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A APPENDIX

This appendix contains additional details for the ICLR 2024 submission, titled “DoraemonGPT:
Toward Solving Real-world Tasks with Large Language Models”. The appendix is organized as
follows:

• §A.1 depicts visual examples regarding the MCTS planner.

• §A.2 offers more implementation details of the MCTS planner.

• §A.3 introduces more in-the-wild examples.

• §A.4 provides inference results on NExT-QA [1] dataset.

• §A.6 analyzes time of inference and efficiency of token usage.

• §A.5 discusses used foundation models.

• §A.8 discusses our limitations.

• §A.9 discusses the broader impacts of our work.

A.1 ILLUSTRATION OF MCTS PLANNER
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(a) Node selection
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(b) Branch Expansion
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(c) Chain Execution
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(d) Back-propagation

Figure 1: An illustration of our Monte Carlo Tree Search (MCTS) planner (§A.1). R: the reward
of a node. Root: the input video and question/task. Action: a ReAct [2]-style step in the form of
⟨thought, action, action input, observation⟩.

Fig. 1 illustrates the MCTS planner with one failed solution and two feasible solutions. The illus-
trated iteration, which produces the second feasible answer, begins with a node selection (Fig. 1a),
and the Root node with the second highest reward is luckily sampled from all expandable non-leaf
nodes. Then, the MCTS planner expands the Root node with a new child node, Action 4, in Branch
Expansion (Fig. 1b). Following the expansion, the planner continuously executes actions after Ac-
tion 4 until getting a new answer, Answer 2 (Fig. 1c). Lastly, the planner back-propagates the reward
of Answer 2 to its ancestors. Note that those nodes closer to Answer 2 receive more rewards.

A.2 IMPLEMENTATION DETAILS OF MCTS PLANNER
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"""
Regarding a given video from {video_filename}, answer the following

questions as best you can. You have access to the following tools:
{tool_descriptions}
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question
Begin!
Question: {input_question}
{ancestor_history}
Thought: {expansion_prompt} {agent_scratchpad}
"""

Figure 2: The in-context prompt of the MCTS planner (§A.2).

Fig. 2 shows the in-context prompt used in the LLMs of our MCTS planner. By changing the place-
holders in the form like {placeholder}, the prompt can be adapted to complete branch expansion
or chain execution. The meaning of each placeholder in the prompt is listed below:
• {video filename}: the file path of the input video.

• {input question}: the given question/task regarding the given video.

• {tool names}: the names of tools that can be called by the planner, including sub-task tools,
knowledge tools, and utility tools.

• {tool descriptions}: the descriptions of all the callable tools’ functions and input format. For
example, the description of our What sub-task tool is “Useful when you need to describe the
content of a video......The input to this tool must be a string for the video path and a string for the
question. For example: inputs is ./videos/xxx.mp4#What’s in the video?”.

• {agent scratchpad}: the place to put the intermediary output during executing a ReAct [2] step.

• {ancestor history}: the place to put the history of all the ancestor nodes. For example, when
selecting a non-root node for branch expansion, the action history (which is a string in the form
of ⟨thought, action, action input, observation⟩ for each node) of all the ancestor nodes of this
non-root node will be put in {ancestor history}.

• {expansion prompt}: the place to put the history of all the child nodes for expanding a node, e.g.,
“I have thought about the next action before, such as......I want to think out a different action.”.
Only useful in the branch expansion phase, set to an empty string for chain execution.

A.3 MORE IN-THE-WILD EXAMPLES

In Fig. 3a, we visualize the reasoning path of a standard video understanding task. As depicted,
DoraemonGPT is asked to identify the speaker and analyze information about the dismissal. After
several calls to various tools, DoraemonGPT got the right answers. Here we also visualize the
time-dominant symbolic memory, which is the pivotal part of data processing in DoraemonGPT.
Combining it with the well-defined symbolic language (SQL) promises transparency and efficiency.

In addition, we demonstrate an example of video editing by integrating a video inpainting tool. In
Fig. 3b, DoraemonGPT is asked to recognize the right person and remove it from the video. To
accomplish this, DoraemonGPT constructs the space-dominant memory that encompasses the seg-
mentation results for each object within the scene. After recognizing the right person, the inpainting
tool is successfully called with an input of the unique ID number assigned to the man on the right,
which successfully generates the desired video output.
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Action: Google Search
Input: Who started Apple in 
their parents' garage when 
they were 20? 
Observation: … Steve Jobs … 

Video

“Who is the speaker in this video? When 
does this video mention that he was fired? 
Please detail why he was fired? ”

Question / Task

Sub-task Tools
When Why

HowWhat

Count

Other

Other Tools
External Knowledges

Utility Tools

Question: Who is the speaker 
in this video? When does …

Action:
Time-dominant Construction
Input: video.mp4&Who is …
Observation: Built…

Action: What
Input: What does the speaker talk about?
SQL: SELECT audio_content FROM …
Observation: … Waz and I started Apple in my 
parents' garage when I was 20 …

The speaker is Steve Jobs. At 00:00:23, he said “And then I got fired”. He 
got fired from Apple due to a failed boardroom coup. 

No. 0
No. 1 No. 2

No. 6

No. 3

Action: When
Input: When was he fired?
SQL: SELECT audio_content FROM …
Observation: … at 00:23, And then I 
got fired …

No. 4Action: Google Search
Input: Why did Steve Jobs get fired 
from Apple? 
Observation: … Ousted from Apple 
after a failed boardroom coup … 

No. 5

Timestamp Captioning Optical content Audio content

00:00:00 steve jobs is 
speaking … - I was lucky. I 

found …

00:00:05 steve jobs is 
speaking … I found what … Waz and I 

started …

… … … …

00:00:23 steve jobs is 
speaking … And had just … And then I got 

fired.

(a) Video understanding.

Video
“Help me remove the person on the right. ”

Question / Task

Question: Help me remove 
the person on the right.

Action:
Space-dominant construction
Input: video.mp4&Remove …
Observation: Built…

No. 0
No. 1

The man on the right has been successfully inpainted. The resulting video is 
now available at the following path: ./result/video.mp4.

No. 4
ID Category Appearance ... Trajectory

1 person a man in a black 
coat walking … … At 00:00:00, [1, 0, 

424, 214] …

2 person a man with a sign
walking … … At 00:00:00, [242, 51, 

78, 230] …

… … … … …

7 bench a bench in the snow … At 00:00:00, [559, 
161, 167, 153] …

Action: What
Input: What is the appearance and id of the person standing on the right?
SQL: SELECT appearance, id FROM …
Observation: The man on the right takes a sign and his ID is 2.

No. 2

… …

… …

Action: Inpainting
Input: {video_filename: video.mp4; id_number: 2}
Observation: The object with ID=2 has been successfully inpainted.
Resulting video path is ./result/inpainted_video.mp4.

No. 3

Output

… …
m

ask

(b) Video editing.

Figure 3: In-the-wild examples of DoraemonGPT (§A.3). In the video editing example, the segmen-
tation mask is also visualized.

A.4 INFERENCE RESULTS ON NEXT-QA

Fig. 4 depicts inference results of DoraemonGPT on NExT-QA [1] dataset. From the top part, we
have the following findings: (i) A simple question can be finished within a sub-task tool, e.g., using
only the What tool can get the correct answer. (ii) The output of LLM that is not formatted may
result in an error case, which is very common in current LLM-driven agents. Similar examples can
be observed in the bottom part of the same figure.

As shown in the bottom part of Fig. 4, it’s quite possible to pick the wrong tool in the early stages
of exploration. Our system is able to explore the planning space with multiple branches further.
Interestingly, LLM sometimes considers current information insufficient to make a choice. This is
tolerated as our system will eventually vote or summarize all candidate answers.
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“How is the woman 
feeling at the end of 
the video?”
A. Reluctant B. sad
C. listening attentively
D. happy E. enjoying

Root

Action: What
Input: What is the woman feeling at the end of the video?
SQL: SELECT visual_content FROM …
Observation: The woman is feeling happy at the end of the video.

No. 0

No. 1 No. 1

“Why does the 
shorter woman 
sprinkle something 
into her frying pan 
at the beginning of 
the video?”
A. Seasoning B. blow the 
candle C. prevent spilling 
D. balance her E. stabilise
crab when cutting

Root

Action: Other
Input: Why does the shorter woman sprinkle 
something into her frying pan at the beginning 
of the video?
SQL: SELECT visual _content , subtitles FROM …
Observation: … The answer cannot be 
determined from the given tables.

No. 0

Action: What
Input: What is the woman's facial expression 
and body language at the end of the video?
SQL: SELECT visual_content FROM …
Observation: The woman at the end of the 
video has a happy facial expression.

No. 1 No. 1

Parsing LLM output
“Based on the observation, the answer 
should be D. Happy.”
Fail to parse as not consistent format

No. 2

Action: Why
Input: Why does the shorter woman sprinkle 
something into her frying pan at the beginning of 
the video?
SQL: SELECT visual_content, subtitles FROM …
Observation: The query result shows that there is 
no specific information about the shorter woman 
sprinkling something into her frying pan at the 
beginning of the video. Therefore, we cannot 
determine the reason behind this action.

No. 1

Action: What
Input: What is in the video?
SQL: SELECT visual_content FROM …
Observation: The video shows two women 
preparing food in a kitchen.

No. 1 No. 2

No. 2

Parsing LLM output
“… try to observe any visual or audio cues 
that may provide insight into …”
Fail to parse as not consistent format

No. 2

D. happy

A. Seasoning

N/A

Figure 4: Inference results on NExT-QA [1]. (§A.4)

A.5 DISCUSSION ON THE IMPACT OF FOUNDATION MODELS

DoraemonGPT leverages foundation models to extract space-dominant and time-dominant informa-
tion from videos. Hence, the performance of DoraemonGPT is influenced by the quality of these
models as well as its own limitations. This impact can be further summarized as follows:

In space-dominant memory:

Detection (YOLOv8 [3]): The object categories (COCO [4], 80 common categories) are limited
by the model, which hinders DoraemonGPT from obtaining information about objects outside these
categories. However, YOLOv8 [3] can be replaced with a detection model that supports a wider
range of categories (such as one trained on LVIS [5], with 1000+ categories).

Tracking (Deep OC-sort [6]): The current multi-object tracking model is prone to errors in ex-
tremely complex scenes (such as those with numerous occluded or similar objects), which affects
DoraemonGPT’s ability to locate instances in complex videos accurately.

Segmentation (YOLOv8-seg [3]): The segmentation results may not perfectly align with instances’
edges, and incomplete segmentation masks can impact the precision of AIGC tools such as video
editing (e.g., inpainting).

Appearance description (BLIP [7]/BLIP-2 [8]): The textual descriptions cannot accurately cap-
ture all the details of an instance (such as intricate clothing details on a human body), which affects
DoraemonGPT’s handling of tasks related to detailed descriptions.

Action recognition (InternVideo [9]): The accuracy is limited by the capabilities of the model,
which in turn affects DoraemonGPT’s ability to handle action-related inquiries.

In time-dominant memory:

Speech recognition (Whisper [10]): Current methods can accurately convert audio to text. How-
ever, in multi-party conversation scenarios, the methods still cannot accurately perform voiceprint
recognition for multiple speakers and accurately separate the results of different speakers. Addi-
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tionally, it is challenging to match multiple voiceprints with the visual IDs of the speakers. This
limitation restricts the ability of DoraemonGPT to infer and deduce the identities of speakers in
complex multi-party conversation scenarios, relying solely on the inherent capabilities of LLMs.

Optical character recognition (OCR [11] ): OCR technology can accurately recognize subtitles
and well-structured text. However, it still struggles to robustly handle occluded text and artistic
fonts.

Captioning (BLIP [7]/BLIP-2 [8]/InstructBLIP [12]): It cannot guarantee that the textual descrip-
tions can accurately cover all the details in the scene, which can affect DoraemonGPT’s ability to
handle tasks related to detailed descriptions.

Additionally, the domain of the training set for foundation models also affects DoraemonGPT. For
instance, currently, visual foundation models trained on real and common scenarios still struggle
with extreme lighting conditions or non-realistic scenes (such as simulations or animations).

A.6 EVALUATION ON THE INFERENCE TIME AND TOKEN USAGE EFFICIENCY

For efficiency comparison, we thoroughly analyze the efficiency of DoraemonGPT in comparison
with the baselines, ViperGPT and VideoChat. The tables 1 above provide a detailed analysis of the
time required for each foundation model used in memory building. When processing videos at a
rate of 1 fps, it takes approximately 1 second (or 0.42/0.47s for space/time-dominant memory) to
process a 10s video clip using an NVIDIA-A40 GPU. The actual processing time increases linearly
with video length.

Table 1: Token Efficiency (Averaged on the NExT-QA [1] s val).

Method Prompt tokens Node tokens Steps
per Answer

Tokens
per Answer NExT-QA Acc.

ViperGPT [13] 4127 - - 4127 38.1
VideoChat [14] 722 - - 722 51.0
DoraemonGPT 617 34.6 2.3 1498 54.0

In comparison, VideoChat creates a time-stamped memory and takes around 2 seconds to process a
10s video at 1 fps. On the other hand, ViperGPT does not construct a memory but generates a code
to invoke foundation models. However, there is a 6.7% chance (60 out of 900 videos) that ViperGPT
fails to generate an executable code, and it’s difficult to fairly compare the average time of calling
foundation models in ViperGPT.

Table 2: Time Analysis of Space-Dominant Memory Construction.

Model BLIP-2 [8] YOLO-v8 [3] Deep OC-Sort [6] InternVideo [9] Sum
Time(s) 0.09 0.16 0.14 0.03 0.42

Due to the influence of simultaneous requests and network delay on ChatGPT’s online server, it’s
impossible to fairly record the run-time of ChatGPT. Thus, a more equitable efficiency comparison
when calling ChatGPT is to record the number of tokens used. As shown in the table above, Dorae-
monGPT’s prompt design is more efficient (617 tokens), which is less than VideoChat’s approach
of directly incorporating video memory into the prompt (722 tokens) and significantly less than
ViperGPT’s approach of including a large code definition in the prompt (4127 tokens). Additionally,
even though the introduction of our MCTS planner divides the task into multiple nodes/steps, Do-
raemonGPT still requires far fewer tokens on average to obtain an answer compared to ViperGPT
(1498 tokens vs 4127 tokens). Furthermore, DoraemonGPT significantly outperform VideoChat
(54.0 vs 51.0) on the challenging NExT-QA dataset.

Table 3: Time Analysis of Time-Dominant Memory Construction.

Model OCR [11] Whisper [10] BLIP-2 [8] Sum
Time(s) 0.02 0.36 0.09 0.47
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A.7 QUANTITAVE RESULT ON TVQA+

Datasets. The TVQA+ [15] dataset is an enhanced version of the original TVQA [16] dataset,
augmented with 310.8K bounding boxes to link visual concepts in questions and answers to de-
picted objects in videos. It’s designed for the spatio-temporal video question answering task, which
challenges intelligent systems to identify relevant moments and visual concepts to answer natural
language questions about videos. For evaluation, we randomly sample 900 samples from the val
set, resulting in a total of 900 questions (s val).

Evaluation Metric. We report accuracy as in NExT-QA [1].

Table 4: Comparison of our DoraemonGPT with SOTAs on TVQA+ [15]. †: reimplement using
the officially released codes. ∗: we filter out those failed executions (i.e., compilation error) of
ViperGPT [13] and record the performance on successful executions (802/900 on s val).

Method Split Accuracy
†ViperGPT [13] s val 26.8
∗†ViperGPT [13] s val 30.1
†VideoChat [14] s val 34.4
DoraemonGPT s val 40.3

Performance Comparision. The results on the TVQA+ [15] confirms again the superiority of
DoraemonGPT. From table 4 we can observe that our approach yields remarkable performance, i.e.,
DoraemonGPT outperforms ViperGPT [13] and VideoChat [14] by 10.2% and 5.9%, respectively.
In particular, ViperGPT has a 10.9% probability of generating uncompilable code (98 out of 900
videos). However, even when filtering out these failures, its performance (30.1%) is still lower
compared to VideoChat and DoraemonGPT, which are specifically designed for dynamic videos.
This is consistent with the findings on NExT-QA [1].

A.8 LIMITATIONS

Despite its comprehensive and conceptually elegant system, DoraemonGPT has some limitations
for future studies. First, although TSM is a simple and effective way to decouple and handle spatial-
temporal reasoning and DoraemonGPT has shown effectiveness with two task-related memory types
(space-dominant and time-dominant), we believe that by further subdividing the types of tasks, we
can introduce more nuanced categories of memory (e.g., human-centric memory) to construct task-
related information with greater task-relevance. However, at present, the design of memory types
is still a heuristic and manually driven process, lacking an automated design method. Second, the
establishment of memory relies on the available foundation models (e.g., BLIP-2 [8]). In other
words, foundation models’ performance directly influences memory’s reliability. Incorrect model
predictions will introduce noise into the memory, thereby reducing its reliability and affecting the
accuracy of decision-making. Additionally, foundation models may struggle to effectively extract
the required video attributes in real-world scenarios that are difficult to generalize (e.g., low light,
blurriness, occlusions, etc.). Third, the accuracy of planning in DoraemonGPT is limited by the
capabilities of LLMs. When using a small-scale or insufficiently trained LLM, the likelihood of
DoraemonGPT exploring reasonable solutions may be significantly reduced. Last, while the MCTS
planner significantly improves the decision making ability of DoraemonGPT, it also introduces ad-
ditional computational cost. This means that DoraemonGPT may only be available on high-end
computing systems or online LLM services [17], limiting its use in real-time, resource-constrained
scenarios.

A.9 BROADER IMPACTS

DoraemonGPT aims to solve real-world dynamic tasks with LLMs and can handle video-based rea-
soning tasks, potentially revolutionizing several fields. Our system has potential applications in
autonomous vehicles, surveillance systems, and interactive robotics, where dynamic understanding
and decision making are crucial. However, it is important to consider the ethical implications and
potential misuse of such systems. First, like many AI systems, DoraemonGPT could be exploited
by malicious individuals for video manipulation or generating misleading content, posing threats
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to privacy and security. Protecting against such potential misuse requires robust safeguards and
measures to detect and prevent malicious activities. Second, biases in the training data of LLMs
or foundation models could unintentionally perpetuate discriminatory behavior. Mitigating biases
and promoting fairness in the training and deployment of DoraemonGPT is essential to ensure eq-
uitable outcomes. Third, the reliance on external knowledge sources highlights the importance of
data access and usage rights. Users and developers must adhere to regulations and ethical guidelines
associated with these resources to avoid any legal complications. Fourth, the methodology intro-
duced in DoraemonGPT holds potential for application of LLM-driven agents beyond the realm of
vision. The rapid expansion of LLM-driven agents opens doors to transformative impacts across
various fields [18–24]. DoraemonGPT, with its novel approach to modeling the dynamic aspects of
visual scenes, tackles complex tasks through a computer vision lens. This innovation could extend
its influence to other domains. For instance, in tool usage, our MCTS planner can offer effective
exploration strategies in large solution spaces. Additionally, when it comes to open-world environ-
ments, our symbolic memory could provide precise guidances through symbolic language. This is
particularly relevant for interactive planning scenarios[18, 20].
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