance of our model netuniddistribution We nd that transferring from
Cocoyields comparable results to training in-distribution on most dataSetsNNET, ENTITY-

SEG), and even surpassesdistributiontraining on some datasets!Ovi-C, Y cB) — surprisingly,
object-centric netuning does not hurt generalization (e.g. by over tting), indicating that it adapts the
model to thetaskrather than thelata Overall, this shows that task-speci ¢ netuning on diverse
real-world data is a viable path to obtain zero-shot object-centric models.

Second, in Fig. 7, we compare the zero-shot performance of our full model (including top-k decoding
and high-resolution adaptation) to prior work. Averaged over all datasets, our approach achieves
both the highest FG-ARI and mBO, while previous work generally trades off high FG-ARI with low
mBO (DINOSAUR), or high mBO with low FG-ARI (SlotDiffusionSpoT). On top of netuning, we
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Figure 6: Comparing in-distribution training  Figure 7: Zero-shot performance averaged
vs.zero-shot transfefrom Coco for our ne-  over datasets. FT-DINOSAUR performs best
tuning approach. Overall, performance is simi- both in FG-ARI and mBO. Results per datasets
lar. Numerical results in Table A.4. available in Table A.6.

ascribe this to our usage of the MLP decoder (higher FG-ARI) in combination with high-resolution
training (higher mBO).

Last, we compare our model 8aM. SAM (comp.)generally performsvorse than our modeshow-

ing the dif culty of unsupervised scene decomposition in the absence of task-speci ¢ information.
For Sam (best.) there is still a large difference to our approach in terms of mBO (30.7 points),
while the difference in terms of FG-ARI is much smaller (8.3 points). Taken together, these results
show that unsupervised object-centric modelscdosing the gap to supervised methods in terms of
zero-shot object discoveryhis is astonishing, given th&am was trained on 10 million images

with over 1 billion mask annotations. Furthermore, a principal advantage of object-centric models
over SAM is that they come equipped with explicit object representations. While mask quality as
measured by mBO is lacking behi®am, we are hopeful that this gap is addressable by training on
even higher resolution images and introducing innovations for variable number of slots. Finally, in
the appendix, we present a comparison of the masks obtained from the proposed approach and all
baselines (App. G), and comprehensively study failure cases of our model (App. B).

6 CONCLUSION

In this work, we have introduced a benchmark of diverse real-world and synthetic datasets to study
the zero-shot capabilities of object-centric representation learning models. Our ndings indicate
that object-centric models using pre-trained encoders already exhibit notable zero-shot capabilities
when trained on real-world data. We then presented a netuning procedure for adapting pre-trained
encoders to the task of object discovery, demonstrating that this approach achieves state-of-the-art
results across 8 datasets in both in-distribution and out-of-distribution scenarios. We believe that our
contributed tools — the zero-shot benchmark and stable netuning — are important stepping stones
towards an object-centric foundation model.

Our benchmark showed the importance of the type of training data for zero-shot transfer. Our
experiments indicate that training on complex natural data is important, suggesting an exciting
direction to design curated datasets for zero-shot object-centric learning. Moreover, our benchmark
revealed that current object-centric models are highly sample-ef cient but fail to leverage larger
datasets to improve performance at current model sizes. This result is signi cant because it suggests
that, unlike other deep learning domains, stronger object-centric models cannot be achieved simply by
scaling up data alone. We hope our ndings will encourage the community to develop object-centric
models that scale effectively with both data and model size.

Finally, to build general-purpose object-centric models, it is crucial that the learned object-centric
representation are useful for real-world downstream tasks. In this work, we evaluated downstream
property prediction, which can already serve as a proxy for more complex tasks. While the down-
stream applicability of object-centric representations has been explored with various tasks — such as
reinforcement learning (Yoon et al., 2023), dynamics prediction (Wu et al., 2023a), compositional
image generation (Wu et al., 2023b), or visual question answering (Xu et al., 2024; Mamaghan et al.,
2024) — the zero-shot scenario has not been comprehensively studied so far. Thus, an exciting
direction for future work is to extend our benchmark to include a suite of zero-shot downstream tasks.

10
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APPENDIX

A ADDITIONAL EXPERIMENTS

A.1 ZERO-SHOT BENCHMARK

We show additional results complementary to the results in the main part. Figure A.1 shows
benchmark results in terms of varying models, training data distribution, and training dataset size,
but with the mBO metric instead of the FG-ARI metric. The results largely mirror those in Fig. 1; it
can be seen th&INOSAUR generally has worse mBO th&poT and SlotDiffusion, whereas with
FG-ARI, this trend is reversed.

Figure A.3 shows the data scaling behavior of oulHROSAUR method trained on different subsets

of the Coco dataset, showing performance on the individual datasets in Fig. A.3a, and comparing
the aggregated performance toNDSAUR in Fig. A.3b. While DNOSAUR is better in the very-low
sample regime (less than 5000 samples)CrOSAUR overall shows better scaling behavior. In
particular, FTDINOSAUR exhibits a slightly upward trending scaling curve for OOD evaluation with
FG-ARI; while the effect is too weak to conclude that BINOSAUR scales well with data, it would

be interesting to extend this experiment to include 1-2 magnitudes more data.

A.2 OBJECTCENTRIC FINETUNING

Targets from EMA teacher We can also frame our setup agable A.1: Analysis of targets.

a variant of the student-teacher framework common in sgdfthe momentum for teacher up-
supervised methods (Grill et al., 2020; Caron et al., 20ktes.

Oquab et al., 2023). There, the weights of the teacher model
are continuously updated from the student's weights through an FG-ARI mBO
exponential moving average (EMA), with a momentum param- 0 0.09 13.6
eter 2 [0; 1] controlling the speed of adaptation. Through this  5.999 236 16.4
lens, our approach uses= 1, corresponding to not updating 0:9999 37.8 21.0
the teacher. This view suggests to use 1 to improve the 1 485 30.7
targets throughout training.

In Table A.1, we analyze the effect of introducing student-teacher style EMA updates. Directly using
the features of the student as the targets Q) leads to collapse, as reported previously (Seitzer
et al., 2023). With momentum updates, we still nd a high value foo be necessary to stabilize
training. Using xed targets (= 1) gives the best results. We speculate this is because there is no
missing information in the auto-encoder setup, leading to a gradual loss of information.

Training Encoder from Scratch Here, we build upon the approach mentioned in Section 4.1 where
the model is trained with a ViT encoder initialized from scratch while still predicting DINOv2 features

(a) Object discovery (mBO). (b) Linear probing of category (Accuracy).

Figure A.1: Evaluating zero-shot transfer of current object-centric modelstrained on theCoco
dataset. Corresponds to Fig. 1, but sh¢a)anBO instead of FG-ARI an¢b) linear probing accuracy
of object category from slots.
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(a) Varying train datasets. (b) Varying train dataset size.

Figure A.2: Effect of training data on transfer of the DINOSAUR model. Corresponds to Fig. 2,
but shows mBO instead of FG-ARI.

(a) Scaling behavior of FT-IOSAUR, showing OOD performance on individual datasets.

(b) Scaling behavior of FT-INOSAUR vs. DINOSAUR.

Figure A.3: Scaling behaviour of FTDINOSAUR on trained on differently sized subsets of
Coco. Our method uses a ViT-S/14 withiNnov2 with netuning, but no top-k decoding and hi-res
adaptation.
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Table A.2: Zero-shot performance without a pre-trained encoder.Comparison of FG-ARI and
mBO across multiple datasets. Scratch-DINOSAUR is identical to FT-DINOSAUR except that
the ViT encoder is initialized from scratch and trained to predict DINOv2 targets. The average is
computed as a weighted average, normalizing with the size of the evaluation datasets.

Movi-C M ovi-E SCANNET YcB

FG-ARI mBO FG-ARI mBO FG-ARI mBO FG-ARI mBO
DINOSAUR 67.0 345 711 242 57.4 40.8 60.2 42.2
SlotDiffusion 66.9 43.6 67.6 26.4 52.0 51.7 62.5 59.2
SPOT 63.0 40.8 478 215 48.6 432 52.9 451
FT-DINOSAUR (ViT-S/14) 71.3 442 711 299 548 484 67.4 545
Scratch-DINOSAUR (ViT-S/14) 68.3  31.9 67.9 23.1 50.5 36.9 57.3 35.8

CLEVRTEX ENTITY SEG CoCo Average

FG-ARI mBO FG-ARI mBO FG-ARI mBO FG-ARI mBO
DINOSAUR 825 35.2 435 194 42.4 294 68.4 32.7
SlotDiffusion 77.0 45.0 43.7 25.1 37.3 31.4 65.8 41.2
SPOT 63.3 40.0 417 274 37.0 348 554 35.9
FT-DINOSAUR (ViT-S/14) 86.0 50.1 48.1 28.4 48.5 30.7 71.2 42.9

Scratch-DINOSAUR (ViT-S/14) 78.8 314 46.6 227 423 273 67.1 36.4

as targets. Note that, fully removing the pre-trained targets is not feasible on real-world data because,
in that case, the representations collapse and the model fails to discover objects. In this setting, the
model is trained solely on the COCO dataset, and we refer to this vari&urach-DINOSAUR

Table A.2 presents the results of zero-shot object discovery across the benchmark. Even though the
encoder was not pre-trained, Scratch-DINOSAUR achieves 42.3 FG-ARI and 27.3 mBO on COCO,
and it transfers to the other datasets with performance mostly on par with DINOSAUR in FG-ARI
(even outperforming certain baselines in some cases), albeit with a drop in mBO. Thus, a pre-trained
encoder isot strictly mandatory for robust zero-shot transfer of object-centric representations, but
the combination of pre-trained features with slot attention remains advantageous. In fact, adding
our proposed netuning strategy (FT-DINOSAUR) on top of a high-quality encoder yields the best
performance overall.

Zero-Shot Performance with Learnable Slot Initialization We investigate the impact of learnable
slot initialization on zero-shot object discovery performance. Unlike our proposed approach, which
uses random slot initialization, this variant employs learnable initial slots while keeping all other
components unchanged.

On COCO, this model achieves 44.3 FG-ARI and 29.9 mBO, compared to 48.5 FG-ARI and 30.7
mBO achieved by our proposed method. To further evaluate its effectiveness, we test the model under
zero-shot conditions on multiple datasets. We denote this varidgfil-BNOSAUR (learnable init.)

and summarize its performance in Table A.3.

As shown in Table A.3, the learnable slot initialization approach performs competitively in FG-ARI
but signi cantly underperforms in mBO compared to our proposed FT-DINOSAUR method. This
indicates that while the learnable initialization still allows for reasonable object discovery, it produces
less precise segmentation masks, leading to reduced mask quality.

Additionally, using learnable slots has a major drawback in zero-shot settings: the number of slots
is xed at training time and cannot be adjusted during inference. In contrast, our proposed random
initialization approach enables the model to generalize across different slot con gurations at test time,
which is particularly useful when dealing with novel datasets.

Overall, these results validate the importance of using random initialization for achieving both strong
object discovery and high-quality segmentation masks.

Analysis of Finetuned Features In Fig. A.4, we show additional examples for visualizing the PCA
on the netuned features compared@onov?2 features (similar to Fig. 4). Similar to the discussion
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Table A.3: Zero-shot performance with learnable slot initialization. We compare FG-ARI and
mBO across datasets for FT-DINOSAUR variants. The learnable initialization approach performs
competitively in FG-ARI but shows signi cantly lower mBO, indicating weaker mask sharpness.

Movi-C M ovi-E SCANNET YcB
FG-ARI mBO FG-ARI mBO FG-ARlI mBO FG-ARI mBO
FT-DINOSAUR (learnable init.) 72.2  30.8 65.6 18.2 549 429 67.3 42.8

FT-DINOSAUR (ViT-S/14) 71.3 44.2 71.1 29.9 54.8 48.4 67.4 545
FT-DINOSAUR (ViT-B/14) 733 429 69.7 279 558 48.6 70.1 54.1
CLEVRTEX ENTITY SEG COCoO Average

FG-ARI mBO FG-ARI mBO FG-ARI mBO FG-ARI mBO

FT-DINOSAUR (learnable init.) 81.7 31.8 477 242 443  29.9 68.2 313
FT-DINOSAUR (ViT-S/14) 86.0 50.1 48.1 284 48,5 30.7 712 429
FT-DINOSAUR (ViT-B/14) 83.9 459 497 29.0 46.9 295 715 40.8

in Sec. 4.2, we nd that after netuning, the encoder features are noticeably more object-centric.
For example, in the rst and last exampl&Nov2 features show a part-based split of the shown
persons in the dominant PCA components; the netuned features highlight the whole persons better.
In the second exampl®INoOv2 features group semantic instances (human) together in the dominant
components; after netuning, the features clearly split the persons. However, note that is not necessary
that the features highlight the instances in the dominant components to derived an instance-based
grouping; in all examples, the masks discovereddbyOSAUR (last column) feature a correct
instance split (while also splitting further into parts in the last two examples). This may be because
the necessary information for the correct split is contained in the less dominant components of the
features (e.g. in PCA dimensions 4-6). However, we conjecture that the netuned features simplify
the grouping task for slot attention, leading to better and more consistent object discovery.

A.3 EVALUATION

We include the following additional results for the evaluation of[BFiROSAUR conducted in Sec. 5
of the main paper:

* Finetuning In-Distribution (Sec. 5.1): we show the numeric values corresponding to Fig. 5
in the main part in Table A.4. This table also shows the results for the in-distribution vs.
zero-shot comparison in Fig. 6.

» Extended Comparison To Prior Work on Real-World Object-Centric Learning
(Sec. 5.2) we conduct an extended comparison to prior work for real-world object-centric
learning on the ©codataset in Table A.5.

» Zero-Shot Evaluation (Sec. 5.3)for object discovery, we show the full results all datasets
of the zero-shot benchmark, corresponding to Fig. 1a and Fig. 7 in the main part in Ta-
ble A.6. For downstream property prediction, we show the per-dataset results in Table A.7,
corresponding to Fig. 1b in the main part.

B MODEL LIMITATIONS

Even though FIDINOSAUR brings large improvements ovEINOSAUR, the model still exhibits
problems with certain types of scenes. In Fig. B.5, we show several examples of such failure cases,
grouped into modes of failure. Two typical categories of failure are the overgrouping of semantically-
related objects (Fig. B.5a), and the split of objects into parts (Fig. B.5b). Both problems are primarily
caused by the model using the wrong number of slots. But note that even having access to the “correct”
number of slots per image can not resolve all problems, as the model may still allocate the slots in
undesirable ways. Consider the last example in Fig. B.5a: here, the model could correctly split the
two persons into individual slots if the motorbike is grouped as one object instead of as parts. A third
category of failure broadly stems from dif cult or unusual images (Fig. B.5c): for example, grouping
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Figure A.4: Visualization of encoder featuresin DINOSAUR (frozenDiINOV2 features) and for
encoder features adapted with object-centric netuning, similar to Fig. 4 in the main paper. The
second column shows 1st to 3rd PCA components, and the third column shows 4th to 6th PCA
components grouped in one image by using different RGB channels. The last column shows object
discovery masks by each method.
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Table A.4: Evaluation of adding netuning to DINOSAUR when trainingin-distribution, using

a ViT-S/14 DINOv2 backbone. Finetuning shows strong performance improvements on all eight
datasets. We also show transfer when netuningd@co, which performs comparable or better to
training in-distribution on 5 out of 7 datasets. Results corresponding to experiment in Fig. 5 in the
main paper.

Movi-C M ovi-E SCANNET YcB

FG-ARI mBO FG-ARI mBO FG-ARI mBO FG-ARI mBO
DINOSAUR 63.1 33.3 74.0 255 52.8 38.8 67.5 28.9
+Finetuning 71.9 36.8 82.0 28.1 63.8 43.8 711 275
Zero-shot (®co) 76.4 34.9 75.1 24.5 55.4 42.8 69.9 44.4

CLEVRTEX PascAL Voc ENTITY SEG Coco

FG-ARI mBO FG-ARI  mBO FG-ARI mBO FG-ARI mBO
DINOSAUR 91.3 40.1 26.2 40.1 43.0 19.6 42.4 29.4
+Finetuning 95.8 40.1 29.7 40.8 45.7 20.9 48.5 30.7
Zero-shot (©CO) 87.5 38.2 31.7 40.4 47.7 21.8 48.5 30.7

Table A.5: Extended comparison of FTDINOSAUR to prior work on the Coco dataset corre-
sponding to Table 2 in the main paper. For our proposed approach, we average results across 5 seeds
for FT-DINOSAUR, ViT-S/14 and across 3 seeds for BINOSAUR, ViT-B/14. Results marked witk

are from evaluating of cial checkpoints; results marked witare taken from the respective papers.
Supervised models ¢$1) colored in gray.

Model FG-ARI mBO P-ARI PQ
Slot Attention (Locatello et al., 2020), (Wu et al., 2023b) 21.4 17.2

SLATE (Singh et al., 2022a), (Wu et al., 2023b) 325 29.1

DINOSAUR (MLP Dec.) (Seitzer et al., 2023) 40.5 277 371 144
DINOSAUR (TF. Dec.) (Seitzer et al., 2023) 34.1 31.6

Stable-LSD (Jiang et al., 2023) 35.0 30.4

SlotDiffusion (Wu et al., 20238) 37.3 314 476 210
SpoT (Kakogeorgiou et al., 202%) 37.0 348 524 213
FT-DINOSAUR, ViT-S/14 46.6 35,6 49.7 235
FT-DINOSAUR, ViT-B/14 48.8 36.3 494 239
Sam (comp.)(Kirillov et al., 2023Y 12.1 19.0 10.8 9.4
Sam (best.)(Kirillov et al., 2023Y 44.9 56.9 544 10.9
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Table A.6: Per-dataset zero-shot performancgcorresponding to Fig. 7 in the main paper. All
unsupervised object-centric metho@OSAUR, SlotDiffusion,SPoT, FT-DINOSAUR) are trained

on theCocodataset. Furthermore, we compare with the supervised Segment Anything 18eri¢! (
Average is computed as a weighted average normalizing with the size of the evaluation datasets (cf.
Table E.9), and only includes the zero-shot datasets ( rst 6 columns). For completeness, we also
include the performance when transferring fr@ncoto PASCAL Vocin the last column. Results
markedy are from evaluating of cial checkpoints. Supervised modelsn$are colored in gray.

Movi-C M ovi-E SCANNET YcB
FG-ARI mBO FG-ARI mBO FG-ARI mBO FG-ARI mBO
DINOSAUR 67.0 345 711 24.2 57.4 408 60.2 42.2
SlotDiffusior 66.9 43.6 67.6 26.4 52.0 51.7 625 59.2
SpoTY 63.0 40.8 47.8 215 48.6 43.2 52.9 45.1
FT-DINOSAUR (VIT-S/14)  71.3 44.2 711 29.9 54.8 48.4 67.4 54.5
FT-DINOSAUR (ViIT-B/14)  73.3 429 69.7 27.9 55.8 486 701 541
SAM (comp.y 57.6 45.3 38.5 27.4 45.8 45.5 46.9 40.9
SAM (best.y 79.7 73.5 84.7 69.7 62.2 64.7 69.4 69.8
CLEVRTEX ENTITY SEG Average PascAL Voc
FG-ARI mBO FG-ARI mBO FG-ARI mBO FG-ARI mBO
DINOSAUR 825 35.2 43.5 19.4 68.4 32.7 24.0 37.2
SlotDiffusior 77.0 45.0 43.7 251 65.8 41.2 211 42.0
SpoTY 63.3 40.0 41.7 27.4 55.4 35.9 21.2 50.6
FT-DINOSAUR (ViT-S/14)  86.0 50.1 48.1 284 712 429 24.0 37.6
FT-DINOSAUR (ViT-B/14)  83.9 45.9 49.7 29.0 71.3 411 259 378
SAam (comp.y 82.9 70.3 25.9 16.5 55.2 45.7 31.0 51.5
SAM (best.y 94.0 90.0 53.4 51.0 79.5 73.2 31.1 64.2

Table A.7: Per-dataset downstream property linear prediction performance. We report in-
distribution property prediction performance for each datd3et®sAuUR (ID)) and zero-shot perfor-
mance of models trained on the COCO dataBetOSAUR, SlotDiffusion, SPOT, FIDINOSAUR,
FT-DINOSAUR + Hi-Res). Results markeglare from evaluating of cial checkpoints.

Movi-C M ovi-E YcB

Acc (%) R?  Acc (%) R?  Acc (%) R?
DINOSAUR (ID) 70.7  0.69 64.3 0.44 - 0.54
DINOSAUR 771 0.69 70.4  0.45 - 0.77
SlotDiffusior 69.3 0.58 784 0.29 - 0.76
SpoTY 68.2 0.55 66.8 0.35 - 0.76
FT-DINOSAUR (ViT-S/14) 759 0.65 67.4 455 - 0.83
FT-DINOSAUR (ViT-S/14) + Hi-Res  74.6  0.65 69.3 0.47 - 0.83

CLEVRTEX ENTITY SEG SCANNET

Acc (%) R?  Acc(%) R?  Acc(%) R?
DINOSAUR(ID) 90.7 0.90 259 0.53 - -
DINOSAUR 83.4 0.76 241 0.54 - 0.80
SlotDiffusior 778 0.67 215 0.36 - 0.82
SpoTY 70.7 0.55 29.7 042 - 0.82
FT-DINOSAUR (ViT-S/14) 77.8 0.68 181 0.45 - 0.80
FT-DINOSAUR (ViT-S/14) + Hi-Res  79.9  0.70 194 051 - 0.79

22



Published as a conference paper at ICLR 2025

tiny objects together with the background (cars on bridge); incorrect 3D inference due to unusual
camera perspective (rail and light post); sub-optimal decompositions in OOD scenes (grass stalk in
forest, sand patterns).

How could the failure modes regarding overgrouping and oversplitting be resolves!? like all slot
attentionDINOSAUR-based methods, FIINOSAUR decomposes the scene into a xed number of
regions/objects. However, especially on real-world images, the number of objects varies signi cantly
from image to image. Therefore, it is important to develop methods that infer a suitable number of
objects for an image; however, further innovations are needed to deal with the slot allocation problem
we have alluded to before. Second, unsupervised scene decomposition is inherently an ill-de ned
task on real-world data as scenes can be split in numerous ways (cf. Figs. B.5a and B.5b). Thus,
predicting only a single set of masks might ultimately be insuf cient. Instead, it may be bene cial

to model the fullpart-whole hierarchyproducing various decompositions of different granularity.
Such models could further allogontrol over the level of granularity through external conditioning
variables or text. However, the examples in Figs. B.5a and B.5b also demonstrate the limitations
of current evaluation techniques. Arguably, these are not failures of the model, but are treated as
such by the evaluation metrics. This is because current datasets have annotations that prescribe a
single ground truth labeling for each image. Instead, datasets should be annotated with multi-level
labelings, e.g. by including parts of objects, or further splitting the background into speci ¢ elements
(e.g. splitting the background "tree" class into particular trees). To evaluate methods that model the
full part-whole hierarchy, such annotations even become a necessity.

C METHOD DETAILS

C.1 DINOSAUR

DINOSAUR (Seitzer et al., 2023) proposes to use pretrained encoders for unsupervised object dis-
covery. The image is processed using a pretrained DINO encoder (Caron et al., 2021) into a set of
feature vector$f 1;f 5;:::f y g. The slot attention module (see App. C.2) is applied to the outputs of

a broadcast MLP decoder (Watters et al., 2019) to produce a set of feature ¥&¢tors : : f'x .

The MLP decoder decodes each slptseparately to output a mask logiy, and feature valuef, .

are converted to probabilitieny by taking their softmax across all slots. Hengy, denotes the
probability that slosy, produces featurk; andf’}k denotes the feature value assigned to fedture

by slgsk. The nal value for each feature is obtained by taking a weighted sum across all slots:
i = 15:1 mix fix . The training objective is the feature-reconstruction objective: kf k2.

Note that the maskn 2 RN is the mask obtained for a given slot. This mask is resized to the
original image size and overlayed over the image to produce the visualizations shown in Table 1.

C.2 S.0OT ATTENTION

Slot attention (Locatello et al., 2020) is a differentiable clustering procedure that operates on a set of
visual features (usually output by a CNN) and outputs a set of slot vefcterg,;:::zx g where

each slot represents an object. The differentiable clustering procedure is iterative in nature. We now
describe the procedure in detail.

wherez; 2 RP . The feature$f 1;:::f \ gare output by a CNN encoder given input imagand the

slots are sampled from a Gaussian distribution. The attention mechanism computes the assignment
of features to slots. Ideally, the set of features belonging to a particular object will map to a single
slot and each slot will bind to a distinct object. To induce this behavior, the attention mechanism
implements a competition between the slots to represent parts of the feature space.

First, following the general process of query-key-value (QKV) attention (Vaswani, 2017), the slots
are projected to querigp = Linear 4(z;) and the features are projected to k&ys= Linear  (f )
and valuesy;, = Linear,(f;). This results in querieg 2 RX P, keysk 2 RN P and values
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(a) Joining semantically-related objects together.

(b) Splitting objects into parts.

(c) Complex or unusual images: (1) tiny objects, (2) incorrect 3D inference, (3, 4) OOD scenes.

Figure B.5: Failure modes of FTDINOSAUR. We show typical failure cases grouped into three
categories: (a) joining semantically related objects into a single object; (b) splitting objects into parts;
and (c) incorrect decomposition of complex or unusual scenes. Note that the model's decompositions
in (a) and (b) arguably are correct but do not correspond to the labeling prescribed by the ground
truth annotations; without knowledge of the intended downstream task, the “correct” grouping is
ambiguous. We use the model from Table 2; it uses a ViT-B/14 encoder with hi-res adaptation and is
trained on the ©co dataset. All images show zero-shot predictions on tk&IEy SEG dataset.
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v 2 RN P The dot-product attention then computes the af nities between the queries and the
keys: attn = q kT, whereattn 2 RN K. To induce a competition between the slots to
represent the features, they take a softmax acrosguegesas opposed to taking it across the
keyswhich is what is usually done in QKV attention. Therefore, the nal attention values become

attn = softmax( %ETT; axis= ¢) ,where D is the softmax temperature. The nal attention outputs
? are obtained by taking a weighted mean of the vaties W v, whereW; = %

n=1 n
Therefore, the attention computation used in each iteration of slot attention can be implemented as

follows:

-

attn = softmax @pgi; axis = query ; Q)
attn

attn = Sum(attn; axis = keys)’ )

2=attn v(f): 3

The authors nd it useful from a stability viewpoint to process the inguésd slots using layer
normalization. The output of the attention mechanism is used to update the current estimate of the
slots in an iterative procedure which will describe next.

Iterative Procedure The iterative updates to the slots are carried out using a GRU and an MLP.
The slotsz,; :::zk are rstinitialized as the hidden states of a GRU. Given the updates from the
attention mechanism, the slots are updated as follows:

zi = GRU(input = 2;state = z;) z; = MLP(LayerNorm( z;)) + z;: (4)

These updates happen for a xed number of iteratibrnghich is set as a hyperparameter.

This whole process can be viewed as soft k-means clustering. The slots are analogous to cluster
centers and each attention computation computes the assignments of features to slots. Next, the slots
(cluster centers) are updated with the information from the features assigned to each slot.

C.3 ToP-K DECODING

We rst recap the MLP decoder frofdINOSAUR Seitzer et al. (2023). Fa¥ patches an& slots,
the MLP decoder produces a reconstruciop RN K P as well as an alpha mask2 RN X
that shows how active each slot is at each patch. The nal reconstruycttoRN P is then given by
taking a weighted average over the slots, that is, the reconstrygtimn patchi is given by

X
yi = ¥ mi mi = SOftjmaX B (5)
=1
With top-k decoding we only take thék 2 K; most active slots into account for each paitchs
determined by the slot attention mask [0; 1]N X :

X
Yi = % mi mi = SQthIT;naX i : Ki = topk (ai;k); 6)
J I
2K

highest values of the vectar2 R". In practice, we can ef ciently implement the decoding step by

rst broadcasting slots to patches and adding the positional encoding, then packing the top-k slots for
each position together using a gather operation, directly resulting in reconstruttoRS' ¥ and

alpha masks 2 RN

P
wheretopk(x;K) =argmax, ¢ 1., gjij=k 21 Xi IS the function that selects the indices of the

C.4 IMPROVEDHYPERPARAMETERS

As discussed in Sec. 4.1 in the main paper, we found an improved set of hyperparameters that
work well for netuning the pre-trained ViT encoder. We split these into general hyperparameters
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(G-HPs), affecting all modules of the model, and encoder hyperparameters (E-HPs), only affecting the
netuning of the encoder (see also Table C.8). We ablate the effect of these groups of hyperparameters
in Table 1 in the main paper.

The general hyperparameter changes are as follows:

* Increasingbatch sizerom 64 to 128.

» Decreasindase learning ratérom 0.0004 to 0.0003.

» Switching from an exponential decésarning rate schedul® a cosine schedule.
» Loweringgradient clippingfrom 1.0 to 0.1.

The hyperparameter for encoder netuning are as follows:

» Lowering thebase learning ratéor the encoder by a factor of 0.5 from 0.0003 to 0.00015.
« Introducingblockwise learning rate decayith a decay rate of 0.85.

« Adding weight decayof 0.01 to the encoder parameters in conjunction with the Adamw
optimizer.

Note that these changes resulted from a joined hyperparameter search over all individual hyperparam-
eters and it is highly likely that (1) not all of these parameters changes are necessary, and (2) an even
better set of hyperparameters can be found.

D METHODS& HYPERPARAMETERS

DINOSAUR (Seitzer et al., 2023) DINOSAUR introduced the idea of applying slot attention on a
pre-trained encoder and training the model by reconstructing the features of this pre-trained encoder.
This also forms the base of our proposed approacBINDSAUR, the encoder is kept xed while

the slot attention and the decoder modules are trainable. While the original paper considers two kinds
of decoders — (1) Transformer Decoder and (2) MLP decoder — in this work we mainly compare
againstDINOSAUR with the MLP decoder. We consider two variantsliNOSAUR, usingDINO

(Caron et al., 2021) an@iNov2 (Oquab et al., 2023) pre-trained backbones respectively. We list the
hyperparameters used forNDDSAUR in Table C.8 ( rst column).

FT-DINOSAUR Our method is implemented up@iNOSAUR and thus shares low-level implemen-
tation details. In Table C.8, we list the hyperparameters for the following models mentioned in Sec. 4
and listed in Table 1: (1DINOSAUR + Training from Random Init., (2DINOSAUR + FT w/G-HP's,

(3) DINOSAUR + FT w/G-HP's & E-HP's, (4)DINOSAUR + FT, + Top-k, + High-Res. Finetuning.
While the models listed in Table Table C.8 all U3avov2 with the ViT-S/14 backbone, the same
hyperparamters are applicable for models using ViT-B/16 and ViT-B/14 backbones as well. For
training our model, we use a single A100 GPU per run. Each training run of the proposed netuning
approach requires 2—3 days of training.

SlotDiffusion (Wu et al., 2023b) SlotDiffusion utilizes a latent diffusion model as the decoder. The
speci ¢ variant of the SlotDiffusion model which we consider here is the one which uses a pretrained
DiNO encoder (ViT-B/16) to encode the images similaXivOSAUR. We use the pre-trained
checkpoint released by the authofsr all the comparisons in this work.

SpoT (Kakogeorgiou et al., 2024) SPOT uses a two-stage training procedure. In the rst stage, a
DiNosAUR model is trained similar to Seitzer et al. (2023). In the second stage, a student-teacher
setup is employed, where the model trained model from the rst stage acts as a teacher and the
student is a new model. During this stage, the model is trained with two objectives: (1) a feature
reconstruction loss, where the targets come from the teacher, and (2) a attention distillation loss,
where the teachers attention masks from slot attention are distilled into the student. MdBeozer,

uses a Transformer encoder as opposed to an MLP decoder. Similar to SlotDiffusi®rofpr

2https://github.com/Wuziyi616/SlotDiffusion
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Table C.8 Hyperparameters for the DINOSAUR and FT-DINOSAUR modelsdisplayed in Table 1.

The second colummXINOSAUR +Enc. Train (random init.)) also lists hyperparameters for training
with random encoder initialization, as discussed in Sec. 4.1. Results in Fig. 5 use the settings in the
fourth column DINOSAUR +FT w/G-HP's w/E-HP's). Results in Table 2 and Fig. 7 use the settings

in the last column, but with a ViT-B/14 encoder. See also App. C.4 for a concise description of the
improved hyperparameters for netuning (G-HP's and E-HP's).

Models DINOSAUR| DINOSAUR|DINOSAUR |DINOSAUR | DINOSAUR
+Enc. Train +FT. +FT +FT

(random init.) | w/G-HP's| w/G-HP's +Top-k

w/E-HP's | +High-Res.

Training Steps 300k 300K 300k 300K 10k
Batch Size 6 128 128 128 64
Image/Crop Size 224 224 224 224 518
Cropping Strategy Random Random Random Randon Random
Augmentations - - - -
Image Tokens 784/256 256 256 256 1369

LR Warmup Steps 10000 1000 1000 1000 333

ase LR Total LR =Base LR 0.000 0.000 0.000 0.000 0.0001
LR _ )
(Batch S|25
64

Exp. Decay Half-Life 100 100Kk 100K 100K 10k

Schedule Exponential Cosin Cosin Cosin Cosine

Blockwise LR 7 3 7 3 3

LR Factor Total LR = 7 0.5 7 0.5 0.5
Encoder LR Base LR (Batch Sizﬁ

Encoder LR Factor 64

Layerwise LR Decay Factor | 7 0.85) 7 0.85 0.85

LRjayer1 = LRyayer 1+1

Weight Decay 7 0.01 7 0.01 0.01

Type ViT-B/16 / ViT-S/1 ViT-S/14| ViT-S/14| ViT-S/14| ViT-S/14

Pre-training DINO/DINOV! —| DINOv2| DINOv2 DINOv2
Encoder Patch Size 16/1 14 14 14 14

Feature DimD+eat 768/38 384 384 384 384

Gradient Norm Clipping 1. 0.1 0.1 0.1 0.1

Type ViT-B/16 / VIT-S/1 ViT-S/14| VIT-S/14| ViT-S/14|  ViT-S/14
Target Encoder .

Pre-training DINO/DINOV! DINOv2| DINOv2| DINOv2 DINOv2

Slots 7 7 7 7
Slot Attention Iteratlgns 3 3 3 3

Slot Dim. Dgjots 256 256 256 256 256

MLP Hidden Dim. 102 1024 1024 1024 1024

Type MLP MLP MLP MLP MLP
Decoder Layers. . ! : . .

MLP Hidden Dim. 204 2048 2048 2048 2048

Top-k 7 7 7 7 3
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Table E.9 Number of images per dataset and the number of slotased for training and evaluating
on each dataset.

Dataset Num. Images Num. Slots
Coco2017 train 118287 7
Coc02017 validation 5000 7
ENTITY SEG train 31789 7
ENTITY SEG validation 1498 7
PascaL Voc 2012 train 10582 7
PascaL Voc 2012 validation 1449 7
Movi-C train 87633 11
Movi-C validation 4200 11
Movi-E train 87633 11
Movi-E validation 4176 11
ScANNET train 10000 6
ScANNET validation 2000 6
Y cB train 10000 6
Y cB validation 2000 6
CLEVRTEX train 40000 11
CLEVRTEX validation 5000 11

also we use a pre-trained checkpoint released by the adifloothie evaluations in this work. The
pre-trained checkpoint uses a ViT-B/16 encoder initialized witk@weights.

Segment Anything (Kirillov et al., 2023) The Segment Anything modebAMm) is a large founda-
tion model for object detection and segmentation trained supervised. It has three stages of training: (1)
a manual stage, where the model is trained using 120k images annotated with 4.3M masks obtained
from human labelers; (2) a semi-automatic stage, where the model is trained on 180k annotated
with 5.9M masks partly annotated by human labelers and partly annotated by itself; and (3) a fully
automatic stage, where the model is trained on 11M images with 1.1B masks annotated by the model
itself. We consider 2 variants &M : comp.(Comparable) antlest Note thatSAam includes an
loU prediction MLP which outputs an estimated loU for each predicted mask. Fopthp.variant,
we use the ViT-Base model considering the kopnasks by predicted loU, where the valuekofis
based on the optimal number of objects for each dataset as listed in Table E.9. bestifsiant,
we use the ViT-Huge model keeping all masks above a loU threshdlde evaluated values for

2 £ 0:9; 0:95; 0:99g and found that = 0:9 works best across all datasets.

For inference, we use a single A100 GPU for each of the baselines and the proposed approach.

E DATASETS

This section gives a detailed description of the datasets we use in this work. See also Table E.9 for an
overview over the number of images per dataset.

Note that current object-centric models are sensitive taitimber of objectsAs a concession to that,

we evaluate the models with the number-of-slots parameter matching the expected complexity of the
target dataset (mostly following prior work, see Table E.9). We leave it to future work to remove this
limitation of the models.

Coco (Linetal., 2014) This dataset contains complex images containing real-world objects in
their natural context. For training, we use tBeco 2017 dataset which consists of 118 287 images.
For evaluation, we use 5000 images from the validation sets. Similar to Seitzer et al. (2023), we
use instance masks to evaluate object discovery. Additionally, we also add the task of panoptic
segmentation to our evaluation suite for tbeco dataset, using the panoptic labeling provided by
Kirillov et al. (2019). Panoptic segmentation combines the task of instance segmentation, which

3https://github.com/gkakogeorgiou/spot
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requires the model to segment each object/foreground/thing instance, and semantic segmentation,
which requires the model to segement each background/stuff class. The metrics we use for measuring
panoptic segmentation are panoptic ARI and panoptic quality (see App. F). Following Seitzer et al.
(2023), we evaluate square center crops, where the input images are res12dd t@24 pixels, and

the targets masks are resized20 320pixels.

ENTITY SEG (Lu et al., 2023) This dataset consists of complex real world images spanning a
diverse range of entities. In contrast@oco, ENTITY SEG is an open-world dataset and does not
have a pre-de ned set of object classes. It consists of a large number of high-resolution images
(71.25% and 86.23% of the images are of high resolution with at least 2 000px for the width and
1000px for the height). Each image is annotated with high-quality ne-grained mask annotations.
The version of the dataset utilized in this work consists of 31 789 images for training and 1498
images for evaluation. We evaluate the instance segmentation masks for object discovery. As in
Coco, we evaluate square center crops, where the input images are res2&Ht t@24 pixels, and

the targets masks are resize®g0 320pixels.

PascaL Voc (Everingham et al., 2012) Similar to Seitzer et al. (2023), we use the “trainaug”
variant of thePascAL Voc dataset for training. It consists of a total of 10 582 images for training,
where 1464 are from the segmentation train set and 9 118 are from the SBD dataset (Hariharan et al.,
2011). For evaluating object discovery, we use the of cial instance segmentation validation split
with 1449 images. Following Seitzer et al. (2023), we evaluate square center crops, where the input
images are resized 24 224pixels, and the targets masks are resizeg® 320pixels.

Movi-C and M ovi-E (Greff et al., 2022) TheMovi datasets are synthetically generated video
datasets consisting of multiple objects per video. Each video is generated by placing 3D scanned
objects on real-world background&4ovi-C contains up to 11 objects per video and MOVI-E
contains up to 23 objects per video. Additionaliovi-E also features the camera moving in
random directions. For our case, we treat these datasets as image datasets. We sample 9 frames per
video which yields a total of 87 633 training images MpvVi-C and 87 741 images o ovi-E. For
evaluation, we use 4 200 frames fdiovi-C and 4 176 frames fdv ovi-E from the validation sets

in each case. We use aresolutiori@B 128for both input images and target masks.

ScANNET and YcB (Yang & Yang, 2022) These datasets consist of real-world objects on
black backgrounds and were originally introduced to test limitations of object-centric learning
methods (Yang & Yang, 2022 5CANNET (originally from Dai et al. (2017)) consists of objects

that can be typically be found in indoor scenes (e.g. furniture)¥aoe (originally from Calli et al.

(2015)) consists of 21 different classes of everyday objects (e.g. food items, kitchen items, tools, etc.).
Each of these dataset consist of 10 000 training images and 2 000 evaluation images. Both datasets
consist of 2—6 objects per scene. We use a resolutid2®f 128for both input images and target
masks.

CLEVRTEX (Karazija et al., 2021) This is a synthetically constructed dataset where each scene
consists of 3—10 simple geometric 3D shapes arranged in a background sampled from a catalogue of
60 different materials. The materials of the objects are also sampled from the same catalogue. This
dataset contains 40 000 images for training and 10 000 for validation and test each. We use the 5000
images from the validation set for our evaluati@LEVRTEX also offers various OOD splits which

utilize materials not seen during training. We do not use these splits; for our zero-shot generalization
evaluation, we can directly use the main split since it usually is not a part of the training set we use to
train the object-centric model. We use a resolutio240® 240for both input images and target
masks.

F METRICS

F.1 OBJECTDISCOVERY
FG-ARI Theadjusted rand indekARI) measures the similarity between two clusterings (Hubert

& Arabie, 1985). We use the instance/object masks as the targets. We only compute this metric for
pixels in the foreground (hence, FG-ARI). Unlabeled pixels are treated as background.
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mBO To compute the mBO (Pont-Tuset et al., 2017), each predicted mask is assigned to the ground
truth mask with highest overlap in terms of loU. The mBO is computed as the average loU of these
mask pairs.

Panoptic ARl Panoptic ARI is computed as ARI, but uses panoptic mask annotations as ground
truth targets. Panoptic masks (Kirillov et al., 2019) provide more detailed mask annotations for an
image by assigning a different mask for separate instances of the same object (“things”) and also
segmenting background regions (“stuff”). We only compute the Panoptic ARI for those images which
have at least two masks.

Panoptic Quality The Panoptic Quality (PQ) (Kirillov et al., 2019) is computed by rst assigning
each predicted mask to the ground truth mask with the highest overlap in terms of loU, removing all
matches that do not have an loU overlap of at |@stthis results in a unique matching (Kirillov

et al., 2019). These mask pairs form the set of true positives (TP). Ground truth masks that were not
assigned a predicted mask form the set of false negatives (FN). Similarly, predicted masks that were
not assigned to a ground truth mask form the set of false positives (FP). Predicted masks that have an
loU overlap of more tha@:5 with pixels labeled as “void” or “crowd” are removed from the set of
false positives. The panoptic quality is then computed as:

(p:g)2TP IOU(p;g)
jTPj+ 0:5/FPj + 0:5FNj

PQ= ()

F.2 DOWNSTREAMPROPERTYPREDICTION

For downstream property prediction, we closely follow the protocol of Dittadi et al. (2022) and Seitzer
et al. (2023). In particular, we train linear probes on top of the slots, training them using categorical
cross entropy for discrete properties and MSE for continuous properties. Predicted properties for the
set of slots are matched to the target set of properties using the Hungarian method, minimizing the
total loss of the matching. For discrete properties, we report classi cation accuracy; for continuous
properties, we report thR?-score. We report metrics on the the same test sets used for object
discovery.

We designate a portion of the training set as a validation set to measure over tting; for this purpose,
we sample a number of images equal to the size of the test set from the training set. We train for
15000 steps, and evaluate the model with the lowest validation loss. Images without any objects (due
to cropping) are ltered out. Following Seitzer et al. (2023), for each image, we only kedy the
largest objects, whefld equals the number of slots used on that dataset. This way, each object can in
principle be matched to a slot.

As properties, we use:

 Location: x- and y-coordinate of the object, using the center-of-mass of the object mask.
We report the average?-score for x- and y-dimension.

» Category: we use the class label with which the objects are annotated on most datasets; on
CLEVRTEX, we use the object shape as the category. The used versionsSffARNET
andY cB datasets do not contain any class annotation; as such, we do not report category
prediction on these datasets. Note that the number of classes differs per dataset and thus
classi cation results between datasets are not directly comparable. In partCutarRTEX
has 4 categoriedv ovi-C andMovi-E have 17 categorieENTITY SEG has 256 categories.

We report the property prediction for each individual dataset in Table A.7.

G EXAMPLES

In this section, we show example predictions BaNOSAUR, SPOT, Slot Diffusion, FTDINOSAUR,
andSam, where all methods besid&amM were trained on th€oco dataset. FIDINOSAUR uses a
ViT-B/14 encoder with top-k and hi-res adaptation, i.e. the model evaluated in Table 2 and Fig. 7.

* Fig. G.6: in-distribution predictions on@o.
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* Fig. G.7: zero-shot predictions on ENTITYSEG.
* Fig. G.8: transfer predictions on PASCAL VoOcC.
* Fig. G.9: zero-shot predictions on CLEVRTEX.

—

* Fig. G.10: zero-shot predictions on MoVi-C.
* Fig. G.11: zero-shot predictions on MOVi-E.
* Fig. G.12: zero-shot predictions on SCANNET.
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SpPOT SlotDiffusion FT-DINOSAUR SAM

Figure G.6: In-distribution examples on COCO.
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