3DV
#125

764
765
766

767

768

769

770
771
772
773

774

775

776
777
778
779
780
781
782
783
784
785
786
787
788
789
790

791
792
793
794

795

796
797
798
799
800
801
802
803
804

3DV 2024 Submission #125. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

oSurf: Implicit Surface
Reconstruction for Semi-Transparent
and Thin Objects with Decoupled
Geometry and Opacity

Supplementary Material

A. Overview

In the supplementary material, we include additional exper-
iment details and evaluation results. We also encourage the
reader to watch the video results contained in the supple-
mentary files.

B. Implementation Details
B.1. Closed-Form Intersection

As briefly mentioned in Section 3.2 of our paper, we de-
termine the ray-surface intersections through the analytical
solution of cubic polynomials. Note that a similar technique
has been identified in previous works [13, 19], but they ap-
plied it on SDF only. We identify that the same approach
can be applied to a more generalized implicit surface field
without the Eikonal constraint. We now present the detailed
derivation of it.

Given a camera ray r(t) = o + td with origin o and di-
rection d, our aim is to find the intersections between the
ray and a level set surface with value 7; within a voxel vy,
which r(t) is guaranteed to hit. The value of the implicit
surface field within vy can be determined through the trilin-
ear interpolation of eight surface scalars stored on the ver-
tices of vy:

0(x) =trilerp(x, {52-}?:1) 17
=(1=2)((1 = y)((1 —)01 + x05)
+y((1 — 2)d3 + d7))
+ 2((1 — y)((1 — x)d3 + xbg)
y(1 —)64 + 203)) (18)

where [x,y, z] = x — 1 are the relative coordinates within
the voxel, and 1 = floor(x). Note that z,y, z € [0,1]. We
first determine the near and far intersections t,,, ¢ between
the ray and voxel vy through the ray-box AABB algorithm,
and then redefine a new camera origin o’ = o+t,d —1. We
hence directly have [z, y, 2] = o’ +t'd € [0, 1], where ¢’ =
t — t,, without the need for calculating relative coordinates
again. By denoting o’ = [0}, 0},0], d = [d., dy,d.], we
substitute the above as well as §(x) = 7; into Equation 18:

11

i =(1 = (oL +t'd.))((1 — (0}, +1'dy))
(1= (0 + d,))51 + (o, +'dy)33)
+ (0, +'dy) (1 = (0, + t'd))05 + (0], + t'da)d7))
+ (o, +t'd.)((1 = (0, +t'dy))
(1= (0, +t'dy))d2 + (0}, + t'dy)d6)

+ (0, + 'dy) (1 = (0, + t'dy))os + (0}, + 'dy)ds)) -

(19)
By re-arranging the equation, we obtain:
i = fst"® + fot® + fit + fo (20)
where
fo =(moo(1 — o) +mo1(0,)) (1 — 0f)
+ (mao(1 — oy,) +mui (o)) (0})
fr =(mao(1 — 0y) +mi1(0))dy + k1 (0},) 1)
— (moo(1 = 0,) + mo1(0y,))ds + ko(1 — o)
f2 :kldx —+ hl(Ox) — kod ho(l — O;)
f3 =hidy — hod,
and
Mmoo =01 (1 — 0,) + d2(0.)
mo1 :33(1 — O/Z) + 34(0;)
mio :85(1 — Olz) + 36(0/2)
myy =07(1 — o)) + ds(0.)
ko =(mo1dy + d. (04 — 3)(0})))
— (moody — d= (32 — b1)(1 — 0))))
ky =(muidy + d.(ds — 67)(0],))
(mwd — d (56 — 55 (1 — O;))
ho =dyd. (64 — 83) — dyd. (2 — by)
hy =d,d.(ds — d7) — d d. (66 — b5) .

Therefore, we obtain a cubic polynomial with a single
unknown t’. Note that here we only sketch the main idea.
For the actual implementation, we refer to [13] which pro-
vides a more concise implementation that formulates the
cubic polynomials with fewer operations through the use
of fused-multiply-add.

We then incorporate Vieta’s approach [38] to solve the
real roots for ¢’ in an analytic way. Namely, we first re-write
the cubic polynomial as follows:

3DV
#125

805
806
807
808
809
810

811

812

813

814

815

816

817
818
819
820
821
822
823
824
825

3DV
#125

826

827

828

829

830

831

832

833

834

835

836
837
838
839

840

841

842

843

844
845
846
847
848
849
850
851
852
853
854
855
856
857

3DV 2024 Submission #125. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

=t 4at? +bt' +¢ (23)
fe fi Jo
a="=b=",c==>. (24)
f3 [[
Then, compute:
2 3b
0="5" 25)
2a® — 9ab + 27c
== - ~= - 2
R 54 (26)
If R? < 3, we have three real roots given by:
0 = arccos(i) 27
/Q3
0 a
t) = -2 -)—= 28
1 QCOS(3) 3 (28)
0—2
= —2,/Q cos(——T) — % (29)
0+2
t, = —21/0 cos(”)—g (30)

where] <t} < 5. This can be trivially seen from 0 <
0 <, /Q > 0and cos(£) > cos(£2) > cos(H2E).

If R? > @3, we only have a single real root. First com-
pute:

1/3
A= —sign(R) (IR + VRZ = Q) G1)
A, ifA
o JQ/A 7{0 . (32)
0, otherwise
Then, the only real root can be obtained as:
, a

The intersection coordinate can therefore be determined
as r(t, + t'). We then check the intersections against the
bounding box of each voxel vy to remove any samples out-
side of the voxels. Besides, the cubic polynomial might re-
turn multiple valid real roots within the voxel if R? < Q3.
If the roots are unique, that means the ray intersects with the
same surface multiple times within the voxel, all the inter-
sections are taken for rendering. However, if the roots are
identical, we remove the redundant ones to prevent using
the same intersection multiple times.

As both the formulation of cubic polynomials and Vi-
eta’s approach are fully differentiable, we hence directly
have gradients defined on our surface representation § from
the photometric loss.

12

0.0

Figure 7. The truncated alpha compositing reweight function
~(i — 1). The x-axis is the index of the intersection starting from
1 (excluding intersections on back-facing surfaces). By reducing
a, we effectively slide the curve to the left.

B.2. Hyperparameters

Our code is based on Plenoxels [42]. We similarly use a
sparse voxel grid of size 5122 where each vertex stores the
surface scalar J, raw opacity o, and 9 SH coefficients for
each color channel. We directly initialize all the grid val-
ues from Plenoxels pre-trained with original hyperparame-
ters and prune voxels with densities o lower than 5. We use
s, = 0.05 to downscale the density values during initializa-
tion. We train for 50k iterations with a batch size of 5k rays,
which takes around 17 minutes for synthetic scenes and 22
minutes for real-world scenes on an NVIDIA A100-SXM-
80GB GPU (excluding Plenoxels training). We used grid
search to determine the optimal hyperparameters. We use
the same delayed exponential learning rate schedule, where
the learning rate is delayed with a scale of 0.01 during first
25k iterations. As previously mentioned, the interval of
level values is selected by first determining a valid range
of Plenoxels density field. We then select a suitable num-
ber of level values, i.e., the carnality n of our multi level
sets, by trying 1, 3, 5, 10 evenly-spaced level values on the
“ship” scene from NeRF Synthetic dataset. We found n = 5
to give the best performance. At the end of the training, we
also remove invisible surfaces with opacity « less than 0.1.

Synthetic For experiments on synthetic datasets, we ini-
tialize 5 level sets at 7, = {10, 30, 50, 70, 90}, and linearly
decay the truncated alpha compositing parameter a from 5
to 2 in first 10k iterations. For surface scalars §, we use
107" as both starting and end learning rate. For raw opacity
values o, we start with 10~2 and end with 10~3. For SH
we keep the learning rate at 10~3 without exponential de-
cay or initial delay. We use the RMSProp [16] optimizer for
training. For the regularization weights, we set A, = 1076

3DV
#125

858

859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

881
882
883
884
885
886
887
888
889

3DV
#125

890
891
892
893
894

3DV 2024 Submission #125. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

table ficus

monkey

Eikonal

w Ly (ours)

Figure 9. Comparison with the Eikonal constraint regulariza-
tion. We visualize the out view (first column) and the inside view
(second column) by cropping the surfaces along the y-axis. It can
be clearly seen that the Eikonal constraint does not regularize the
surface to be clean and smooth, but rather creates additional noises
in optimization.

for the first 10k iterations and O for the rest of training. We
use As = 1073, Ay = 1074, A\, = 1072, A\, = 1076 and
An, = 0for the Thin dataset. A\, was disabled as it tends to
destroy the thin structures with rapid normal variations. For
the Translucent dataset, we use \; = 1072, A, = 10711,

13

w/o Ls,Lny, Lngy w/o Ls Ours

Figure 10. Reconstruction without regularization tends to give an
enormous amount of redundant inner surfaces. Encouraging con-
sistent normals in the local neighborhood via Ly, , £y, enforces
smoother surfaces, but redundant surfaces still remain. With both
normal regularization and TV loss applied on the surface scalar
field, we can obtain clean and smooth reconstruction.

Ay = 1074 Xy, = 1074, and linearly decay \,, from
1072 to 10~ 4.

Real-World For experiments on real-world scenes, we
initialize with less level sets 7, = {10, 30, 50}, as we found
level values above 50 give almost empty surfaces due to
higher density regularization in Plenoxels initialization. We
use the hyperparameters used by the original authors to run
LLFF experiments to train Plenoxels. For our method, we
use level sets 7, = {10,30,50} as level value above 50
gives almost empty space. We change the surface scalar
learning rate to start and end both at 10~ with a delay ratio
of 1072 and delay steps of 25k. The learning rates of opac-
ity and SH are the same as in the synthetic experiments. For

3DV
#125

895
896

897
898
899
900
901
902
903
904
905
906
907

3DV
#125

908
909
910
911
912
913

914

915
916
917
918
919
920
921
922
923
924
925

926
927

928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955

3DV 2024 Submission #125. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

regularizations, we use the same)\, and Ay as synthetic ex-
periments, and set \s = 5x 1073, A, = 1079, A\, = 1073
and linearly decay \y,, from 1072 to 1073.

For the implementation of surface TV loss L5, we cal-
culate the gradient via forward finite difference in the same
way as Plenoxels [42]:

SGi+1,4,k)— 63,7, k)| Dy

(34)

where 7, j, k are the vertex coordinate, D, is the grid reso-
lution in x dimension and is 512 for all experiments in our
case. Vyé(i,j, k) and Vzg(i,j, k) are calculated accord-
ingly. We simply ignore the edge vertices when computing
the surface TV loss by using the Neumann boundary condi-
tions.

The truncated alpha compositing reweight function can
be seen as a truncated Hann window [36], as shown in Fig-
ure 7. By reducing a during the training, we slide the curve
to the left and hence gradually anneal the influence of later
intersections.

C. Additional Experiments
C.1. Synthetic Dataset

Experiment Details For quantitative evaluation, we
adapt the Python version of DTU [17] evaluation script [20],
where we extracted dense point clouds from all level sur-
faces and downsampled both predicted and ground truth
points with 0.001 density before computing the Chamfer
distance. For evaluation of NeuS [54] and HFS [56], we
first extracted the mesh using marching cubes with resolu-
tion 5123, then used the script to sample points on the mesh
to compute the Chamfer distance. For evaluation of Plenox-
els [42], MipNeRF360 [2] and our method, we directly sam-
ple points on the implicit surfaces by sending dense vir-
tual rays within each grid of a 5123 voxel grid through our
closed-form intersection finding. This makes the computa-
tion of sample opacity and trimming of the surface easier.

For training of NeuS [54], HFS [56] and MipNeRF360
[2], we used the provided hyperparameters. We used the hy-
perparameters for real-world thin structure reconstruction
experiments for NeuS, as we found it gives better perfor-
mance on the NeRF Synthetic dataset. For training on the
Translucent Blender dataset, we set the background to white
for all methods as the semi-transparent objects are rendered
with a white background in Blender.

To select a level set value on the density field of Plebox-
els [42] and MipNeRF 360 [2] for surface extraction, we
use the same methods as in [35, 54], where we extracted and
evaluated surfaces on levels 7, = {10, 30, 50, 70, 90, 100},
which fully covers the surfaces we used to initialize from
Plenoxels. We computed the average norm on Synthetic,

14

Thin Translucent average

Plen (o = 10) 0.759 0.813 0.786
Plen (o = 30) 0.886 0.761 0.824
Plen (o = 50) 0.687 0.812 0.750
Plen (o = 70) 0.563 1.062 0.812
Plen (o = 90) 0.526 1.597 1.062
Plen (o = 100) 0.541 1.832 1.186
Mip360 (o = 10) 1.882 3.76 2.821
Mip360 (o = 30) 1.468 3.081 2274
Mip360 (c = 50) 1.445 3.063 2.254
Mip360 (o = 70) 1.526 3.07 2.298
Mip360 (c =90) 1.635 3.116 2.376
Mip360 (o = 100) 1.693 3.203 2.448

Table 3. Chamfer distance | x10~2 on synthetic datasets. We
color the best level sets for Plenoxels [42] (Plen in table) and
MipNeRF360 [2] (Mip360 in table) respectively.

Thin, and Translucent datasets and selected the level set
value with the best Chamfer distance on each of the
datasets. For Plenoxels, the level sets are 90,30 and for
MipNeRF 360, the level sets are 50, 50 for the two datasets
respectively. We report the quantitative results for each level
set in Tab 3 and show a few qualitative examples in Fig-
ure 11.

Additional Results We show all the qualitative results in
14, 15, as well as the individual Chamfer distance for each
scene in 5 and 6. The qualitative comparisons shown in
both main paper and the supplementary are done by first
evaluating the L1 error on each sampled point, then render-
ing the point cloud with Eye-Dome Lighting (EDL) using
PyVista [50]. We also show additional novel view RGB
renderings of our method in Figure 16. But please note that
we do not claim state-of-the-art performance in novel view
synthesis.

C.2. Real-World Dataset

We show additional comparisons with neuralangelo [28] in
Fig 12. Note that as neuralangelo uses a different camera
normalization for COLMAP scenes instead of Normalized
Device Coordinate (NDC), which we use for our method
and all other baselines, the reconstruction of neuralangelo is
therefore not exactly aligned. We use an interactive viewer
with Eye Dome Lighting [6] and manually selected cam-
era positions with close views for comparison. Regardless,
it can be clearly seen that although neuralangelo excels at
reconstructing smooth surfaces, it fails to faithfully recon-
struct thin or translucent surfaces. Our method achieves a
significant improvement over it in terms of thin and translu-
cent surface reconstruction.

3DV
#125

956
957
958
959
960
961
962

963
964
965
966
967
968
969
970
971
972

973

974
975
976
977
978
979
980
981
982
983
984
985
986

3DV
#125

987

988
989
990
991
992
993
994
995

996

997
998
999

3DV 2024 Submission #125. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ficus

lyre

monkey

Plenoxels (o = 10) Plenoxels (o = 30)

ficus

lyre

monkey

ta. ot
MipNeRF360 (¢ = 10) MipNeRF360 (o = 30)

MipNeRF360 (o = 50)

MipNeRF360 (o = 70)

falalac

ST OOy

Plenoxels (o = 90) Plenoxels (o = 100)

MipNeRF360 (o = 90) MipNeRF360 (o = 100)

Figure 11. Surfaces extracted using different level sets from Plenoxels [42] and MipNeRF360 [2]. We remove part of the exterior
surface in each scene to visualize the interior reconstructions. Due to the ambiguity of density representation, a low density level set gives
more complete surfaces but could contain a significant amount of noise, whereas a high density level set can miss a lot of surfaces.

C.3. Ablation

We should additional qualitative ablation of our method in
Figure 8. In addition, we show a comparison between the
results after applying our TV surface regularization £s and
after applying the Eikonal constraint regularization used in
most SDF optimization methods in Figure 9. Namely, in re-
place of TV surface regularization, we encourage the norm
of the gradient of the surface field at every vertex to get
close to 1 via mean squared error:

= 5 IVl — 1)

xeV

Ley, (35)

From Figure 9, it can be clearly seen that the Eikonal
constraint is not sufficient to regularize and remove the
noisy inner surfaces inherited from initialization. Moreover,

15

it turns out to even harm the optimization by introducing
additional surface floaters while trying to constrain the sur-
face field into an SDF. This also shows that converting the
surfaces extracted from a density field into proper SDF is a
non-trivial task.

In Figure 10, we show that normal regularization
Ly, , Ly, are insufficient for removing heavily biased sur-
faces initialized from Plenoxels, whereas L is more effec-
tive in this case.

C.4. DTU Dataset

We additionally show reconstruction results on some DTU
[17] scenes in Figure 17 and Table 4. We note that as DTU
does not contain many thin structures or semi-transparent
materials, but mostly smooth surfaces only, our method
is therefore not expected to achieve state-of-the-art perfor-
mance in this scenario. In fact, our method reconstructs

3DV
#125

1000
1001
1002
1003
1004
1005
1006
1007
1008

1009

1010
1011
1012
1013
1014
1015

3DV
#125

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032

1033
1034
1035
1036
1037

3DV 2024 Submission #125. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

neuralangelo

Ours

Figure 12. Additional real-world comparisons with neuralan-
gelo [28] Note that neuralangelo uses a different coordinate sys-
tem and camera processing pipeline for COLMAP scenes, there-
fore the reconstructions are not perfectly aligned, but it can still be
clearly seen that our method achieves better reconstruction quality
on thin structures and translucent surfaces.

37 40 63 69 110
Plen(oc =10) 190 186 1.86 2.04 1.96
Plen (o =50) 146 143 166 160 175
Plen (o = 100) 134 157 299 222 243
Neu$S 098 056 1.13 145 143
Ours 134 136 099 191 137

Table 4. Chamfer distance | on DTU scenes. We color the best
and second best surfaces.

reasonable surfaces, but performs worse than NeuS overall.
This is mainly due to a lack of natural spatial smoothness
constraint present in the MLP architecture of NeuS, which
allows it to perform well on datasets like DTU that contain
many smooth surfaces, but worse on our synthetic dataset
with a focus on thin structures.

We also note that although the qualitative comparison
in Figure 17 shows that our method can refine the level
set surfaces extracted from Plenoxels by correcting the out-
growing surfaces while preventing holes, the Chamfer dis-
tance does not always show an improvement. This is be-
cause the official DTU evaluation provides carefully cre-
ated masks to remove reconstruction on parts that do not
have proper reference geometry scanned by the depth scan-
ner. This also excludes the majority of the inner surfaces
from level set surfaces of Plenoxels, making their Chamfer
distances much better; see Figure 13.

Experiment Details We compared with level set surfaces
from Plenoxels [42] and NeuS [54] trained with masks. We
used the image masks provided by IDR [59] to set the back-
ground to white before training both Plenoxels and ours.
For Plenoxels, we used the same hyperparameters for train-

16

Plenoxels (0 = 10)

Figure 13. Inside views of reconstructions on DTU dataset. Red
color indicates the L1 error in reconstruction, and blue indicates
the reconstruction masked out by the DTU official masks. Surfaces
extracted from Plenoxels contain many noisy inner surfaces that
had to be masked out during evaluation to achieve low Chamfer
distance.

ing on NeRF Synthetic dataset. We used slightly different
hyperparameters from the ones we used for training NeRF
Synthetic and Thin datasets. Namely, we modified the sur-
face scalar learning rate to start with 10~* and end with
1076, We increased As to 0.05, Ay, to 1073 and A, to 1073,
We also kept the truncated alpha compositing parameter a
at 5 throughout training.

3DV
#125

1038
1039
1040
1041
1042
1043
1044

3DV
#125

3DV 2024 Submission #125. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

lyre

o
o)
a0
c

o]
©
e
S
o
c

MipNeRF360 NeRRF

Plenoxels

Figure 14. Qualitative results on Thin Blender dataset. Note that neuralangelo [28] failed to learn any surface on the “lyre” scene.

ship ficus lyre bee stair scale seat well avg
Plen (o = 90) 0476 0431 0522 0541 0206 0.884 0497 0.647 0.526
Mip360 (¢ = 50) 1.217 2.640 1311 1.181 0279 2243 0.744 1941 1.445
NeuS 0552 1.667 0.812 0.242 4.087 0.237 0431 0.360 1.049
HFS 0514 0374 0.781 0336 4316 0271 0425 0385 0.925
neuralangelo 0270 0411 NaN 0377 0426 0.789 0432 0266 0.424
NeRRF 1.74 2899 NaN 1.164 3731 1359 2.17 3.381 2.349
Ours 0277 0.240 0.188 0.207 0.176 0.575 0288 0.319 0.284

Table 5. Chamfer distance | x 1072 on Thin Blender datasets. We color the best, second best methods.

17

3DV
#125

3DV
#125

NeuS GT RGB

HFS

MipNeRF360 NeRRF neuralangelo

Plenoxels

Ours

3DV 2024 Submission #125. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

coffe table

kitchen table

bottle

=)

)
0
Vi

¥

double table vase

7/
4
N

HHXHH A

Figure 15. Qualitative results on Translucent Blender dataset. Note that HFS [56] fails to learn any surface on “kitchen table” and
“double table” scenes. We removed some exterior surfaces in the “monkey” scene to show the interior surfaces.

name case table coffee kitchen bottle monkey double vase avg
Plen (o = 30) 1.195 0.438 0.706 0.378 0.709 1.084 0557 1.024 0.761
Mip360 (c = 50) 4.012 5217 2.096 2375 2324 4390 2900 1.190 3.063
NeuS 5.091 1.188 1.070 0392 2271 5923 0.874 1946 2344
HFS 5.094 0.854 2.839 NaN 1.493 3.223 NaN 8.684 3.698
neuralangelo 2.072 0.483 0.798 0.577 0.395 2464 0513 1.701 1.125
NeRRF 1.267 0571 0.822 3.091 3.72 2905 0.829 3.486 2.086
Ours 0.835 0.373 0.717 0855 0.653 0.776 0.512 0.870 0.624

Table 6. Chamfer distance | <102 on Semi-Transparent Blender datasets. We color the best , second best methods. Note that
HFS [56] fails to learn any surface on “kitchen table” and “double table” scenes.

3DV
#125

3DV 3DV

#125 #125
3DV 2024 Submission #125. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

bee Ours bee GT ficus Ours ficus GT

leaf vase GT

leaf vase Ours

Figure 16. RGB renderings of our methods on synthetic datasets.

19

3DV
#125

3DV 2024 Submission #125. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

50) Plenoxels (o =1

Plenoxels (o = 100) Plenoxels (o

Figure 17. Qualitative results on DTU [17] dataset. As the DTU scenes mainly contain smooth surfaces without any semi-transparent
materials, our method does achieve state-of-the-art performance on this dataset. However, note that our method can still accurately capture
the thin structure that is missed by NeuS in Scan 63. Moreover, our method can effectively correct the out-growing surface artifacts in
Plenoxels. Red color indicates the L1 error in reconstruction, blue indicates the reconstruction masked out by the DTU official masks, and
green indicates reconstructions that are too far away from reference and hence clipped during evaluation.

20

3DV
#125

	. Introduction
	. Related Works
	. Method
	. Representation
	. Differentiable rendering
	. Optimization

	. Evaluation
	. Datasets
	. Baselines
	. Evaluation on Synthetic dataset
	. Evaluation on Real World Dataset
	. Ablation

	. Conclusion
	. Overview
	. Implementation Details
	. Closed-Form Intersection
	. Hyperparameters

	. Additional Experiments
	. Synthetic Dataset
	. Real-World Dataset
	. Ablation
	. DTU Dataset

