
Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

A Appendix: Dual Forms of Subquadratic Penalties

A.1 Dual Forms for Common Penalties

The full version of the Table 1 is given in Table 3. The dual formulations are derived in the next
sections.

Table 3: Common penalties and their corresponding dual formulations.

Penalty Ωpwq fpηq pηjpwq

`1 |wj | ηj |wj |

`p, p P p0, 2q }w}p }η}q : q “ p
2´p |wj |

2´p}w}
p´1
p

`pp, p P p0, 2q
1
p |wj |

p 1
qη
q
j : q “ p

2´p |wj |
2´p

`0 1 t|wj | ą 0u 21 tηj ą 0u 81 t|wj | ą 0u

ELASTICNET(θ) [46] θ
2w

2
j ` p1´ θq|wj |

ηjp1´θq
2

1´ηjθ
, H “ r0, 1θ s

|wj |
|wj |θ`p1´θq

HUBER(ε) [11, 22]
"

1
2εw

2
j `

ε
2 , |wj | ď ε

|wj |, |wj | ą ε
ηj , H “ rε,8q max tε, |wj |u

LOGSUM(ε) [9] log p|wj | ` εq 2 log
´

?
ε2`4ηj`ε

2

¯

´
p
?
ε2`4ηj´εq

2

4ηj
|wj |p|wj | ` εq

SCAD(a, λ) [13]

$

’

&

’

%

|wj |, |wj | ď λ
2aλ|wj |´w

2
j´λ

2

2pa´1qλ , |wj | P pλ, aλs
pa`1qλ

2 , |wj | ą aλ

#

η, ηj ď λ

λ
pa`1qηj´λ
pa´1qλ`ηj

, ηj ą λ

$

’

&

’

%

|wj |, |wj | ď λ
pa´1qλ|wj |
aλ´|wj |

, |wj | P pλ, aλs

8, |wj | ą aλ

MCP(a, λ) [44]

#

|wj | ´
w2
j

2aλ , |wj | ď aλ
aλ
2 , |wj | ą aλ

aληj
ηj`aλ

#

aλ|wj |
aλ´|wj |

, |wj | ă aλ

8, |wj | ě aλ

HARDTHRESH(k) [7] 81 t}w}0 ą ku 0, H “ tη : }η}0 ď ku 81 tj P TOP-kpwqu

A.2 General Strategy

Define gpuq :“ Ωpud
1
2 q for u P Rd` and hpvq :“ fp´vd´1q for v P Rdď0. As mentioned in

Section 2.2, when g is concave, ´2g and h comprise a Legendre–Fenchel conjugate pair, each being
convex functions. That is, the following relationships hold:

´2gpuq “ sup
v

uJv ´ hpvq, hpvq “ sup
u

uJv ` 2gpuq. (22)

We can thus obtain ´2g and h from each other by solving these optimizations. If the functions
are differentiable, the following first-order conditions must hold for the dual pair u˚ and v˚, the
argument and maximizing variable in either equation in (22):

u˚ “ ∇vhpv
˚q, v˚ “ ´2∇ugpu

˚q. (23)

Note that the second condition is equivalent to (7). Once we have characterized g and h, we can
recover Ω and f by considering wd2 “ u and η “ ´vd´1. In the following sections, we use these
properties to obtain the dual forms presented in Table 1. For separable penalties, it suffices to derive
the dual form of the scalar penalty.

A.3 `p for 0 ă p ă 2

This formulation can be found in Lemma 3.1 of Jenatton et al. [26], but we present another derivation
here. First we compute the gradient

gpuq “

˜

ÿ

j

u
p
2
j

¸
1
p

ùñ ∇ugpuq “
1

2
ud

p
2´1

˜

ÿ

j

u
p
2
j

¸
1
p´1

. (24)

The the first-order condition is

v˚ “ ´u˚
d
p´2
2 gpu˚q1´p, (25)

14

which gives pηjpwq “ |wj |2´p}w}
p´1
p . Now then

hpv˚q “ ´

˜

ÿ

j

u˚j
p
2

¸

gpu˚q1´p ` 2gpu˚q (26)

“ ´gpu˚qpgpu˚q1´p ` 2gpu˚q (27)

“ gpu˚q. (28)

Since gpazq “
?
agpzq, we can solve (25) for gpu˚q:

gpu˚q “ g

˜

ˆ

´v˚

gpu˚q1´p

˙d 2
p´2

¸

(29)

“ gpu˚q
p´1
p´2 g

´

p´v˚q
d 2
p´2

¯

(30)

ùñ gpu˚q
1

2´p “

˜

ÿ

j

ˆ

´
1

vj

˙

p
2´p

¸
1
p

(31)

ùñ hpv˚q “

˜

ÿ

j

ˆ

´
1

vj

˙

p
2´p

¸

2´p
p

. (32)

Thus, fpηq “ }η}q for q “ p
2´p .

A.4 `pp for 0 ă p ă 2

First we compute the derivative

gpuq “
1

p
u
p
2 ùñ g1puq “

1

2
u
p
2´1. (33)

Then the first-order condition is

v˚ “ ´u˚
p´2
2 , (34)

which gives pηpwq “ |w|2´p. We also have u˚ “ ´v˚
2
p´2 , which gives us

hpv˚q “ ´p´v˚q
2
p´2`1

`
2

p
p´v˚q

p
p´2 (35)

“
2´ p

p

ˆ

´
1

v˚

˙

p
2´p

. (36)

Thus, fpηq “ 1
qη
q for q “ p

2´p .

A.5 Elastic Net

First, we compute the derivative

gpuq “
θ

2
u` p1´ θq

?
u ùñ g1puq “

θ

2
`

1´ θ

2
?
u
. (37)

The first-order condition is

v˚ “ ´θ ´
1´ θ
?
u˚

, (38)

which is bounded by v˚ ď ´θ. From this we obtain pηpwq “ |w|
|w|θ`p1´θq . We also have

?
u˚ “

1´θ
´v˚´θ . This gives us

hpv˚q “
v˚p1´ θq2

p´v˚ ´ θq2
`

θp1´ θq2

p´v˚ ´ θq2
`

2p1´ θq2

p´v˚ ´ θq
(39)

“
p1´ θq2

p´v˚ ´ θq
. (40)

Thus, fpηq “ ηp1´θq2

1´ηθ for η ď 1
θ .

15

A.6 Huber

As usual, first we compute the derivative

gpuq “

"

1
2εu`

ε
2 ,

?
u ď ε

?
u,

?
u ą ε

ùñ g1puq “

#

1
2ε ,

?
u ď ε

1
2
?
u
,
?
u ą ε

. (41)

The first-order condition is

v˚ “ ´min

"

1

ε
,

1
?
u˚

*

, (42)

which is bounded by v˚ ě ´ 1
ε . This gives us pηpwq “ max tε, |w|u. For v˚ ě ´ 1

ε ,
?
u˚ “ ´ 1

v˚ , so

hpv˚q “
1

v˚
´ 2

1

v˚
“ ´

1

v˚
. (43)

Thus, fpηq “ η for η ě ε.

A.7 Log Sum

First, we compute the derivative

gpuq “ logp
?
u` εq ùñ g1puq “

1

2
?
up
?
u` εq

. (44)

Then the first-order condition is

v˚ “ ´
1

?
u˚p
?
u˚ ` εq

. (45)

This gives us pηpwq “ |w|p|w| ` εq. Rewriting the above as a quadratic equation in
?
u˚, we have

p
?
u˚q2 ` ε

?
u˚ `

1

v˚
“ 0, (46)

which gives the inverse mapping
?
u˚ “

b

ε2´ 4
v˚
´ε

2 . Thus we get

hpv˚q “
v˚

4

˜

c

ε2 ´
4

v˚
´ ε

¸2

` 2 log

¨

˝

b

ε2 ´ 4
v˚ ` ε

2

˛

‚. (47)

Thus, fpηq “ 2 log

ˆ?
ε2`4η`ε

2

˙

´ 1
4η

´

a

ε2 ` 4η ´ ε
¯2

.

A.8 SCAD

The SCAD penalty as presented by Fan and Li [13] uses the regularization scaling λ as a parameter,
so first we factor it out:

λΩpwq “ λ

$

’

&

’

%

|w|, |w| ď λ
2aλ|w|´w2

´λ2

2pa´1qλ , |w| P pλ, aλs
pa`1qλ

2 , |w| ą aλ

. (48)

We then compute the derivative

gpuq “

$

’

&

’

%

?
u,

?
u ď λ

2aλ
?
u´u´λ2

2pa´1qλ ,
?
u P pλ, aλs

pa`1qλ
2 ,

?
u ą aλ

ùñ g1puq “

$

’

&

’

%

1
2
?
u
,

?
u ď λ

a
2pa´1q

?
u
´ 1

2pa´1qλ ,
?
u P pλ, aλs

0,
?
u ą aλ

.

(49)

16

This gives us the first order condition and in turn pη:

v˚ “

$

’

&

’

%

´ 1?
u˚
,

?
u˚ ď λ

´ a

pa´1q
?
u˚
` 1
pa´1qλ ,

?
u˚ P pλ, aλs

0,
?
u˚ ą aλ

(50)

ùñ pηpwq “

$

’

&

’

%

|w|, |w| ď λ
pa´1qλ|w|
aλ´|w| , |w| P pλ, aλs

8, |w| ą aλ

. (51)

Now when
?
u˚ ď λ, v˚ ď ´ 1

λ , and when
?
u˚ P pλ, aλs, v˚ P p´ 1

λ , 0s. In the first case,
?
u˚ “ ´ 1

v˚ , and in the second,
?
u˚ “ aλ

1´pa´1qλv˚ . Therefore,

hpv˚q “

$

&

%

1
v˚ ´

2
v˚ , v˚ ď ´ 1

λ

a2λ2v˚

p1´pa´1qλv˚q2 `
2aλ

´

aλ
1´pa´1qλv˚

¯

´ a2λ2

p1´pa´1qλv˚q2
´λ2

pa´1qλ , v˚ ą ´ 1
λ

(52)

“

#

´ 1
v˚ , v˚ ď ´ 1

λ
a2pa´1qλ3v˚`2a2λ2

p1´pa´1qλv˚q´a2λ2
´λ2

p1´pa´1qλv˚q2

pa´1qλp1´pa´1qλv˚q2 , v˚ ą ´ 1
λ

(53)

“

#

´ 1
v˚ , v˚ ď ´ 1

λ
λpa2´a2pa´1qλv˚´p1´pa´1qλv˚q2q

pa´1qp1´pa´1qλv˚q2 , v˚ ą ´ 1
λ

(54)

“

#

´ 1
v˚ , v˚ ď ´ 1

λ
λpa2´1`pa´1qλv˚q
pa´1qp1´pa´1qλv˚q , v˚ ą ´ 1

λ

(55)

“

#

´ 1
v˚ , v˚ ď ´ 1

λ
λpa`1`λv˚q
1´pa´1qλv˚ , v˚ ą ´ 1

λ .
(56)

From this we obtain

fpηq “

#

η, η ď λ

λ pa`1qη´λ
pa´1qλ`η , η ą λ.

(57)

A.9 MCP

As with SCAD, we first factor out the λ from the penalty:

λΩpwq “ λ

#

|w| ´ w2

2aλ , |w| ď aλ
aλ
2 , |w| ą aλ

. (58)

We then compute the derivative

gpuq “

"?
u´ u

2aλ ,
?
u ď aλ

aλ
2 ,

?
u ą aλ

ùñ g1puq “

#

1
2
?
u
´ 1

2aλ ,
?
u ď aλ

0,
?
u ą aλ

. (59)

Our first-order condition is

v˚ “

#

´ 1?
u˚
` 1

aλ ,
?
u˚ ď aλ

0,
?
u˚ ą aλ

, (60)

from which we obtain

pηpwq “

#

aλ|w|
aλ´|w| , |w| ă aλ

8, |w| ě aλ
. (61)

17

We have the inverse mapping
?
u˚ “ aλ

1´aλv˚ , which gives us

hpv˚q “
a2λ2v˚

p1´ aλv˚q2
`

2aλ

1´ aλv˚
´

aλ

p1´ aλv˚q2
(62)

“
aλpaλv˚ ` 2p1´ aλv˚q ´ 1q

p1´ aλv˚q2
(63)

“
aλ

1´ aλv˚
. (64)

From here, we directly obtain fpηq “ aλη
η`aλ .

A.10 `0

The `0 penalty is not differentiable. However, it is separable, and in one dimension we have

gpuq “ 1 tu ą 0u . (65)

Thus ´2g is convex since its epigraph is a convex set. For u “ 0, ´2g has a supporting line with
slope ´8, and elsewhere with slope 0. Thus we have the relationship v˚ “ ´81 tu˚ “ 0u, which
yields pηpwq “ 81 t|w| ą 0u. The mapping u˚ ÞÑ v˚ is not invertible, so we consider two cases of
v˚:

hpv˚q “

"

0, v˚ “ ´8

supuą0 uv
˚ ` 2gpuq, v˚ ą ´8

(66)

“ 21 tv˚ ą ´8u . (67)

We thus conclude that fpηq “ 1 tη ą 0u.

A.11 Hard Threshold

For this penalty, we begin with the pηpwq that yields the IHT algorithm when w is optimized by a
gradient step. This corresponds to

pηjpwq “ 81 tj P TOP-kpwqu . (68)

We thus seek to find a penalty that yields such an pη. In interest of mathematical preciseness, let us
define, given a ą 0 and m P rds, the set

Sm´a :“ Conv ptv : vj P t´a, 0u ,# tj : vj “ ´au ě muq , (69)

where ConvpAq is the convex hull of the set A. Similarly define
sSm´a :“ Conv ptv : vj P r´8,´as Y t0u ,# tj : vj ď ´au ě muq , (70)

and lastly define

pSm´a :“

v : vj ď v1j @j for some v1 P Sm´a
(

. (71)

Note that Sm´a Ď sSm´a Ď pSm´a and that pSm´a is also a convex set. Now consider

hapvq “ 81

v R sSd´k´a

(

. (72)

This function is convex as it has a convex epigraph. Its Legendre–Fenchel transform is given by

h˚apuq “ sup
v

uJv ´ hapvq (73)

“ sup
vP sSd´k

´a

uJv (74)

ď sup
vP pSd´k

´a

uJv (75)

“ sup
vPSd´k

´a

uJv , (76)

18

where inequality holds because sSd´k´a Ď pSd´k´a the final equality holds by definition of pSd´k´a . Clearly,
the inequality is equality since Sd´k´a Ď sSd´k´a . Now consider that for any v P Sd´k´a ,

ř

j vj ď

´pd ´ kqa and vj ě ´a @j. We can choose at most k elements of v to be zero, so to achieve the
supremum we must choose them at the largest elements of u. That leaves then that the remaining
elements must be ´a, so we have

h˚apuq “ ´a
ÿ

jąk

upjq. (77)

With corresponding v˚j “ ´a1 tj R TOP-kpu˚qu. Now, taking a Ñ 8 for v˚, ha, and h˚a we can
determine η, f , and Ω. First, as desired,

ηjpwq “ lim
aÑ8

´p´a1 tj R TOP-kpwquq´1 (78)

“ 81 tj P TOP-kpwqu . (79)

Then, since hapvq is infinite for v R sSd´k´a and zero for v P sSd´k´a , we have fpηq “ 0 with

H “ lim
aÑ8

η : ´ηd´1 P sSd´k´a

(

(80)

“ tη : }η}0 ď ku . (81)

Lastly, we have

Ωpwq “ lim
aÑ8

´2h˚apw
d2q (82)

“ 81 t}w}0 ą 0u . (83)

B Adaptive Dropout with Additive Reparameterization

In Algorithm 1 we present one scheme for implementing adaptive dropout using an additive reparam-
eterization via a two-pass proximal update of the variables w and v. This method is equivalent to an
adaptive proximal stochastic gradient descent with the adaptive Tikhonov penalty.

Algorithm 1: Adaptive Dropout with Additive Reparameterization

Input: Differentiable L : Rd Ñ R, pη : Rd Ñ H, λ ą 0, pρtqTt“1, w0, α0.
Output: wT .
w0,2

“ w0.
for t “ 1, 2, . . . , T do

Draw st „ MASKpαt´1
q.

wt,1
“ wt´1,2

´ ρt∇wL
`

wt´1,2
` pst ´ 1q d vt´1,2

˘

.
vt,1 “ wt,1.
ηt “ pηpvt,1q.
vt,2 “

`

ρtλdiag
`

ηt
˘´1

` I
˘´1

vt,1.
wt,2

“ vt,2.
αtj “

ηtj
ηtj`λ

@j P rds.

end

C Experimental Details

We use the PyTorch [34] and skorch [38] libraries to implement deep network methods. On an Nvidia
980 Ti GPU, the experiment runs in about an hour. We randomly divide the MNIST training set into
training and validation sets with an 80/20 split. For methods involving optimization in logpηq, we
optimize instead in logpsηq for sη “ η{λ, as Molchanov et al. [32] do. We initialize with logpsηjq “ 5.
For the VARDROP methods, we use the dual penalty fpsηq and implement the methods using code
provided by the authors [2]. For other methods, we simply use the LOGSUM(2) penalty (based on
Figure 1) applied to η directly, along with a larger value of λ to account for the implicit attenuation
of the Tikhonov regularization due to dropout with the cross-entropy loss. For all methods, we use
the Adam optimizer with a linear decay to 0 of the initial learning rate. The initial learning rate is set

19

to be 10´4, but for a few methods this failed to converge to a sparse solution, so we increased it to
10´3. For VARDROP, convergence was quite slow; running for a longer number of epochs, however,
does continue to improve the sparsity. Running for 1000 epochs, for example, gets the fraction of
nonzeros down to around 0.1, at a slight expense of accuracy. We report hyperparameters and test
error in Table 4.

We measure sparsity using the same method as Molchanov et al. [32]: we count the values of
sη such that σpsηjq ă 0.05, and we zero out the corresponding wj when applying the network to
a validation/test sample. For η-TRICK, we observed that while the parameters w were indeed
converging to sparse solutions, the η parameters were not, resulting in a mismatch of the actual
sparsity of the network and our reported score; to remedy this, we apply a very small penalty of
λ ¨ 10´3 logpsηq, which did not seem to compromise network accuracy. We report the fraction of
nonzeros for each layer in Table 5.

Table 4: Hyperparameters and final results for sparsification of LeNet-300-100.

Method λ Learning Rate Test Error Fraction of Nonzeros

VARDROP+LR+AR 1
60,000 10´4 3.21% 0.024

VARDROP+LR 1
60,000 10´3 1.41% 0.088

VARDROP 1
60,000 10´3 1.54% 0.595

η-TRICK 10´3 10´3 2.16% 0.051
ADAPROX 10´3 10´4 2.94% 0.028
ADATIKHONOV 10´3 10´4 2.88% 0.018
LOGSUM 10´3 10´4 2.93% 0.019

Table 5: Layer-wise sparsification results for LeNet-300-100.

Method 784ˆ 300 300ˆ 100 100ˆ 1 Total

VARDROP+LR+AR 0.020 0.035 0.502 0.024
VARDROP+LR 0.072 0.189 0.999 0.088
VARDROP 0.568 0.788 1.000 0.595
η-TRICK 0.054 0.026 0.206 0.051
ADAPROX 0.026 0.024 0.399 0.028
ADATIKHONOV 0.016 0.025 0.460 0.018
LOGSUM 0.016 0.025 0.479 0.019

20

