
Supplementary Material for "Generalized
Depthwise-Separable Convolutions for Adversarially

Robust and Efficient Neural Networks"

Contents

1 Experimental Setup Details 2

1.1 Evaluation Setup . 2

1.2 Training Hyperparameters . 3

1.3 Computing the Weight Error Vectors . 3

2 Additional Experiments and Comparisons 4

2.1 Extended Ablation Study . 4

2.2 Additional Comparisons with HYDRA . 5

3 Proofs 8

3.1 Proof of Lemma 1 . 8

3.2 Proof of Theorem 1 . 8

3.3 Proof of Theorem 2 . 10

4 Rationale for the Weight Error Vector Expression 12

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

1 Experimental Setup Details

1.1 Evaluation Setup

In this section we provide details on how we measure FPS on the Jetson, as well as explain how
we map GDWS convolutions efficiently. We use a single off-the-shelf NVIDIA Jetson Xavier NX
developer kit for all our experiments. The Jetson Xavier is equipped with a 384-core NVIDIA Volta
GPU, a 6-core NVIDIA Carmel ARM 64-bit CPU, and 8GB 128-bit LPDDR4x memory. We install
the latest PyTorch packages onto the Jetson, as we will use their native neural network (NN) modules
to implement both standard and GDWS convolutions. Specifically, we used PyTorch v1.8.0 with
Python v3.6.9 and CUDA v10.2.

Measuring FPS: The Python pseudo-code in 1 explains how the FPS for any neural network model
was measured on the Jetson. The main idea is to run successive inferences (batch size of 1) and
measure the total elapsed time reliably, and calculate the FPS as the total number of inferences
divided by the total elapsed time. To ensure consistency, we use 10000 inferences to measure FPS,
after the GPU has been warmed up with 5000 inferences as well. Note that the measured FPS reflects
the raw capabilities of the GPU, ignoring any I/O to and from the GPU.

1

2 #get the appropriate NN architecture , e.g., ResNet -18
3 model = get_architecture ()
4

5 #load the pre -trained model parameters from memory
6 model.load_state_dict(state_dict)
7

8 #transfer the model onto the GPU
9 model = model.cuda()

10

11 #set the model in evaluation mode
12 model.eval()
13

14 #sample a single test input and load it into GPU memory
15 x_test = get_input () #use batch size of 1
16 x_test.cuda()
17

18 #ensure no gradient overheads are introduced
19 with torch.no_grad ():
20 ## run successive inferences to warm -up the GPU
21 for t in range (5000):
22 y = model(x_test)
23

24 ## setup synchronized timers in PyTorch
25 start = torch.cuda.Event(enable_timing=True)
26 end = torch.cuda.Event(enable_timing=True)
27 start.record ()
28

29 ## now that the GPU is warmed -up , we run successive inferences and
measure the total latency

30 for t in range(num_inferences):
31 y = model(x_test)
32

33 ## measure the elapsed time delay in seconds
34 end.record ()
35 torch.cuda.synchronize ()
36 delay = start.elapsed_time(end)/1000
37

38 ## get the frames -per -second number
39 FPS = num_inferences/delay

Listing 1: Python pseudo-code for measuring FPS on the Jetson using PyTorch modules.

Mapping GDWS Convolutions: Mapping GDWS convolutions requires mapping both the GDW
and the PW convolutions efficiently onto the Jetson. PW layers are standard 2D convolutions with

2

1× 1 kernels, thus implementing PW convolutions using the PyTorch convolution module is straight
forward. The challenge arises when mapping GDW convolutions, as it is a new convolutional structure
that is not directly supported yet in PyTorch. To that end, we use simple tensor manipulations
and leverage the existing support for standard DW convolution in PyTorch to implement GDW
convolutions.

Note that a (C,K,g) GDW convolution operating on input tensor X ∈ RC×H×W convolves the cth

input channel with gc ∈ Z+ depthwise K ×K filters to produce a total of G intermediate output
channels. A DW convolution operating on the same input tensor X is a special case of GDW where
gc = 1 ∀c. It is not difficult to see that a (C,K,g) GDW convolution operating on X is equivalent to
a DW convolution operating on the modified tensor X′ ∈ RG×H×W with G =

∑
gc channels, where

the tensor X′ is obtained by duplicating the cth channel from X gc times. This tensor manipulation
is implemented via simple tensor indexing in PyTorch. Therefore, we can efficiently map GDWS
convolutions onto the Jetson without requiring any custom libraries.

1.2 Training Hyperparameters

In the absence of any publicly available pre-trained models, we obtain strong baselines using AT [2]
following the approach of [4] which utilizes early stopping to avoid robust over-fitting. We use the
same hyperparameters, detailed below for our CIFAR-10 and SVHN baselines. A single workstation
with two NVIDIA Tesla P100 GPUs is used for running all the training experiments.

CIFAR-10: For the CIFAR-10 experiments presented in Table 3 (Table 1 in main manuscript), we
use PGD-7 adversarial training with ε = 8/255 and step size 2/255 for a maximum of 200 epochs
and 128 mini-batch size. We employ a step-wise learning rate decay set initially at 0.1 and divided by
10 at epochs 100 and 150. We use a weight decay of 5× 10−4, except for the lightweight networks
which were trained with a smaller weight decay of 2× 10−4.

SVHN: For the SVHN experiments presented in Table 4, we use PGD-7 adversarial training with
ε = 8/255 and step size 2/255 for a maximum of 200 epochs and 128 mini-batch size. We employ a
step-wise learning rate decay set initially at 0.01 and divided by 10 at epochs 100 and 150. We use a
weight decay of 5× 10−4.

1.3 Computing the Weight Error Vectors

Constructing GDWS networks via Algorithm 3 requires computing the per-layer weight error vectors
{αl} as described in (8) in Section 3.4 of the main manuscript. Throughout all of our experiments, we
compute the {αl} via an estimate of the mean over a small batch of adversarial inputs sampled from
the training set. Specifically, throughout all of experiments, we use 1000 input samples generated via
PGD-7 with ε = 8/255, except for ImageNet were 5000 adversarial input samples were used that
were generated via PGD-4 with ε = 4/255.

3

2 Additional Experiments and Comparisons

2.1 Extended Ablation Study

Benefits of Non-uniform GDWS Networks: We expand on Section 4.2 by comparing the benefits
of using Algorithm 3 vs. Algorithm 1 to design GDWS networks. We denote networks obtained
from Algorithm 3 as GDWS-N (non-uniform reduction in complexity) and Algorithm 1 as GDWS-U
(uniform reduction in complexity). Specifically, for GDWS-U, we use Algorithm 1, with unweighted
error (αc,l = 1) to construct the error-optimal GDWS approximations of each layer, such that we
reduce the number of MACs of each layer by the same fixed percentage.

We use VGG-16 on CIFAR-10 as our network and dataset of choice. We obtain different GDWS
networks by varying the choice of β in GDWS-N and the reduction percentage in GDWS-U. Figure 1a
shows the per-layer reduction in MACs for both methods. As expected, GDWS-U produces uniform
reductions across all layers, whereas GDWS-N is not restricted in that regard. In Figs 1b & 1c we
compare both methods by plotting the natural and robust accuracies vs. FPS, respectively. The
per-layer granularity inherit to GDWS-N allows it to outperform GDWS-U, as it consistently achieves
higher natural and robust accuracies than at iso-FPS.

0 1 2 3 4 5 6 7 8 9 1011
Layer Index

0

2

4

6

Re
du

ct
io

n
in

 M
AC

s GDWS-U
GDWS-N

(a)

50 75 100 125
Frames Per Second

71

72

73

74

75

76

77

78

Na
tu

ra
l A

cc
ur

ac
y

[%
]

w/ GDWS-U
w/ GDWS-N
w/o GDWS

(b)

50 75 100 125
Frames Per Second

45

46

47

48

49

50

Ro
bu

st
 A

cc
ur

ac
y

[%
]

w/ GDWS-U
w/ GDWS-N
w/o GDWS

(c)

Figure 1: Comparison of two methods for constructing GDWS networks using VGG-16 on CIFAR-10
by showing: (a) the per-layer reduction in complexity, (b) natural accuracy vs. FPS, and (c) robust
accuracy vs. FPS.

Impact of Fine-tuning: In this section, we showcase that fine-tuning via adversarial training for 10
epochs after the application of GDWS can significantly boost the efficacy of GDWS. In Table 1, we
use the same VGG-16 baseline on CIFAR-10 from Table 1 in Section 4.2 of the main manuscript
and apply GDWS with higher approximation errors β. This results in GDWS networks with smaller
model sizes and higher FPS, but with a significant degradation in robust and natural accuracies.
As expected, fine-tuning boosts both robust and natural accuracies (up to ∼ 1% of the pre-trained
baseline).

Table 1: Fine-tuning after GDWS using VGG-16 on CIFAR-10.

Models Anat [%] Arob [%] Size [MB] FPS
VGG-16 77.49 48.92 56.2 36
+ GDWS (β = 0.25) 77.17 49.56 28.7 129

+ GDWS (β = 2) 72.05 45.35 19.1 140
+ fine-tune 77.15 47.87 19.1 140

+ GDWS (β = 5) 63.21 37.78 16.3 143
+ fine-tune 76.76 47.92 16.3 143

Different Types of Attacks: In this section, we conduct an extra set of attacks, highlighted in Table 2
below, on the VGG-16 network on CIFAR-10 (same baseline as before). We use the Foolbox [3]
(https://github.com/bethgelab/foolbox) implementation of all these attacks to ensure proper

4

https://github.com/bethgelab/foolbox

implementation. All the attacks are using `∞-bounded perturbations with ε = 8/255, similar to our
PGD results in the main manuscript. As expected, GDWS preserves the robustness of the pre-trained
baseline, across different attack methods.

Table 2: Robustness across different types of attacks using VGG-16 on CIFAR-10.

Models Arob [%] (FGSM) Arob [%] (BIM) Arob [%] (DeepFool) FPS
VGG-16 52.53 49.61 47.89 36
+ GDWS (β = 0.25) 53.19 50.08 47.28 129
+ GDWS (β = 0.5) 52.69 49.87 46.32 131

Additional Results on CIFAR-10: This section expands on the CIFAR-10 results presented in
Table 1 in Section 4.2 of the main manuscript by adding additional GDWS data points with different
values of β. Table 3 shows that GDWS networks preserve Anat and Arob as both are within ∼1%
of their respective baselines. This further supports our claims in Section 4.2 that GDWS networks
drastically improve the FPS while preserving robustness.

Table 3: Benefits of applying GDWS to standard pre-trained models on the CIFAR-10 dataset.

Models Anat [%] Arob [%] Size [MB] FPS
ResNet-50 84.21 53.05 89.7 16
+ GDWS (β = 0.001) 83.72 52.94 81.9 37
+ GDWS (β = 0.005) 81.18 51.25 75.9 39

WRN-28-4 84.00 51.80 22.3 17
+ GDWS (β = 5× 10−6) 83.64 51.62 19.9 64
+ GDWS (β = 1× 10−5) 83.27 51.70 18.9 65

ResNet-18 82.41 51.55 42.6 28
+ GDWS (β = 0.001) 82.17 51.30 33.5 89
+ GDWS (β = 0.005) 81.17 50.98 29.1 104

VGG-16 77.49 48.92 56.2 36
+ GDWS (β = 0.1) 77.59 49.36 33.3 115
+ GDWS (β = 0.25) 77.17 49.56 28.7 129

New Results on SVHN: Table 4 shows that applying GDWS to pre-trained networks on SVHN
maintains the robustness while offering significant improvements in FPS, which mirrors the same
observations made on CIFAR-10.

Table 4: Benefits of applying GDWS to standard pre-trained models on the SVHN dataset.

Models Anat [%] Arob [%] Size [MB] FPS
WRN-28-4 90.71 52.27 22.3 17
+ GDWS (β = 0.0001) 90.67 51.89 22.3 56
+ GDWS (β = 0.0005) 90.60 51.11 22.1 64

ResNet-18 88.63 55.57 42.6 28
+ GDWS (β = 5× 10−5) 87.87 55.88 39.9 80
+ GDWS (β = 7.5× 10−5) 87.37 55.66 39.3 89

VGG-16 90.72 51.51 56.2 36
+ GDWS (β = 0.1) 90.62 51.84 53.6 93
+ GDWS (β = 5) 88.09 54.48 43.3 125

2.2 Additional Comparisons with HYDRA

In this section, we expand on the HYDRA [7] comparison in Section 4.2 by: 1) providing additional
GDWS networks obtained with different values of β presented in Table 5, 2) offering more insight

5

Table 5: Comparison between HYDRA [7] and GDWS using VGG-16 and WRN-28-4 on CIFAR-10.

Models Anat [%] Arob [%] Size [MB] FPS
VGG-16 (AT from [7]) 82.72 51.93 58.4 36
+ GDWS (β = 0.1) 82.57 51.48 56.5 82
+ GDWS (β = 0.5) 82.53 50.96 50.6 102
+ GDWS (β = 1.2) 81.41 47.88 44.2 111

VGG-16 (p = 90%) 80.54 49.44 5.9 36
+ GDWS (β = 0.1) 80.47 49.52 31.5 93
+ GDWS (β = 2) 78.52 47.26 26.9 101

VGG-16 (p = 95%) 78.91 48.74 3.0 36
+ GDWS (β = 0.1) 78.71 48.53 18.3 106
+ GDWS (β = 0.5) 77.43 46.99 17.1 117

VGG-16 (p = 99%) 73.16 41.74 0.6 41
+ GDWS (β = 0.01) 72.88 41.79 3.0 130
+ GDWS (β = 0.02) 72.75 41.56 2.9 136

WRN-28-4 (AT from [7]) 85.35 57.23 22.3 17
+ GDWS (β = 0.01) 85.33 57.23 22.3 53
+ GDWS (β = 0.5) 84.90 56.74 21.5 61
+ GDWS (β = 1) 84.17 55.87 20.5 68

WRN-28-4 (p = 90%) 83.69 55.20 2.3 17
+ GDWS (β = 0.125) 83.38 54.79 11.9 59
+ GDWS (β = 0.4) 81.21 52.01 11.4 65

WRN-28-4 (p = 95%) 82.68 54.18 1.1 17
+ GDWS (β = 0.005) 82.59 54.22 7.2 60
+ GDWS (β = 0.1) 80.98 52.60 6.9 65

WRN-28-4 (p = 99%) 75.62 47.21 0.2 28
+ GDWS (β = 0.001) 75.46 47.30 1.3 66
+ GDWS (β = 0.0025) 75.36 47.04 1.2 68

to why HYDRA pruned networks achieve limited FPS improvement compared to their un-pruned
baselines, and 3) explaining why GDWS accelerates HYDRA pruned networks without any loss in
robustness.

As seen in Section 4.2, Table 5 shows that HYDRA pruned models do not achieve significant
improvements in FPS compared to their un-pruned baselines. The reason is that, despite having
arbitrarily sparse weight matrices, the filter sparsity is actually quite low. That is the number of
prunable channels in HYDRA pruned models is small, especially for pruning ratios less than 95%.
To further demonstrate that effect, Figs 2a & 2b plot the per-layer filter sparsity of HYDRA pruned
VGG-16 and WideResNet-28-4, respectively. These models are obtained from the publicly released
CIFAR-10 HYDRA trained models available on GitHub. The plots indicate that only at extreme
pruning ratios such as 99% does the filter sparsity in both networks appear to be significant, which
translates to some improvement in FPS on the Jetson.

Table 5 also demonstrates that the application of GDWS to HYDRA-pruned networks provides
significant improvement in FPS at iso-robustness when compared to the pruned baselines’ numbers.
Furthermore, the resultant GDWS networks are also sparse, which provide decent compression ratios.
This synergy is due to the following observation: extremely sparse convolutional weight matrices
have sub-matrices with low rank. This allows GDWS to transform standard sparse 2D convolutions
into GDWS ones with no approximation error. The resultant GDWS convolutions are also sparse,
which explains the improved compression ratios when compared to applying GDWS to un-pruned
networks. To further understand this synergy, consider the following toy example: A standard (3, 2, 4)

6

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

0

10

20

30

40

50

60

70

80

Fi
lte

r S
pa

rs
ity

 [%
]

VGG-16 Per Layer Filter Sparsity
Pruned 90%
Pruned 95%
Pruned 99%

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Layer Index

0

20

40

60

80

Fi
lte

r S
pa

rs
ity

 [%
]

WideResNet-28-4 Per Layer Filter Sparsity
Pruned 90%
Pruned 95%
Pruned 99%

(b)

Figure 2: Per-layer filter sparsity of HYDRA pruned VGG-16 and WideResNet-28-4 models on
CIFAR-10.

2D convolution with pruned weight matrix W = [W1|W2|W3]:

W =

w1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 w2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 w3 0 0 0
0 0 w4 0 0 0 0 0 0 0 0 0

 (1)

where:

W1 =

w1 0 0 0
0 0 0 0
0 0 0 0
0 0 w4 0

 W2 =

 0 0 0 0
w2 0 0 0
0 0 0 0
0 0 0 0

 W3 =

 0 0 0 0
0 0 0 0
w3 0 0 0
0 0 0 0

 (2)

and wi 6= 0 ∀i ∈ {1, 2, 3, 4}. Clearly, the weight matrx W does not have an all zero row, which
implies that the filter sparsity is zero, despite having a high sparsity rate of 100 × 48−4

48 = 91.6%.
However, we have that each sub-matrix Wc has low rank. Specifically: rank(W1) = 2 and
rank(W2) = rank(W3) = 1, and computing the SVDs of each sub-matrix results in:

W1 =

w1

0
0
0

 [1 0 0 0] +

 0
0
0
w4

 [0 0 1 0]

W2 =

 0
w2

0
0

 [1 0 0 0] W3 =

 0
0
w3

0

 [1 0 0 0]

(3)

Thus, from Lemma 1, we can construct a (3, 2,g, 4) GDWS convolution, where g = [2, 1, 1]T,
without any approximation error. Decomposing into a GDW matrix and a PW matrix results in:

WPW =

w1 0 0 0
0 0 w2 0
0 0 0 w3

0 w4 0 0

 WGDW =

1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

 (4)

which are also sparse matrices. The total reduction in MACs is 4×4+4×4
48 = 1.5×, and the total

number of non-zero weights is 4+4 = 8. This shows how extremely sparse standard 2D convolutions
can be transformed into sparse GDWS convolutions with no approximation error while achieving
improvements in complexity, which further justifies the synergy between GDWS and HYDRA pruned
models.

7

3 Proofs

In this section we provide proofs for Theorems 1 and 2 stated in Section 3 of the main manuscript.
We first state the following result due to Eckart and Young [1] on low-rank matrix approximations:
Lemma (Eckart-Young). Let A ∈ Rm×n be an arbitrary rank r matrix with the singular value
decomposition A = UΣVT =

∑r
i=1 σiuiv

T
i , such that σ1 ≥ σ2 ≥ ... ≥ σr > 0. Define for all

p ∈ {1, 2, ..., r − 1}1 the matrix Âp:

Âp =

p∑
i=1

σiuiv
T
i (5)

Then Âp is the optimal rank p approximation in both the following senses:

min
B,rank(B)≤p

||A−B||2 = σp+1 (6)

min
B,rank(B)≤p

||A−B||F =

√√√√ r∑
i=p+1

σ2
i (7)

The Eckart-Young Lemma states that the truncated SVD can be used to compute the optimal rank p
approximation of any matrix in both the Frobenius norm and spectral norm sense. It also provides
a closed form expression for the approximation error in terms of the singular values of the original
matrix A.

3.1 Proof of Lemma 1

Lemma. The weight matrix W ∈ RM×CK2

of a (C,K,g,M) GDWS convolution with M > K2

can be expressed as the concatenation [W1|...|WC] of C sub-matrices Wc ∈ RM×K2

such that
rank(Wc) ≤ min(gc,K2) ∀c ∈ [C].

Proof. From Property 1, W is decomposed as:

W = [W1|...|WC] = WPWD = [u1|...|uG]× [WD,1|...|WD,C] (8)

where ui ∈ RM are the column vectors of WP and WT
D,c ∈ RK2×G = [v1,c|...|vG,c] has column

vectors vi,c ∈ RK2

. From (8), the sub-matrix Wc ∈ RM×K2

is given by:

Wc = WPWD,c =

G∑
i=1

uiv
T
i,c =

hc+gc∑
i=1+hc

uiv
T
i,c (9)

with hc =
∑c−1
k=1 gk where we employ Property 2 to obtain the rightmost equality. Therefore, Wc

is a sum of gc rank 1 matrices uiv
T
i,c ∈ RM×K2

which implies rank(Wc) ≤ min(gc,K2). This
concludes the proof.

3.2 Proof of Theorem 1

Definition: The weighted approximation error between two matrices W = [W1|...|WC] and
Q = [Q1|...|QC] is

e(W,Q,α) =

√√√√ C∑
c=1

αc||Wc −Qc||2F (10)

where α ∈ RC+ and all sub-matrices Wc and Qc have the same size.

We first prove the following Lemma:

1when p = r, the summation in (7) becomes undefined, but the error is zero.

8

Lemma 2. Given any (C,K,M) standard 2D convolution with weight matrix W = [W1|...|WC] ∈
RM×CK2

, Wc ∈ RM×K2

and K2 < M , the (C,K,g,M) GDWS approximation with weight
matrix Ŵ and fixed channel distribution vector g that minimizes the weighted approximation error
e(W,Ŵ,α) with α ∈ RC+ is obtained via the concatenation Ŵ = [Ŵ1|...|ŴC], where Ŵc is the
optimal rank gc approximation of Wc.

Proof. Since Wc ∈ RM×K2

with K2 < M , we have rank(Wc) = rc ≤ K2. Let Q =

[Q1|...|QC] ∈ RM×CK2

be the weight matrix of a (C,K,g,M) GDWS convolution. Then, from
Lemma 1, we have that rank(Qc) ≤ min(gc,K2). Without loss of generality, we will always assume
gc ≤ rc ≤ K2, since otherwise gc > rc for some c implies the optimal rank gc approximation of Wc

is Ŵc = Wc resulting in at most rc non-zero DW kernels in the cth channel and gc − rc zero DW
kernels.

Then, from the Eckart-Young Lemma, we obtain:

||Wc −Qc||F ≥

√√√√ rc∑
i=gc+1

σ2
i,c = ||Wc − Ŵc||F (11)

where σ1,c ≥ σ2,c ≥ ... ≥ σrc,c > 0 are the singular values of Wc ∀c ∈ [C] and Ŵc =∑gc
i=1 σi,cui,cv

T
i,c is its rank gc truncated SVD. The equality holds if and only if Qc = Ŵc.

For a fixed g, we have:

e2(W,Q,α) =

C∑
c=1

αc||Wc −Qc||2F ≥
C∑
c=1

αc

rc∑
i=gc+1

σ2
i,c = e2(W,Ŵ,α) (12)

where Ŵ = [Ŵ1|...|ŴC]. This completes the proof since minimizing e2 also minimizes e.

We now prove Theorem 1:

Theorem. Given any (C,K,M) standard 2D convolution with weight matrix W, the (C,K,g,M)

GDWS approximation with weight matrix Ŵ that minimizes the weighted approximation error
e(W,Ŵ,α) with α ∈ RC+ subject to

∑
gc = G ≤ γ (for some γ ∈ Z+), can be obtained in

polynomial time via Algorithm 1.

Proof. We want to show that:
Ŵ = argmin

Q: G≤γ
e(W,Q,α) (13)

can be solved optimally for any α ∈ RC+. We show this using an induction on the constraint γ via a
constructive proof, which provides the basis for Algorithm 1. Essentially, we show that solving (13)
with constraint γ +1 can be obtained from the solution of (13) with constraint γ via a 1D search over
the channels C, and establish the base case for when γ = 1.

Without any loss of generality, we will assume that αc > 0 ∀c ∈ [C]. The reason for this is that if
αc = 0 for a particular c, then we can set Ŵc = 0 in the optimal solution and have gc = 0 which
minimizes the complexity and does not contribute to the error expression. Similar to before, let
W = [W1|...|WC] be the concatenation of C sub-matrices. We have rank(Wc) = rc ≤ K2. Let
the SVD of each sub-matrix be:

Wc = UcΣcV
T
c =

rc∑
i=1

σi,cui,cv
T
i,c (14)

where σ1,c ≥ σ2,c ≥ ... ≥ σrc,c > 0 are the singular values of Wc ∀c ∈ [C].

Assume that Ŵ(γ) is the optimal solution to (13) with constraint γ, that is Ŵ(γ) corresponds to a
(C,K,g(γ),M) GDWS convolution with channel distribution vector g(γ) ∈ ZC+ such that G(γ) =

9

∑
g
(γ)
c ≤ γ. From Lemma 2, we have Ŵ(γ) = [Ŵ

(γ)
1 |...|Ŵ

(γ)
C] such that rank(Ŵ(γ)

c) ≤ g(γ)c ≤ rc,
with optimal weighted approximation error:

e2(W,Ŵ(γ),α) =

C∑
c=1

αc

rc∑
i=g

(γ)
c +1

σ2
i,c (15)

Then, solving (13), with constraint G ≤ γ +1 will result in a (C,K,g(γ+1),M) GDWS convolution
such that the channel distribution vector g(γ+1) will differ from g(γ) in at most one position c′ ∈ [C],
such that g(γ+1)

c′ = g
(γ)
c′ + 1. The reason for this is that: 1) G(γ+1) ≥ G(γ), otherwise the optimal

solution for the γ constraint could be improved; and 2) the integer constraints on both G(γ+1) and
G(γ) imply that their difference can be at most 1, and hence the corresponding vectors will be
identical up to one position. Thus, the optimal approximation error with constraint γ + 1 can be
computed from e2(W,Ŵ(γ),α):

e2(W,Ŵ(γ+1),α) = e2(W,Ŵ(γ),α)− max
c∈[C]:g

(γ)
c <rc

αcσ
2

g
(γ)
c +1,c

(16)

where the maximization is taken over all channels c that are not saturated (that is g(γ)c + 1 ≤ rc is
valid). If no such channels exist, then the approximation error is saturated, and there is no point in
increasing complexity further, which implies g(γ+1) = g(γ). Therefore, we can construct the optimal
channel distribution vector g(γ+1) from g(γ) as previously mentioned, and then use Lemma 2 to find
Ŵ(γ+1).

Lastly, we show how to solve (13) for the smallest constraint γ = 1, which establishes the base
case, and thus concludes the proof. Notice that, if γ = 1, then G = 1, and g reduces to the basis
vector ec (vector of all zeros except for one position c such that ec = 1). Thus the optimal GDWS
approximation with G = 1 can be solved by simply searching for the channel c that maximizes
αcσ

2
1,c, and then use Lemma 2 to find Ŵ(1).

3.3 Proof of Theorem 2

Theorem. Given any (C,K,M) standard 2D convolution with weight matrix W, the (C,K,g,M)

GDWS approximation with weight matrix Ŵ that minimizes the complexity captured by G =
∑
gc

subject to e(W,Ŵ,α) ≤ β (for some β ≥ 0 and α ∈ RC+), can be constructed in polynomial time
via Algorithm 2.

Proof. We want to show that:

Ŵ = argmin
Q: e(W,Q,α)≤β

C∑
c=1

gc (17)

can be solved for any weight error vector α ∈ RC+ in polynomial time. We show this by first applying
a re-formulation of both the objective and the constraint as a function of a single binary vector.
Using this new formulation, we show that solving (17) reduces to a greedy approach, captured in
Algorithm 2, consisting of a simple 1D search over sorted quantities.

Similar to before, let W = [W1|...|WC] be the concatenation of C sub-matrices. We have
rank(Wc) = rc ≤ K2. Let the SVD of each sub-matrix be:

Wc = UcΣcV
T
c =

rc∑
i=1

σi,cui,cv
T
i,c (18)

where σ1,c ≥ σ2,c ≥ ... ≥ σrc,c > 0 are the singular values of Wc ∀c ∈ [C]. Furthermore,
without loss of generality we will assume that αc > 0 ∀c ∈ [C]. For a fixed channel distribution
vector g, weight error vector α and convolution matrix W, Lemma 2 states that the optimal GDWS
approximation error can be computed via:

e2(g) = e2(W,Ŵ,α) =

C∑
c=1

αc

rc∑
i=gc+1

σ2
i,c (19)

10

Therefore, for any β ≥ 0, there always exists a GDWS convolution satisfying e(g) ≤ β. A simple
choice of gc = rc ∀c ∈ [C] will result in e(r) = 0 ≤ β, where r ∈ ZC+ is the vector of sub-matrix
ranks rc’s. The goal is to find the least complex GDWS convolution, satisfying the constraint.

Let A be an ordered set of all R =
∑
rc quantities αcσ2

i,c. Define an indexing k ∈ [R] on A where
ak ∈ A corresponds to a unique pair (i, c) such that ak = αcσ

2
i,c and a1 ≥ a2 ≥ ... ≥ aR > 0. By

doing so, we can re-write the error expression (19):

e2(g) =

C∑
c=1

αc

rc∑
i=gc+1

σ2
i,c =

R∑
k=1

aktk (20)

where tk ∈ {0, 1} are binary variables indicating whether the corresponding pair (i, c) exists in the
original sum in (19). This change of variables facilitates the optimization problem in (17), since
the binary vector t ∈ {0, 1}R can be used to enumerate all possible GDWS approximations with a
simple expression of the optimal error in (20). Another useful thing about this re-formulation is the
following property:

C∑
c=1

gc =

R∑
k=1

tk = G (21)

where tk = |1 − tk| is the flipped binary variable. Using the fact that the {ak}’s are sorted in
descending order, let j ∈ [R] be the smallest index such that:

R∑
k=j+1

ak ≤ β2 (22)

Then setting tk = 1 ∀k > j and tk = 0 otherwise, will result in the least complex (least sum∑
tk) GDWS approximation satisfying the error constraint e ≤ β. Finding the index j can be done

via a simple 1D search, by starting with j = R (corresponding to the zero error case), and keep
decrementing j until the error condition is no longer satisfied. After finding the optimal vector t, the
corresponding unique channel distribution vector can be constructed via the index mapping:

gc =
∑
k∈Kc

tk (23)

where Kc ⊂ [R] is the set of indices k such that the corresponding index pair (i, c′) satisfies c′ = c.
Finally, given the channel distribution vector g, we can use Lemma 2 to construct Ŵ. The greedy
algorithm presented in Algorithm 2 computes g via this approach, but without dealing with the
auxiliary indexing and reformulation.

11

4 Rationale for the Weight Error Vector Expression

In this section, we provide a detailed explanation for our choice of αl in (8) (from main manuscript).
The work of [5] presents theoretical bounds on the accuracy of neural networks, in the presence
of quantization noise due to quantizing both weights and activations, to determine the minimum
precision required to maintain accuracy. A follow-up work [6] extends this bound to the per-layer
precision case, allowing for better complexity-accuracy trade-offs. The bound in [5] in fact is much
more general, and is not restricted to neural network quantization. Consider the following scalar
additive perturbation model:

ŵ = w + ηw (24)

where ηw is assumed to be a zero-mean, symmetric and independently distributed scalar random
variable with variance s2. Then the work of [5, 6] shows that the probability pm that the noisy network
f̂ paramerterized by ŵ differs in its decision from f can be upper bounded as follows:

pm ≤
L∑
l=1

Cl∑
c=1

s2c,lEc,l where Ec,l = E

 N∑
j=1
j 6=nx

∑
w∈W(l)

c

∣∣∣∂δx,j∂w

∣∣∣2
2δ2x,j

 (25)

where the following notation, inherited from Section 3.4 of the main manuscript, is used: Let
f : RD → RN be a pre-trained CNN for an N -way classification problem with L convolutional
layers parameterizd by weight matrices W(l) ∈ RMl×ClK2

l . The CNN f operates on aD-dimensional
input vector x to produce a vector z = f(x) of soft outputs or logits. Denote by nx ∈ [N] the
predicted class label associated with x, and define δx,j = zj − znx to be the soft output differences
∀j ∈ [N] \ {nx}. In addition, defineW(l)

c to be the set containing all the ClK2
l scalar entries of

sub-matrix W
(l)
c ∀c ∈ [Cl] ∀l ∈ [L], that is the cardinality ofW(l)

c is ClK2
l . Using this notation,

W(l) =
⋃
cW

(l)
c is essentially the set of all scalar parameters in the lth convolutional layer, and

W =
⋃
lW(l) is the set of all scalar parameters of f across all convolutional layers.

When approximating standard 2D convolutions with GDWS convolutions, we incur approxima-
tion errors that are captured at the sub-matrix level, and not at the entry level. Let W(l) =

[W
(l)
1 |W

(l)
2 |...|W

(l)
C] be the weight matrix, and its corresponding sub-matrices, of the standard

convolution for layer l. Define r(l)c = rank(W(l)
c) ≤ Kl

2. Similarly, let Q(l) = [Q
(l)
1 |Q

(l)
2 |...|Q

(l)
C]

be the weight matrix, and its corresponding sub-matrices, of the GDWS convolution approximation
for layer l. From Lemma 1 we know that rank(Q(l)

c) = g
(l)
c . Then, based on the proofs in Appendix 3,

the sub-matrix approximation error can be expressed as:

e(l)c = ||W(l)
c −Q(l)

c ||F = ||R(l)
c ||F =

√√√√√ r
(l)
c∑

i=g
(l)
c +1

σ
(l)
i,c

2
(26)

where σ(l)
1,c ≥ σ

(l)
2,c ≥ ... ≥ σ

(l)

r
(l)
c ,c

> 0 are the singular values of W
(l)
c ∀c ∈ [Cl] ∀l ∈ [L]. Clearly,

the setup in [5, 6] does not hold here. However, we circumvent this issue by assuming that for all
entries w ∈ W(l)

c , the additive perturbation model in (24) holds where ηw are additive, zero-mean,
symmetric, independent random variables with variance:

E
[
ηw

2
]
=
||R(l)

c ||2F
MlK2

l

∀c ∈ [Cl] ∀l ∈ [L] (27)

12

While this assumption does not hold, it allows us to use the upper bound in (25) to provide a heuristic
in our setup:

pm ≤
L∑
l=1

Cl∑
c=1

s2c,lEc,l

=

L∑
l=1

Cl∑
c=1

||R(l)
c ||2F

MlK2
l

E

 N∑
j=1
j 6=nx

∑
w∈W(l)

c

∣∣∣∂δx,j∂w

∣∣∣2
2δ2x,j



=

L∑
l=1

Cl∑
c=1

||R(l)
c ||2F

MlK2
l

E

 N∑
j=1
j 6=nx

||D(c,l)
x,j ||2F
2δ2x,j


=

L∑
l=1

Cl∑
c=1

αc,l||R(l)
c ||2F

=

L∑
l=1

e(W(l),Q(l),αl)
2

(28)

where αc,l is the same as before, with the definition D
(c,l)
x,j ∈ RMl×K2

l being the derivative of δx,j
w.r.t. the sub-matrix W

(l)
c . Thus, the upper bound on pm results in a sum of L terms, where each

term is the GDWS approximation error. Following [6], we use noise gain equalization to minimize
this sum. That is we make sure all the terms are of comparable magnitude by upper-bounding them
with the same β when using Algorithm 2.

References
[1] Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank.

Psychometrika, 1(3):211–218, 1936.

[2] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

[3] Jonas Rauber, Wieland Brendel, and Matthias Bethge. Foolbox: A python toolbox to benchmark
the robustness of machine learning models. In Reliable Machine Learning in the Wild Workshop,
34th International Conference on Machine Learning, 2017.

[4] Leslie Rice, Eric Wong, and Zico Kolter. Overfitting in adversarially robust deep learning. In
International Conference on Machine Learning, pages 8093–8104. PMLR, 2020.

[5] Charbel Sakr, Yongjune Kim, and Naresh Shanbhag. Analytical guarantees on numerical
precision of deep neural networks. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 3007–3016. JMLR. org, 2017.

[6] Charbel Sakr and Naresh Shanbhag. An analytical method to determine minimum per-layer
precision of deep neural networks. In 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 1090–1094. IEEE, 2018.

[7] Vikash Sehwag, Shiqi Wang, Prateek Mittal, and Suman Jana. HYDRA: Pruning adversarially
robust neural networks. Advances in Neural Information Processing Systems (NeurIPS), 7, 2020.

13

	Experimental Setup Details
	Evaluation Setup
	Training Hyperparameters
	Computing the Weight Error Vectors

	Additional Experiments and Comparisons
	Extended Ablation Study
	Additional Comparisons with HYDRA

	Proofs
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Theorem 2

	Rationale for the Weight Error Vector Expression

