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αSurf: Implicit Surface764

Reconstruction for Semi-Transparent765

and Thin Objects with Decoupled766

Geometry and Opacity767

Supplementary Material768

A. Overview769

In the supplementary material, we include additional exper-770
iment details and evaluation results. We also encourage the771
reader to watch the video results contained in the supple-772
mentary files.773

B. Implementation Details774

B.1. Closed-Form Intersection775

As briefly mentioned in Section 3.2 of our paper, we de-776
termine the ray-surface intersections through the analytical777
solution of cubic polynomials. Note that a similar technique778
has been identified in previous works [13, 19], but they ap-779
plied it on SDF only. We identify that the same approach780
can be applied to a more generalized implicit surface field781
without the Eikonal constraint. We now present the detailed782
derivation of it.783

Given a camera ray r(t) = o+ td with origin o and di-784
rection d, our aim is to find the intersections between the785
ray and a level set surface with value τi within a voxel vx,786
which r(t) is guaranteed to hit. The value of the implicit787
surface field within vx can be determined through the trilin-788
ear interpolation of eight surface scalars stored on the ver-789
tices of vx:790

δ(x) = trilerp(x, {δ̂i}8i=1) (17)791

=(1− z)((1− y)((1− x)δ̂1 + xδ̂5)792

+ y((1− x)δ̂3 + xδ̂7))793

+ z((1− y)((1− x)δ̂2 + xδ̂6)794

+ y((1− x)δ̂4 + xδ̂8)) (18)795

where [x, y, z] = x − l are the relative coordinates within796
the voxel, and l = floor(x). Note that x, y, z ∈ [0, 1]. We797
first determine the near and far intersections tn, tf between798
the ray and voxel vx through the ray-box AABB algorithm,799
and then redefine a new camera origin o′ = o+tnd− l. We800
hence directly have [x, y, z] = o′ + t′d ∈ [0, 1], where t′ =801
t − tn without the need for calculating relative coordinates802
again. By denoting o′ = [o′x, o

′
y, o

′
z], d = [dx, dy, dz], we803

substitute the above as well as δ(x) = τi into Equation 18:804

τi =(1− (o′z + t′dz))((1− (o′y + t′dy)) 805

((1− (o′x + t′dx))δ̂1 + (o′x + t′dx)δ̂5) 806

+ (o′y + t′dy)((1− (o′x + t′dx))δ̂3 + (o′x + t′dx)δ̂7)) 807

+ (o′z + t′dz)((1− (o′y + t′dy)) 808

((1− (o′x + t′dx))δ̂2 + (o′x + t′dx)δ̂6) 809

+ (o′y + t′dy)((1− (o′x + t′dx))δ̂4 + (o′x + t′dx)δ̂8)) .

(19)
810

By re-arranging the equation, we obtain: 811

τi = f3t
′3 + f2t

′2 + f1t
′ + f0 (20) 812

where 813

f0 =(m00(1− o′y) +m01(o
′
y))(1− o′x)

+ (m10(1− o′y) +m11(o
′
y))(o

′
x)

f1 =(m10(1− o′y) +m11(o
′
y))dx + k1(o

′
x)

− (m00(1− o′y) +m01(o
′
y))dx + k0(1− o′x)

f2 =k1dx + h1(o
′
x)− k0dx + h0(1− o′x)

f3 =h1dx − h0dx

(21) 814

and 815

m00 =δ̂1(1− o′z) + δ̂2(o
′
z)

m01 =δ̂3(1− o′z) + δ̂4(o
′
z)

m10 =δ̂5(1− o′z) + δ̂6(o
′
z)

m11 =δ̂7(1− o′z) + δ̂8(o
′
z)

k0 =(m01dy + dz(δ̂4 − δ̂3)(o
′
y))

− (m00dy − dz(δ̂2 − δ̂1)(1− o′y))

k1 =(m11dy + dz(δ̂8 − δ̂7)(o
′
y))

− (m10dy − dz(δ̂6 − δ̂5)(1− o′y))

h0 =dydz(δ̂4 − δ̂3)− dydz(δ̂2 − δ̂1)

h1 =dydz(δ̂8 − δ̂7)− dydz(δ̂6 − δ̂5) .

(22) 816

Therefore, we obtain a cubic polynomial with a single 817
unknown t′. Note that here we only sketch the main idea. 818
For the actual implementation, we refer to [13] which pro- 819
vides a more concise implementation that formulates the 820
cubic polynomials with fewer operations through the use 821
of fused-multiply-add. 822

We then incorporate Vieta’s approach [38] to solve the 823
real roots for t′ in an analytic way. Namely, we first re-write 824
the cubic polynomial as follows: 825
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τi = t′3 + at′2 + bt′ + c (23)826

a =
f2
f3

, b =
f1
f3

, c =
f0
f3

. (24)827

Then, compute:828

Q =
a2 − 3b

9
(25)829

R =
2a3 − 9ab+ 27c

54
. (26)830

If R2 < Q3, we have three real roots given by:831

θ = arccos(
R√
Q3

) (27)832

t′1 = −2
√
Q cos(

θ

3
)− a

3
(28)833

t′2 = −2
√
Q cos(

θ − 2π

3
)− a

3
(29)834

t′3 = −2
√
Q cos(

θ + 2π

3
)− a

3
(30)835

where t′1 ≤ t′2 ≤ t′3. This can be trivially seen from 0 ≤836
θ ≤ π,

√
Q ≥ 0 and cos( θ3 ) ≥ cos( θ−2π

3 ) ≥ cos( θ+2π
3 ).837

If R2 ≥ Q3, we only have a single real root. First com-838
pute:839

A = − sign(R)
(
|R|+

√
R2 −Q3

)1/3

(31)840

B =

{
Q/A, if A ̸= 0

0, otherwise
. (32)841

Then, the only real root can be obtained as:842

t′1 = (A+ b)− a

3
. (33)843

The intersection coordinate can therefore be determined844
as r(tn + t′). We then check the intersections against the845
bounding box of each voxel vx to remove any samples out-846
side of the voxels. Besides, the cubic polynomial might re-847
turn multiple valid real roots within the voxel if R2 < Q3.848
If the roots are unique, that means the ray intersects with the849
same surface multiple times within the voxel, all the inter-850
sections are taken for rendering. However, if the roots are851
identical, we remove the redundant ones to prevent using852
the same intersection multiple times.853

As both the formulation of cubic polynomials and Vi-854
eta’s approach are fully differentiable, we hence directly855
have gradients defined on our surface representation δ̂ from856
the photometric loss.857

Figure 7. The truncated alpha compositing reweight function
γ(i − 1). The x-axis is the index of the intersection starting from
1 (excluding intersections on back-facing surfaces). By reducing
a, we effectively slide the curve to the left.

B.2. Hyperparameters 858

Our code is based on Plenoxels [42]. We similarly use a 859
sparse voxel grid of size 5123 where each vertex stores the 860
surface scalar δ, raw opacity σα and 9 SH coefficients for 861
each color channel. We directly initialize all the grid val- 862
ues from Plenoxels pre-trained with original hyperparame- 863
ters and prune voxels with densities σ lower than 5. We use 864
sσ = 0.05 to downscale the density values during initializa- 865
tion. We train for 50k iterations with a batch size of 5k rays, 866
which takes around 17 minutes for synthetic scenes and 22 867
minutes for real-world scenes on an NVIDIA A100-SXM- 868
80GB GPU (excluding Plenoxels training). We used grid 869
search to determine the optimal hyperparameters. We use 870
the same delayed exponential learning rate schedule, where 871
the learning rate is delayed with a scale of 0.01 during first 872
25k iterations. As previously mentioned, the interval of 873
level values is selected by first determining a valid range 874
of Plenoxels density field. We then select a suitable num- 875
ber of level values, i.e., the carnality n of our multi level 876
sets, by trying 1, 3, 5, 10 evenly-spaced level values on the 877
“ship” scene from NeRF Synthetic dataset. We found n = 5 878
to give the best performance. At the end of the training, we 879
also remove invisible surfaces with opacity α less than 0.1. 880

Synthetic For experiments on synthetic datasets, we ini- 881
tialize 5 level sets at τσ = {10, 30, 50, 70, 90}, and linearly 882
decay the truncated alpha compositing parameter a from 5 883
to 2 in first 10k iterations. For surface scalars δ̂, we use 884
10−5 as both starting and end learning rate. For raw opacity 885
values σα, we start with 10−2 and end with 10−3. For SH 886
we keep the learning rate at 10−3 without exponential de- 887
cay or initial delay. We use the RMSProp [16] optimizer for 888
training. For the regularization weights, we set λc = 10−6 889
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Figure 8. Ablation Study. We show the qualitative results of different ablations. Our full approach achieves the best quality overall.

Figure 9. Comparison with the Eikonal constraint regulariza-
tion. We visualize the out view (first column) and the inside view
(second column) by cropping the surfaces along the y-axis. It can
be clearly seen that the Eikonal constraint does not regularize the
surface to be clean and smooth, but rather creates additional noises
in optimization.

for the first 10k iterations and 0 for the rest of training. We890
use λδ = 10−3, λH = 10−4, λα = 10−9, λn1

= 10−6 and891
λn2 = 0 for the Thin dataset. λn2 was disabled as it tends to892
destroy the thin structures with rapid normal variations. For893
the Translucent dataset, we use λδ = 10−5, λα = 10−11,894

Figure 10. Reconstruction without regularization tends to give an
enormous amount of redundant inner surfaces. Encouraging con-
sistent normals in the local neighborhood via Ln1 ,Ln2 enforces
smoother surfaces, but redundant surfaces still remain. With both
normal regularization and TV loss applied on the surface scalar
field, we can obtain clean and smooth reconstruction.

λH = 10−4, λn2
= 10−4, and linearly decay λn1

from 895
10−2 to 10−4. 896

Real-World For experiments on real-world scenes, we 897
initialize with less level sets τσ = {10, 30, 50}, as we found 898
level values above 50 give almost empty surfaces due to 899
higher density regularization in Plenoxels initialization. We 900
use the hyperparameters used by the original authors to run 901
LLFF experiments to train Plenoxels. For our method, we 902
use level sets τσ = {10, 30, 50} as level value above 50 903
gives almost empty space. We change the surface scalar 904
learning rate to start and end both at 10−4 with a delay ratio 905
of 10−2 and delay steps of 25k. The learning rates of opac- 906
ity and SH are the same as in the synthetic experiments. For 907
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regularizations, we use the same λc and λH as synthetic ex-908
periments, and set λδ = 5×10−3, λα = 10−9, λn2 = 10−3909
and linearly decay λn1

from 10−2 to 10−3.910
For the implementation of surface TV loss Lδ , we cal-911

culate the gradient via forward finite difference in the same912
way as Plenoxels [42]:913

∇xδ̂(i, j, k) =
|δ̂(i+ 1, j, k)− δ̂(i, j, k)|Dx

256
(34)914

where i, j, k are the vertex coordinate, Dx is the grid reso-915
lution in x dimension and is 512 for all experiments in our916
case. ∇y δ̂(i, j, k) and ∇z δ̂(i, j, k) are calculated accord-917
ingly. We simply ignore the edge vertices when computing918
the surface TV loss by using the Neumann boundary condi-919
tions.920

The truncated alpha compositing reweight function can921
be seen as a truncated Hann window [36], as shown in Fig-922
ure 7. By reducing a during the training, we slide the curve923
to the left and hence gradually anneal the influence of later924
intersections.925

C. Additional Experiments926

C.1. Synthetic Dataset927

Experiment Details For quantitative evaluation, we928
adapt the Python version of DTU [17] evaluation script [20],929
where we extracted dense point clouds from all level sur-930
faces and downsampled both predicted and ground truth931
points with 0.001 density before computing the Chamfer932
distance. For evaluation of NeuS [54] and HFS [56], we933
first extracted the mesh using marching cubes with resolu-934
tion 5123, then used the script to sample points on the mesh935
to compute the Chamfer distance. For evaluation of Plenox-936
els [42], MipNeRF360 [2] and our method, we directly sam-937
ple points on the implicit surfaces by sending dense vir-938
tual rays within each grid of a 5123 voxel grid through our939
closed-form intersection finding. This makes the computa-940
tion of sample opacity and trimming of the surface easier.941

For training of NeuS [54], HFS [56] and MipNeRF360942
[2], we used the provided hyperparameters. We used the hy-943
perparameters for real-world thin structure reconstruction944
experiments for NeuS, as we found it gives better perfor-945
mance on the NeRF Synthetic dataset. For training on the946
Translucent Blender dataset, we set the background to white947
for all methods as the semi-transparent objects are rendered948
with a white background in Blender.949

To select a level set value on the density field of Plebox-950
els [42] and MipNeRF 360 [2] for surface extraction, we951
use the same methods as in [35, 54], where we extracted and952
evaluated surfaces on levels τσ = {10, 30, 50, 70, 90, 100},953
which fully covers the surfaces we used to initialize from954
Plenoxels. We computed the average norm on Synthetic,955

Thin Translucent average

Plen (σ = 10) 0.759 0.813 0.786
Plen (σ = 30) 0.886 0.761 0.824
Plen (σ = 50) 0.687 0.812 0.750
Plen (σ = 70) 0.563 1.062 0.812
Plen (σ = 90) 0.526 1.597 1.062
Plen (σ = 100) 0.541 1.832 1.186
Mip360 (σ = 10) 1.882 3.76 2.821
Mip360 (σ = 30) 1.468 3.081 2.274
Mip360 (σ = 50) 1.445 3.063 2.254
Mip360 (σ = 70) 1.526 3.07 2.298
Mip360 (σ = 90) 1.635 3.116 2.376
Mip360 (σ = 100) 1.693 3.203 2.448

Table 3. Chamfer distance ↓ ×10−2 on synthetic datasets. We
color the best level sets for Plenoxels [42] (Plen in table) and
MipNeRF360 [2] (Mip360 in table) respectively.

Thin, and Translucent datasets and selected the level set 956
value with the best Chamfer distance on each of the 957
datasets. For Plenoxels, the level sets are 90, 30 and for 958
MipNeRF 360, the level sets are 50, 50 for the two datasets 959
respectively. We report the quantitative results for each level 960
set in Tab 3 and show a few qualitative examples in Fig- 961
ure 11. 962

Additional Results We show all the qualitative results in 963
14, 15, as well as the individual Chamfer distance for each 964
scene in 5 and 6. The qualitative comparisons shown in 965
both main paper and the supplementary are done by first 966
evaluating the L1 error on each sampled point, then render- 967
ing the point cloud with Eye-Dome Lighting (EDL) using 968
PyVista [50]. We also show additional novel view RGB 969
renderings of our method in Figure 16. But please note that 970
we do not claim state-of-the-art performance in novel view 971
synthesis. 972

C.2. Real-World Dataset 973

We show additional comparisons with neuralangelo [28] in 974
Fig 12. Note that as neuralangelo uses a different camera 975
normalization for COLMAP scenes instead of Normalized 976
Device Coordinate (NDC), which we use for our method 977
and all other baselines, the reconstruction of neuralangelo is 978
therefore not exactly aligned. We use an interactive viewer 979
with Eye Dome Lighting [6] and manually selected cam- 980
era positions with close views for comparison. Regardless, 981
it can be clearly seen that although neuralangelo excels at 982
reconstructing smooth surfaces, it fails to faithfully recon- 983
struct thin or translucent surfaces. Our method achieves a 984
significant improvement over it in terms of thin and translu- 985
cent surface reconstruction. 986
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Figure 11. Surfaces extracted using different level sets from Plenoxels [42] and MipNeRF360 [2]. We remove part of the exterior
surface in each scene to visualize the interior reconstructions. Due to the ambiguity of density representation, a low density level set gives
more complete surfaces but could contain a significant amount of noise, whereas a high density level set can miss a lot of surfaces.

C.3. Ablation987

We should additional qualitative ablation of our method in988
Figure 8. In addition, we show a comparison between the989
results after applying our TV surface regularization Lδ and990
after applying the Eikonal constraint regularization used in991
most SDF optimization methods in Figure 9. Namely, in re-992
place of TV surface regularization, we encourage the norm993
of the gradient of the surface field at every vertex to get994
close to 1 via mean squared error:995

Lek =
1

|V|
∑
x∈V

(||∇δ̂(x)||2 − 1)2 . (35)996

From Figure 9, it can be clearly seen that the Eikonal997
constraint is not sufficient to regularize and remove the998
noisy inner surfaces inherited from initialization. Moreover,999

it turns out to even harm the optimization by introducing 1000
additional surface floaters while trying to constrain the sur- 1001
face field into an SDF. This also shows that converting the 1002
surfaces extracted from a density field into proper SDF is a 1003
non-trivial task. 1004

In Figure 10, we show that normal regularization 1005
Ln1

,Ln2
are insufficient for removing heavily biased sur- 1006

faces initialized from Plenoxels, whereas Lδ is more effec- 1007
tive in this case. 1008

C.4. DTU Dataset 1009

We additionally show reconstruction results on some DTU 1010
[17] scenes in Figure 17 and Table 4. We note that as DTU 1011
does not contain many thin structures or semi-transparent 1012
materials, but mostly smooth surfaces only, our method 1013
is therefore not expected to achieve state-of-the-art perfor- 1014
mance in this scenario. In fact, our method reconstructs 1015

15
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Ours

neuralangelo

Figure 12. Additional real-world comparisons with neuralan-
gelo [28] Note that neuralangelo uses a different coordinate sys-
tem and camera processing pipeline for COLMAP scenes, there-
fore the reconstructions are not perfectly aligned, but it can still be
clearly seen that our method achieves better reconstruction quality
on thin structures and translucent surfaces.

37 40 63 69 110

Plen (σ = 10) 1.90 1.86 1.86 2.04 1.96
Plen (σ = 50) 1.46 1.43 1.66 1.60 1.75
Plen (σ = 100) 1.34 1.57 2.99 2.22 2.43
NeuS 0.98 0.56 1.13 1.45 1.43
Ours 1.34 1.36 0.99 1.91 1.37

Table 4. Chamfer distance ↓ on DTU scenes. We color the best
and second best surfaces.

reasonable surfaces, but performs worse than NeuS overall.1016
This is mainly due to a lack of natural spatial smoothness1017
constraint present in the MLP architecture of NeuS, which1018
allows it to perform well on datasets like DTU that contain1019
many smooth surfaces, but worse on our synthetic dataset1020
with a focus on thin structures.1021

We also note that although the qualitative comparison1022
in Figure 17 shows that our method can refine the level1023
set surfaces extracted from Plenoxels by correcting the out-1024
growing surfaces while preventing holes, the Chamfer dis-1025
tance does not always show an improvement. This is be-1026
cause the official DTU evaluation provides carefully cre-1027
ated masks to remove reconstruction on parts that do not1028
have proper reference geometry scanned by the depth scan-1029
ner. This also excludes the majority of the inner surfaces1030
from level set surfaces of Plenoxels, making their Chamfer1031
distances much better; see Figure 13.1032

Experiment Details We compared with level set surfaces1033
from Plenoxels [42] and NeuS [54] trained with masks. We1034
used the image masks provided by IDR [59] to set the back-1035
ground to white before training both Plenoxels and ours.1036
For Plenoxels, we used the same hyperparameters for train-1037

Figure 13. Inside views of reconstructions on DTU dataset. Red
color indicates the L1 error in reconstruction, and blue indicates
the reconstruction masked out by the DTU official masks. Surfaces
extracted from Plenoxels contain many noisy inner surfaces that
had to be masked out during evaluation to achieve low Chamfer
distance.

ing on NeRF Synthetic dataset. We used slightly different 1038
hyperparameters from the ones we used for training NeRF 1039
Synthetic and Thin datasets. Namely, we modified the sur- 1040
face scalar learning rate to start with 10−4 and end with 1041
10−6. We increased λδ to 0.05, λH to 10−3 and λα to 10−8. 1042
We also kept the truncated alpha compositing parameter a 1043
at 5 throughout training. 1044
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Figure 14. Qualitative results on Thin Blender dataset. Note that neuralangelo [28] failed to learn any surface on the “lyre” scene.

ship ficus lyre bee stair scale seat well avg

Plen (σ = 90) 0.476 0.431 0.522 0.541 0.206 0.884 0.497 0.647 0.526
Mip360 (σ = 50) 1.217 2.640 1.311 1.181 0.279 2.243 0.744 1.941 1.445
NeuS 0.552 1.667 0.812 0.242 4.087 0.237 0.431 0.360 1.049
HFS 0.514 0.374 0.781 0.336 4.316 0.271 0.425 0.385 0.925
neuralangelo 0.270 0.411 NaN 0.377 0.426 0.789 0.432 0.266 0.424
NeRRF 1.74 2.899 NaN 1.164 3.731 1.359 2.17 3.381 2.349
Ours 0.277 0.240 0.188 0.207 0.176 0.575 0.288 0.319 0.284

Table 5. Chamfer distance ↓ ×10−2 on Thin Blender datasets. We color the best , second best methods.
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Figure 15. Qualitative results on Translucent Blender dataset. Note that HFS [56] fails to learn any surface on “kitchen table” and
“double table” scenes. We removed some exterior surfaces in the “monkey” scene to show the interior surfaces.

name case table coffee kitchen bottle monkey double vase avg

Plen (σ = 30) 1.195 0.438 0.706 0.378 0.709 1.084 0.557 1.024 0.761
Mip360 (σ = 50) 4.012 5.217 2.096 2.375 2.324 4.390 2.900 1.190 3.063
NeuS 5.091 1.188 1.070 0.392 2.271 5.923 0.874 1.946 2.344
HFS 5.094 0.854 2.839 NaN 1.493 3.223 NaN 8.684 3.698
neuralangelo 2.072 0.483 0.798 0.577 0.395 2.464 0.513 1.701 1.125
NeRRF 1.267 0.571 0.822 3.091 3.72 2.905 0.829 3.486 2.086
Ours 0.835 0.373 0.717 0.255 0.653 0.776 0.512 0.870 0.624

Table 6. Chamfer distance ↓ ×10−2 on Semi-Transparent Blender datasets. We color the best , second best methods. Note that
HFS [56] fails to learn any surface on “kitchen table” and “double table” scenes.
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Figure 16. RGB renderings of our methods on synthetic datasets.
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Figure 17. Qualitative results on DTU [17] dataset. As the DTU scenes mainly contain smooth surfaces without any semi-transparent
materials, our method does achieve state-of-the-art performance on this dataset. However, note that our method can still accurately capture
the thin structure that is missed by NeuS in Scan 63. Moreover, our method can effectively correct the out-growing surface artifacts in
Plenoxels. Red color indicates the L1 error in reconstruction, blue indicates the reconstruction masked out by the DTU official masks, and
green indicates reconstructions that are too far away from reference and hence clipped during evaluation.
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