
Appendix
This is the Appendix for “Exploring Diffusion Time-steps for Unsupervised Representation Learning”.
Table .1 summarizes the abbreviations and the symbols used in the main paper.

This appendix is organized as follows:

• Section A discusses the limitation and broader impact of our work.
• Section B provides additional details on the DM formulation and the hyper-parameter choice

in Eq. (6).
• Section C gives the full proof to our Theorem, and shows the sufficiency of disentangled

representation in minimizing Eq. (6).
• Section D presents the algorithm for training, counterfactual generation and manipulation,

the network architecture and additional training details.
• Section E gives the standard deviation of the results in Table 1, manipulation and coun-

terfactual generation results on Bedroom, additional results on FFHQ and CelebA, and
interpolation & manipulation results by modifying the full-dimensional feature z.

Abbreviation/Symbol Meaning

Abbreviation
DM Denoising Diffusion Probabilistic Model
OVL Overlapping Coefficient
AP Average Precision
MSE Mean Squared Error
slerp Spherical linear interpolation
lerp Linear interpolation

Symbol in Theory
X Sample space
Z Vector space
Zi Modular attribute
gi Group element acting on Zi

Φ Injective mapping Z → X
f Disentangled representation X → Z
erf Error function

Symbol in Algorithm
x0 Original sample
xt Noisy sample after t forward step
q(·) Distribution in the encoding process
pθ(·) Distribution in the θ-parameterized decoding process
θ Parameter of U-Net
uθ θ-parameterized U-Net
x̂0 Reconstructed x0

zi i-th modular attribute value
z̄i [z1, . . . , zi, 0, . . . , 0]
T Total time-steps
β1, . . . , βT Variance schedule
αt 1− βt

ᾱt

∏t
s=1 αs

Table .1: List of abbreviations and symbols used in the paper.
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A Limitation and Broader Impact

Limitation. A disentangled representation is a sufficient condition to minimize our objective in Eq.
(6), but not a necessary one. In particular, let t(Zi) < t(Zj). At t = t(Zi), attribute Zi is lost with a
larger degree compared to Zj . Hence while Eq. (6) trains zt to mainly capture Zi, it may not fully
remove Zj . Nevertheless, the purpose of this study is to highlight the inductive bias by diffusion
time-step and explore its potential, and we hope to address this limitation as future work.

Broader Impact. While our learned model (encoder and decoder) can be used to generate syn-
thetic data for malicious purposes, researchers have built models to predict fake content accurately.
Moreover, the focus of our study is not improving the generation fidelity, but to learn disentangled
representation, which leads to robust and fair AI models resilient to spurious correlations.

B Additional Details for Approach

Closed Form of q (xt−1|xt, uθ(xt, t)). Given by N (xt−1|µ̃t(xt,x0), β̃tI), where

µ̃t(xt,x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt, β̃t =

1− ᾱt−1

1− ᾱt
βt. (B.1)

Equivalent Formulation. The simplified objective in DDPM [3] is given by:

LDM = E
t,x0,ϵ
∥ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2, (B.2)

where ϵθ is a θ-parameterized U-Net [6] to predict the added noise. From Eq. (2), we have

ϵ =
xt −

√
ᾱtx0√

1− ᾱt
, ϵθ =

xt −
√
ᾱtuθ√

1− ᾱt
, (B.3)

where we slightly abuse the notation to denote the reconstructed x0 from our U-Net as uθ. Taking
Eq. (B.3) into Eq. (B.2) yields Eq. (3).

Time-step Weight λt and Compensate Strength wt. The PDAE objective is given by

LPDAE = E
t,x0,ϵ

[
λp
t ∥ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t) + wp

t g(z, t)∥2
]
, (B.4)

where

λp
t =

(
1

1 + SNR(t)

)0.9(
SNR(t)

1 + SNR(t)

)0.1

,SNR(t) =
ᾱt

1− ᾱt
, wp

t =

√
αt(1− ᾱt−1)√

1− ᾱt
. (B.5)

Taking Eq. (B.3) into Eq. (B.4) yields:

λt =
ᾱt

1− ᾱt
λp
t , wt =

√
1− ᾱt√
ᾱt

wp
t =

√
αt

ᾱt
(1− ᾱt). (B.6)

C Theory
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Figure C.1: The PDFs of q(xt|x0) (green)
and q(yt|y0) (blue). Without loss of gener-
ality, we consider the 1-D case of y0 > x0.
Their means are computed from Eq. (2).

Full Proof to the Theorem. We list the theorem below
for reference.

Theorem. (Attribute Loss and Time-step) 1) For each Zi,
there exists a smallest time-step t(Zi), such that Zi is lost
with degree τ at each t ∈ {t(Zi), . . . , T}. 2) ∃{βi}Ti=1
such that t(Zi) > t(Zj) whenever ∥x0 − gi · x0∥ is first-
order stochastic dominant over ∥x0−gj ·x0∥ with x0 ∼ X
uniformly.

Proof. We start by showing Err(x0,y0, t) =
1
2OVL (q(xt|x0), q(yt|y0)). Without loss of generality,
we show a 1-D sample space X in Figure C.1. The min-
imum Errθ is obtained when given each noisy sample x,
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DM reconstructs towards x0 if q(x|x0) > q(x|y0) and vice versa for y0, e.g., reconstructing ⋆ as
y0. However, this maximum likelihood estimation fails when a noisy sample is drawn from q(xt|x0)
(green PDF), but with a value larger than the intersection point of the two PDFs (♦), and similar
arguments go for q(yt|y0) (blue PDF). The error rate caused by the two failure cases corresponds to
the green shaded area and blue one, respectively, leading to an average Errθ of 1

2 of the OVL.

To compute the OVL, it is trivial in the 1-D case by leveraging the Cumulative Distribution Function
(CDF) of Gaussian distribution. Given that the two distributions have equal variance from Eq. (2),
the intersection point is given by

√
ᾱtx0+

√
ᾱty0

2 . For a Gaussian distribution N (µ, σ2), its CDF is

given by 1
2

[
1 + erf(x−µ√

2σ
)
]
. Combining two results, one can easily show that the blue shaded area,

corresponding to half of the OVL, or Err(x0, y0, t), is given by:

Err(x0, y0, t) =
1

2
OVL (q(xt|x0), q(yt|y0)) =

1

2

[
1− erf

(√
ᾱt(y0 − x0)

2
√
2(1− ᾱt)

)]
. (C.1)

To generalize the results to multi-variate Gaussian distributions, we use the results in [5], which
shows that by projecting the data to Fisher’s linear discriminant axis, the OVL defined on the
discriminant densities is equal to that defined on the multivariate densities. Specifically, the mean of
the discriminant densities are given by

µ0 =
√
ᾱt(y0 − x0)

⊤Σ−1x0, µ1 =
√
ᾱt(y0 − x0)

⊤Σ−1y0, (C.2)

where Σ = βtI. The common variance of the discriminant densities is given by
√
ᾱt(y0 −

x0)
⊤Σ−1(y0 − x0). Following the calculation steps to compute OVL for the 1-D case, one can show

that for both 1-D and multi-variate case, we have

Err(x0,y0, t) =
1

2
OVL (q(xt|x0), q(yt|y0)) =

1

2

[
1− erf

(
∥
√
ᾱt(y0 − x0)∥

2
√

2(1− ᾱt)

)]
. (C.3)

As ᾱt decreases with an increasing t from Eq. (2), and the error function erf(·) is strictly increasing,
Err(x0,y0, t) is strictly increasing in t given any x0,y0. Hence Ex0∈X [Err(x0,y0 = gi · x0, t)] ≥
Ex0∈X [Err(x0,y0 = gi · x0, t(Zi))] for every t ≥ t(Zi), which completes the proof of Theorem 1.

Given that erf(·) is strictly increasing and ∥x0 − gi · x0∥ is first-order stochastic dominant over
∥x0 − gj · x0∥, we have Ex0∈X [Err(x0, gi · x0, t)] > Ex0∈X [Err(x0, gj · x0, t)] at every time-step
t using Eq. (C.3). Hence t(Zi) > t(Zj) under any variance schedule {βi}Ti=1 such that Zi is not lost
at t(Zj), completing the proof of Theorem 2.

Disentangled Representation Minimizes Eq. (6). Suppose that we have a disentangled representa-
tion f that maps images to {zi}Ti=1. Without loss of generality, we assume an attribute order condition
where z1, . . . , zT take the order such that {zi}ti=1 makes up the cumulatively lost attributes at each
t, i.e., t(Zi) ≤ t,∀i ∈ {1, . . . , t} and t(Zi) ≥ t,∀i ∈ {t, . . . , T}. Hence given t, for each gi such
that Ex0∈X [Err(x0,y0 = gi · x0, t)] ≥ τ , we have [f(x0)]t ̸= [f(gi · x0)]t, ∀x0 ∈ X , where [·]t
extracts {zi}ti=1 from {zi}Ti=1. Hence there exists an decoder g that maps each unique [f(x0)]t to the
corresponding reconstruction error x̂0 − x0 by the pre-trained DM. For other gi, the reconstruction
error is bounded by Ex0∈X [Err(x0,y0 = gi · x0, t)] < τ . Hence we prove that the reconstruction
error (or attribute loss) can be arbitrarily small (up to specified τ ) given a disentangled representation
f and a variance schedule that satisfies Theorem 2 (to make sure the attribute order condition holds).

D Additional Experiment Details

Network Architecture. We exactly follow the encoder and decoder design in PDAE [8] and use the
same pre-trained DM. Please refer to PDAE for more details.

Imbalanced Partition Strategy. As shown in Figure D.1, we plot the average loss Lt (in the
most recent 5k iterations) at each time-step t. It is clear that time-step 100-300 contribute the
most to the overall loss. Furthermore, by comparing the loss at 5k iteration and 35k iteration,
we observe that the same time-step range contributes the most to the loss minimization. We con-
jecture that the time-step 100-300 contains rich semantic information. On the other hand, late
time-steps (e.g., after t = 500) have smaller loss value and less loss reduction, as late time-steps
have very small weight λt by the design of DDPM [3]. Hence accordingly, we design an imbalanced
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time-steps

0 1000

5k iterations

35k iterations

100 300

Figure D.1: Average Lt for each time-step
t in DiTi training at 5k iterations and 35k
iterations.

partition strategy to allocate more feature dimensions to
time-step 100-300 and less ones to time-step 500-1000.
Specifically, we assign 10, 25, 327, 100, 50 dimensions
to time-step range 0-50, 50-100, 100-300, 300-500, 500-
1000, respectively. Note that we only tried this dimension
allocation strategy as a heuristic approach, and we did not
search for an optimal strategy. Future work can explore an
adaptive allocation strategy.

Optimization Strategy. Figure D.2 compares the loss
in Eq. (6) by DiTi and DiTi-Detach (i.e., detaching
the gradients of z1, . . . , zt−1) throughout training. The
loss reduction of DiTi-Detach is much slower as only
1
k of the feature is trained at each iteration. As shown
in Table 2, this alternative optimization strategy hurts
the performance when transferring the feature trained on
CelebA for LFW attribute regression. We conjecture that transfer learning and regression task is

more difficult, hence LFW regression is more sensitive to model convergence. However, this strategy
does provide additional inductive bias towards disentanglement, as only zt is trained to capture the
lost attribute at time-step t. Hence we use DiTi for classification/regression tasks and DiTi-Detach for
generation tasks. As future work, we will explore improved network design and other optimization
techniques to reap the benefits of DiTi-Detach strategy without hurting convergence.

DiTi-Detach

DiTi

0.0015

DiTi-Detach

DiTi

Figure D.2: Training loss of DiTi and
DiTi with detach optimiaztion strategy.

Training Algorithm. Please refer to Algorithm 1.

Counterfactual Generation Algorithm. Please refer to
Algorithm 2.

Modular Manipulation Algorithm. In modular manipu-
lation, we use the attribute labels to train a linear classifier
that predicts a specific attribute. On CelebA [4], we use its
40 attribute labels for training. On Bedroom [7], there are
no ground-truth attribute labels. We use pseudo-labels pro-
duced by an off-the-shelf attribute predictor [9] to train the
attribute classifier. In particular, we adopt ProbMask [10]
to constrain the classifier such that its weight has only d′

non-zero dimensions, where d′ < d (e.g., d′ = 16 or 32
and d = 512). This design is to test the modularity of
the feature—a specific attribute (e.g., “Young”) should be
captured by the combination of a few modular attributes
zi, but not all. With the trained classifier for an attribute, to manipulate the attribute with scale λ on a
sample x0, we first obtain its feature z = f(x0), then push z along the normal vector of the decision
boundary with certain scale λ, resulting in manipulated code z′, and finally encode xT back to the
manipulated image by the guidance of g(z′, t). The process is summarized in Algorithm 3.

Algorithm 1: DiTi training
Input :Training data distribution q(x0), pre-trained DM uθ

Output :Trained encoder f , decoder g
Randomly initialize f, g;
while not converged do

x0 ∼ q(x0);
z = f(x0);
Partition z into {zi}Ti=1;
t ∼ Uniform(1, . . . , T );
ϵ ∼ N (0, I);
xt =

√
ᾱtx0 +

√
1− ᾱtϵ;

z̄t = [z1, . . . , zt,0, . . . ,0];
Update f, g by minimizing λt∥x0 − (uθ(xt, t) + wtg(z̄t, t))∥2 in Eq. (6);

return f, g
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Algorithm 2: Counterfactual generation from x0 to x′
0 on subset S with scale λ

Input :x0, x′
0, subset S ⊂ {1, . . . , k}, scale λ, pre-trained uθ, trained f, g, sampling sequence

{ti}Mi=1 where t1 = 0 and tM = T
Output :A counterfactual image for x0

Compute xT ,x
′
T for x0,x

′
0 with DDIM inversion, respectively;

z = f(x0), z
′ = f(x′

0);
Partition z into {zi}Ti=1, z′ into {z′i}Ti=1;
zS ← lerp(z, z′,S;λ), i.e., perform linear interpolation on all zi, i ∈ S;
xT ← slerp(xT ,x

′
T ;λ);

for i = M, . . . , 2 do
x̂0 = uθ(xti , ti) + wtg(zS , ti);

xti−1
← √ᾱti−1

x̂0 +

√
1−ᾱti−1

(xti
−
√

ᾱti
x̂0)√

1−ᾱti

;

return x0

Algorithm 3: Modular manipulation on x0 with a trained ProbMask classifier and scale λ

Input :Original x0, manipulation scale λ, trained ProbMask classifier with weight parameter
w ∈ Rd, pre-trained DM uθ, trained f, g, standard deviation σ of z in the entire
training dataset, sampling sequence {ti}Mi=1 where t1 = 0 and tM = T

Output :A counterfactual image for x0

Compute xT for x0 with DDIM inversion;
z = f(x0);
z′ = z+ λσ·w

∥w∥ ;
for i = M, . . . , 2 do

x̂0 = uθ(xti , ti) + wtg(z
′, ti);

xti−1 ←
√
ᾱti−1 x̂0 +

√
1−ᾱti−1

(xti
−
√

ᾱti
x̂0)√

1−ᾱti

;

return x0

E Additional Experiment Results

Methods AP ↑ Pearson’s r ↑ MSE ↓

C
el

eb
A

PDAE [8] 60.2 ± 0.013 0.596 ± 5.9e-4 0.410 ± 6.8e-4
SimCLR [1] 59.7 ± 0.015 0.474 ± 3.7e-3 0.603 ± 3.1e-3
SimCLR−Aug [1] 34.7 ± 0.063 0.176 ± 3.3e-3 0.717 ± 2.2e-3
SimSiam [2] 51.7 ± 0.152 0.464 ± 7.2e-3 0.525 ± 4.5e-3
DiTi (Ours) 62.3 ± 0.083 0.617 ± 4.6e-4 0.392 ± 1.0e-3

FF
H

Q PDAE [8] 59.7 ± 0.030 0.603 ± 7.1e-4 0.416 ± 1.2e-3
SimCLR [1] 60.8 ± 0.025 0.481 ± 4.5e-3 0.638 ± 1.9e-2
DiTi (Ours) 61.4 ± 0.029 0.622 ± 3.9e-4 0.384 ± 2.9e-4

Table E.1: AP (%) on CelebA attribute classification and Pearson’s r, MSE on LFW attribute
regression. Supplementary to Table 1. Standard deviations are computed on 5 independent runs.

Standard Deviation Supplementary to Table 1. We run the experiments in Table 1 with 5 random
seeds and compute the standard deviation shown in Table E.1. Overall, the fluctuation of the results
is small and the conclusions drawn from Table 1 are statistically significant.

Attribute Manipulation on Bedroom We show the manipulation results on Bedroom in Figure E.1
for four attributes: “indoor lighting”, “rusty”, “cluttered space” and “carpet”. Pushing the latent code
along the the normal direction is able to change the specific attribute in the image. For example, the
room becomes much brighter and warm when the scale increases in the positive direction, while
it becomes colder and dimmer in the negative direction. Note that here we only manipulate 32
dimensions of the latent code, much fewer than the latent code z has, i.e., 512. It shows that our
mode learns a disentangled and compact feature. In contrast, the manipulated images by PDAE often
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Indoor Lighting +- Indoor Lighting +-

PDAE DiTi (Ours)

Rusty +-Rusty +-

Cluttered Space +- Cluttered Space +-

Carpet +-Carpet +-

Figure E.1: Comparsions of PDAE (left column) and DiTi (right column)’s modular manipulation
results on Bedroom. For both methods, we use ProbMask to constrain the classifier weight such that
it has d′ = 32 non-zero dimensions.

contain artifacts and have less meaningful edits, which further validates that PDAE entangles all the
attributes.
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Figure E.2: Comparisions on PDAE (top row) and DiTi (bottom row)’s counterfactual generation
results on Bedroom using 3 feature subsets. For each image pair in each subset, the original images,
x1
0,x

2
0 are placed in the top left corner and bottom right corner, and interpolated towards its counterpart

in four scales (1/4, 2/4, 3/4 and 1) respectively.

Counterfactural Generation on Bedroom As shown in the Figure E.2, we compare the counterfac-
tural generation results with PDAE and DiTi on three subsets. "Early", "Middle", "Late" correspond
to the subset 0-8, 8-16, 24-28 respectively. We observe that each subset control some meaningful
attribute in the image. Take the right column for example, in the early subset, the overall color scheme
is interpolated. Interpolating the middle subset changes the shape of the end of the bed. x1

0 takes more
red from x2

0 with the increasing of the scale. On the other hand, x2
0 gets more brown color when its

scale increases. Interpolating the middle subset (8-16) changes the texture of the quilt. Interpolating
the late subset changes the background. x1

0’s background changes from glass window to the wall that
x2
0 has. At the same time, x2

0 changes the photo frame on the wall. Although PDAE also changes the
background in the late subset, it changes the texture in the quilt at the same time.
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0-4

0-6

2-6

0-2

2-8

6-10

16-24

24-32

32-64

1 3/4 2/4 𝒙𝟎1/4 1 3/4 2/4 𝒙𝟎1/4 1 3/4 2/4 𝒙𝟎1/4

𝒙𝟎 1/4 2/4 3/4 1 𝒙𝟎 1/4 2/4 3/4 1 𝒙𝟎 1/4 2/4 3/4 1

Figure E.3: DiTi’s counterfactual generation results on FFHQ. For every image pair, the original
images are placed on the top left and bottom right corners, and interpolated on a specific subset of
{zi}ki=1 to gradually transition towards its counterpart with four scales (1/4, 2/4, 3/4 and 1). Each
row is the result of interpolating on a subset, with the subset range displayed on the left.
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PDAE DiTi (Ours)

Male

Mustache

Young

High
Cheekbones

Wearing
Hat

Wearing
Lipstick

+- +-

Figure E.4: Comparsions of PDAE and DiTi’s modular manipulation results on CelebA. The center
image in each group of 5 images corresponds to the original image x0. We use d′ = 128 as the
dimension of ProbMask on “Wearing Hat” attribute and d′ = 16 for the rest.
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0-64

1/4 2/4 3/4 1/4 2/4 3/4𝒙𝟎𝟏 𝒙𝟎𝟐 𝒙𝟎𝟏 𝒙𝟎𝟐

Figure E.5: Comparsions of PDAE (top row) and DiTi(bottom row)’s interpolation results on FFHQ
using all dimensions of the feature z.

0-64

1/4 2/4 3/4 1/4 2/4 3/4𝒙𝟎𝟏 𝒙𝟎𝟐 𝒙𝟎𝟏 𝒙𝟎𝟐

Figure E.6: Comparsions of PDAE (top row) and DiTi (bottom row)’s interpolation results on
Bedroom using all dimensions of the feature z.

Additional Counterfactual Generation on FFHQ. In Figure E.3, we show additional counterfactual
generations on FFHQ with more feature subsets. In particular, interpolating subset 0-2 roughly
corresponds to modifying “expression” attribute (e.g., center pair). Interpolating 0-4 and 0-6 addi-
tionally modifies “mouth” attribute and “eyes” attribute, respectively. This shows that the learned
feature subspace Z1,Z2,Z3 corresponds to the three attributes, and can be combined by Cartesian
product, hence verifying our disentanglement quality. Subset 6-10, 16-24, 24-32, 32-64 correspond to
gradually coarser-grained attributes, “face shape”, “face direction”, “hairstyle”, “decorations on the
head”, respectively, verifying our Theorem. Note from Figure D.1 that the loss is low on late feature
subset due to the design of time-step weight of DDPM. Hence more feature subsets are grouped
together to make more visible edits.

Addtional Results on Modular Manipulation on CelebA. Results are shown in Figure E.4, where
our DiTi makes more meaningful edits with less artifacts compared to PDAE. In particular, we use
more ProbMask dimension d′ = 128 for attribute “Wearing Hat”, as it corresponds to larger edits
that involve multiple modular attributes (e.g., shadows and forehead).

Interpolation Results on FFHQ. We run the standard interpolation experiments (i.e., interpolating
the entire z instead of a subset) with results in Figure E.5. We highlight that our DiTi outperforms
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0-64

Pale Skin

High 
Cheekbones

Wearing Hat +-

High Cheekbones +-

Pale Skin +-

Figure E.7: Comparsions of PDAE (top row) and DiTi (bottom row)’s manipulation results on CelebA
using all dimensions of the feature z.

PDAE even in this setting, e.g., more meaningful background changes, less artifact and more
convincing intermediate results.

Interpolation Results on Bedroom. In Figure E.6, we show the interpolation results on Bedroom,
where our DiTi (bottom row) outperforms PDAE (top row) with less artifact. Note that Bedroom is
especially challenging for interpolation due to the large variations between images. Larger model
and prolonged training can benefit the interpolation fidelity. We leave it as future work as improving
generation fidelity is not the focus of our work.

Manipulation Results on CelebA. We run the standard manipulation experiments (i.e., without
ProbMask) with results in Figure E.7. Our results (bottom row) are on par or better than PDAE (top
row), e.g., generating hat with less artifact. This experiment is to demonstrate that DiTi still has the
conventional manipulation capability, and the aforementioned modular manipulation experiments are
more suitable to highlight our disentanglement quality.

PDAE Results Supplementary to Figure 5. As shown in Figure E.8, the counterfactual generations
by PDAE have more artifacts and are less meaningful compared to DiTi (Figure 5) on other feature
subsets as well.
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Supplement to the main paper

A B C
𝒙𝟎 0.2 0.8 1.0 𝒙𝟎 0.2 0.8 1.0 𝒙𝟎 0.2 0.8 1.0

16-24

32-64

2-6

1.0 0.8 0.2 𝒙𝟎 1.0 0.8 0.2 𝒙𝟎 1.0 0.8 0.2 𝒙𝟎

PDAE

Figure E.8: Counterfactual generations results with PDAE on FFHQ. Supplementary to Figure 5 in
the main paper.
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