
Under review as a conference paper at ICLR 2024

A EXTENSIVE RELATED WORK

Attribution Methods. In order to explain DNNs, numerous attribution methods have been devel-
oped. Based on the ways explanations are generated, they can be roughly separated into propaga-
tion methods and perturbation methods. Propagation methods back-propagate gradients or modi-
fied/pseudo gradients in a top-down fashion. Saliency (Simonyan et al., 2013) makes use of the
gradient of input as the attribution values. Guided back-propagation (Springenberg et al., 2014)
modifies the behavior of ReLU layers in backpropagations. LRP (Bach et al., 2015) and DeepLift
(Shrikumar et al., 2017) change the back-propagation rule to propagate attribution values layer-wise.
Input × Gradient (Shrikumar et al., 2017) uses the Hadamard product between input and its gradient
as attributions. Sundararajan et al. (2017) propose axioms for attribution methods and introduce
Integrated Gradient, which is the line integral of the input gradient. Grad-CAM (Selvaraju et al.,
2017) generalizes the class activation mapping to all CNNs through the gradient of the CNN activa-
tions. Perturbation methods, on the other hand, usually generate explanations by modifying the input
data and observing the change in the output. LIME (Ribeiro et al., 2016) locally approximates the
prediction with a simple surrogate model. Occlusion (Zeiler & Fergus, 2014) identifies the object lo-
cations by replacing different portions of images with gray squares. SHAP (Lundberg & Lee, 2017)
utilizes the approximated Shapley values (Shapley, 1953) as attribution values. RISE (Petsiuk et al.,
2018) defines attribution values based on many randomly sampled masks. IBA (Schulz et al., 2020)
generates explanations via per-sample information bottleneck. I-GOS (Qi et al., 2019; Khorram
et al., 2021) optimize small masks to maximally decrease prediction scores. Fong & Vedaldi (2017)
similarly optimize a relaxed continuous mask with L1 regularization so that the predictions of the
masked inputs are minimized. Agarwal et al. (2021b) formulate attribution generation as a Markov
Decision Process and use reinforcement learning to solve it. Generally, perturbation methods are
model-agnostic, meaning that they do not require any information about the explained model. On
the contrary, propagation methods need access to the models (layers, parameters, etc.) to perform
the propagation. There are also self-interpretable models with attribution values (Chen et al., 2019;
Agarwal et al., 2021a; Wang & Wang, 2021; Li et al., 2021), where instead of explaining an existing
black-box model, they propose entire new models that generate explanations and predictions at the
same time.

Insertion/Deletion Metrics. As the most popular genre of evaluation metrics, insertion/deletion
metrics are also called “faithfulness” in other works. They have a lot of variants, which, although
have different names, all share the same essence. Samek et al. (2016) propose pixel flipping, where
pixels are gradually replaced with zero values. This vanilla form is equivalent to most applications
of such kinds of metrics (with names like ablations, maskings, etc.). Petsiuk et al. (2018) introduce
the insertion metric in addition to the deletion one, where features are gradually inserted instead
of deleted. Tomsett et al. (2020) carry out a sanity check and explore the AUC scores of multiple
attribution explanation methods such as SHAP, Input × Gradient. Hooker et al. (2019) argue that
deleting features from the input tends to break the original distribution. They propose ROAR to
alleviate this issue. However, it requires training black-box models from scratch every time the
number of deleted features changes, which is computationally expensive and hardly applied. In
order to alleviate the out-of-distribution issue, there are other workarounds such as replacing feature
values with reference values from mean/median/blurring instead of zeros (Wang & Wang, 2022a).
Rong et al. (2022) propose to use the weighted summation of the 8 surrounding pixels of the deleted
one as the reference values, which is actually an intermediate stage between mean and blurring.
Also, for image data, it has been shown that deleting tiles of square pixels can also alleviate such
issue (Schulz et al., 2020; Agarwal et al., 2021b). Schulz et al. (2020) also argue that removing
features either from the top-down manner or the down-top manner individually is insufficient. They
propose to use the difference between them as the measurement.

B PROOFS & ANALYSIS

B.1 DETAILS OF THE FORMULATION

In this section, we elaborate on the definitions of the equivalence relation R defined over Rd. The
relation R is defined so that every attribution map ψ can be identified by its equivalence class [ψ].
However, note that when ∃i, j ∈ {1, · · · , d}, i ̸= j such that ψi = ψj , the permutation σ(ψ) is not
well-defined. Therefore, we define that σ(ψ)[i] < σ(ψ)[i + 1] when ψσ[i] = ψσ[i+1], i.e., when
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the attributions are equal, features with smaller indices are put ahead. And hence the relation R is
defined as follows.
Definition B.1. We say the relation R holds for ψ1, ψ2 ∈ Rd if they have they have the same
permutation of features, i.e., ψ1Rψ2 ⇔ σ(ψ1) = σ(ψ2).

Next, we prove the following theorem that the relation R is an equivalence relation.
Theorem B.2. R is an equivalence relation.

Proof: (i) ∀ψ ∈ Rd, since an attribution map defines a unique permutation of features, we have
σ(ψ) = σ(ψ), and hence the reflexivity is proved by ψRψ. (ii) ∀ψ1, ψ2 ∈ Rd, ψ1Rψ2 ⇔
σ(ψ1) = σ(ψ2) ⇔ σ(ψ2) = σ(ψ1) ⇔ ψ2Rψ1. Thus R satisfies symmetry. (iii) For transitiv-
ity, ∀ψ1, ψ2, ψ3 ∈ Rd, if ψ1Rψ2 and ψ2Rψ3, then σ(ψ1) = σ(ψ2) = σ(ψ3). Therefore, ψ1Rψ3

and the transitivity is proved.□

Now that R is an equivalence relation, we can effectively focus on the quotient set Rd/R = {[ψ] :
ψ ∈ Rd} that consists of all the equivalence classes instead of the original Euclidean space Rd.
Since the set Rd/R of equivalence class is not intuitive to deal with, we map the equivalence class
[ψ] to the permutation σ(ψ) in a 1-to-1 manner, we have Rd/R ∼= Sd. Here Sd denotes the set of all
permutations of {1, · · · , d}.
Theorem B.3. Rd/R ∼= Sd with the bijection [ψ] 7→ σ(ψ).

Proof: On the one hand, ∀τ ∈ Sd, let ψ ∈ Rd s.t. ψτ [i] = i, then σ(ψ) = τ . And thus ∃[ψ] ∈ Rd/R
s.t. [ψ] 7→ τ . Hence it is surjective. On the other hand, ∀ψ1, ψ2 ∈ R s.t. [ψ1] ̸= [ψ2], by the
definition of R, σ(ψ1) ̸= σ(ψ2). Hence [ψ] 7→ σ(ψ) is an injective. Therefore, [ψ] 7→ Sd is
bijective.□

B.2 PROOF OF THEOREM 3.1

Theorem 3.1. The insertion metric is equivalent to the deletion metric up to AUCs with MoRF/LeRF.

Proof : We show that deletion-MoRF is equivalent to insertion-LeRF. Deleting the most important
k features results in x\τ [k:]. On the other hand, inserting the least important k features results in
xτ [:k]. Taking the summation of both of them, we have the equivalent AUCs:

d∑
k=0

f(x\τ [k:]) =

d∑
k=0

f(xτ [:d−k]) =

d∑
k=0

f(xτ [:k]) (5)

Thus it proves that deletion-MoRF is equivalent to insertion-LeRF. Similarly, it can be easily shown
that deletion-LeRF is equivalent to insertion-MoRF. □

B.3 PROOF OF THEOREM 4.1

Theorem 4.1. The optimization problem TRACE-Mo ({minτ
∑d
k=0 f(xτ [:k])}) is NP-hard.

Proof : In TSP, a salesman traverses all t cities, and the minimal cost is sought. It is defined by a
cost matrix ∆ = [δij ]t×t where δij is the cost going from city i to j. Given a trajectory τ , the cost
function is defined as ftsp(τ) =

∑t
i=1 δτ [i]τ [i+1], where we extend τ [t+ 1] := τ [1].

Note that f(xτ [:k]) = f(ref) is constant w.r.t. τ when k = 0, it sufficies to minimize∑t
k=1 f(xτ [:k]). Here we show this by demonstrating the corresponding decision problem “Given

a cost f∗ ∈ R, is there a trajectory τ s.t.
∑t
k=1 f(xτ [:k]) ≤ f∗.”

Now assume that there’s a polynomial time algorithm for TRACE. Note that f(x) is a black-box
neural network and thereby can be any continuous function, and also ∀i ̸= j we have xτ [:i] ̸= xτ [:j],
therefore, we define for any trajectory τ of length t and ∀i ∈ N, 1 ≤ i ≤ t,

f(xτ [:i]) := δτ [i]τ [i+1] (6)
In this way for any trajectory τ , we have

ftsp(τ) =

t−1∑
i=1

δτ [i]τ [i+1] =

t∑
i=1

f(xτ [:i]) (7)
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Therefore, this polynomial time algorithm also serves as an algorithm for TSP, a contradiction. □

B.4 NEIGHBOR SETS ANALYSIS

Note that τ can be any permutation of length t, which corresponds to St, the symmetric group of
order t. Specifically, since i = τ [τ−1[i]] = τ−1[τ [i]], we have ∀τ , ∃s ∈ St s.t.

s =

(
1 2 · · · d

τ−1[1] τ−1[2] · · · τ−1[d]

)
= s(τ), (8)

which is a bijective. Since the feasible set St is a discrete space, SA is modeled as a search method
over a graph, where the vertices are feasible states, and the edges are possible movements between
corresponding states, i.e. neighboring relations. Besides, it is also desired that each state has exactly
the same number of neighbors. For the symmetric group St, such a graph is perfectly modeled by
Cayley’s graph (Magnus et al., 2004). Given a generating set S ⊂ St, the Cayley graph is defined as
a directed graph Cay(St, S) = G(V,E) where the set of vertices V are the same as St, and the arcs
are defined by E = {[s1, s2]|∃g ∈ S, gs1 = s2}, which results in an |S|-regular graph. Therefore,
from any state ∀s ∈ St, we can move to |S| other states. And there are also |S| states that can move
directly to s. For neighbors, we expect: 1) sufficiently small change between neighbored states and
2) the neighboring should be symmetric (i.e. [s1, s2] ∈ E ⇔ [s2, s1] ∈ E). Hence we only include
transpositions (permutations that only exchange two elements) in S (known as transposition set).
For a transposition set S, we have ∀s ∈ S, s = s−1, which means that Cay(St, S) is a symmetric
directed graph and hence can be seen as undirected. In this case G({1, · · · , t}, S) is known as the
transposition graph, where the vertices are {1, · · · , t}, and the edges are the transpositions in S.
Then
Proposition B.4. (Hahn & Sabidussi, 2013) S generates St if and only if G(S) is connected.

This indicates that t − 1 ≤ |S| ≤ t(t−1)
2 , where the two equalities hold at spanning trees of the

complete graph and the complete graph, respectively. Lakshmivarahan et al. (1993) propose several
well-structured transposition generating set for St:

• Complete Transpositions: Scomplete = {(i j)|1 ≤ i < j ≤ d}
• Bubble-Sort Transpositions: Sbubble = {(i i+ 1)|1 ≤ i < t}
• Star Transpositions: Sstar,i = {(i j)|1 ≤ j ≤ d, j ̸= i}, 1 ≤ i ≤ t

When applying SA over St, the number of states t! is easy to explode compared with the neighbor
size. This requires 1) sufficiently many movements from each state; 2) sufficiently few steps between
any two states. In fact, let diam(G) denote the diameter of the graph G, then we have
Theorem B.5. diam(Cay(St, Scomplete)) ≤ t− 1.

Proof: Given any two permutations of length t: ∀σ1, σ2 ∈ St, σ1 ̸= σ2, we have where t − 1
transpositions are applied to σ1. Note that ∀i ∈ N, i < t, if i = σ−1

1 [σ2[i]], then the operation can
be skipped. Therefore, there is always a path of length at most t− 1 connecting any two vertices in
Cay(St, Scomplete).□

On the other hand, for the bubble-sort transposition and star transposition, the diameters are (Akers
& Krishnamurthy, 1989):

Proposition 2. diam(Cay(St, Sbubble)) =
t(t−1)

2 ; diam(Cay(St, Sstar)) = (⌊3(t− 1)⌋)/2

As a result, even though there are t! = 49! ≈ 6.08× 1062, the distance between any pair of vertices
is only t−1 = 48 in the complete graph. And this is the smallest value among all transposition sets.
Because Scomplete = ∪S is a transposition setS.

We present empirical results of different neighbor settings, including complete graph, bubble-sort
graph, star-graph, vertex insertion (VI), block reverse (BR), block insertion (BI), and mix (89%BR
+ 10%VI + 1%BI) (Geng et al., 2011). The SA optimization process for the first 100 images of the
validation set of ILSVRC2012 on pre-trained ResNet-18 provided by torchvision is plotted.
The results are shown in Figure 5. It can be found that the complete graph outperforms other
neighbor sets.
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Figure 5: The comparison of different neighbor sets.
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Figure 6: Visualizations of the optimized results of TRACE-y and TRACE-p on the “sea snake”
image of ILSVRC2012 validation set. (a) The converted heatmaps ψ with different smooth factor
α. (b) The deletion process is based on the trajectory τ .
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Figure 7: Visualizations of TRACE and popular attribution methods on images from ILSVRC2012.

C VISUALIZING TRAJECTORIES AS HEATMAPS

In this section we visualize trajectory τ as heatmaps using ψ = π(τ) = ((τ−1/d)α) ∈ [0, 1]d. Since
in practice we implement TRACE in t = 7× 7 superpixel patches as discussed, we use the common
practice in XAI, the bilinear upsampling, to interpolate the ranking of features back to the input
space. Different choices of α are compared in Figure 6 (a). It can be found that α is independent
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Figure 8: Sanity check using cascading randomization for TRACE. Convolutional layers of pre-
trained ResNet-18 are randomized in the independent (upper) and cascading (lower) manners. In
the independent randomization, other layers are kept at the pre-trained values. And in the cascading
randomization, layers are progressively randomized from left to right (top-down). Here “BaCb”
means the b-th convolutional layer in the a-th block.

from the deletion process shown in Figure 6 (b). Instead, it controls the visually highlighted area,
serving similar purposes as colormaps in visualizations. In Figure 7, we demonstrate the deviation
between existing attribution methods and the principled explanations of the deletion metric provided
by TRACE.

As a convention test for attribution explanations, we also perform the sanity check for the converted
heatmaps of TRACE. The results are shown in Figure 8, where the DNNs are randomized in either
the independent or the cascading fashion. It is observed that TRACE passes the sanity check for
explanation methods.

D PSUEDO-CODE FOR TRACE

Algorithm 1 Simulated Annealing for TRACE
Require: black box f , input x, number of patches t, max iteration K, neighbor set

function neighbor(), initial temperature T0, cooling rate η

T ← T0

τ0 ← RandomInitialTrajectory
auc0 ←

∑t
k=1

(
f(x\τ0[:k])− f(xτ0[k:])

)
k ← 0
while k < K do

τ1 ← RandomChoice(neightbor(τ0))
auc1 ←

∑t
k=1

(
f(x\τ1[:k])− f(xτ1[k:])

)
δ = auc1 − auc0
if δ > 0 then

τ0 ← τ1
auc0 ← auc1

else
r ← RandomUniform(0, 1)
if r < exp(δ/T ) then

τ0 ← τ1
auc0 ← auc1

end if
end if
k ← k + 1
T ← ηT

end while
return τ0
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Algorithm 2 Greedy Scheme for TRACE
Require: black box f , input x, number of patches t

k ← 0
τ ← EmptyList
δ ← [1,...,t]
while k < t do

F ← EmptyList
N ← EmptyList
n← 1
while n < len(δ) do

ϵ← τ ∪ {δ[n]}
F ← F ∪ {f(x\ϵ}
N ← N ∪ {n}
n← n+ 1

end while
i← argmin(F )
τ ← τ ∪ {δ[N [i]]}
δ ← δ\{τ [−1]}
k ← k + 1

end while
return flip(τ)

E COMPARISONS AMONG DIFFERENT ALGORITHMS ON TRACE

As a supplementary, we test TRACE with several other popular algorithms for combinatorial opti-
mizations. We include local search algorithms such as Hill Climbing, Tabu Search (GS) (Glover,
1986), and global search algorithms such as Genetic Algorithm (GA) (Holland, 1992). Note that
these algorithms can have different complexity per iteration. Therefore, we compare the average
optimization process within the same amount of time. As the benchmark, SA takes ∼ 200 seconds
for 5000 iterations when t = 49. Hence here we compare the results of these algorithms within 200
seconds, no matter how many iterations there are.

The results are shown in Figure 9, where Simulated Annealing outperforms other algorithms in
the experiments. It should be noticed that one of the most important factors in TRACE is that the
objective function is more expensive to evaluate than common combinatorial optimization problems
like TSP. Thereby, an algorithm that fits TRACE well should require fewer evaluation times. For
instance, Tabu Search requires evaluating all neighbors to update the tabu list, which means the
complete graph cannot be applied as the neighbor size is t(t−1)

2 = 49× 48/2 = 1176. The bubble-
sort graph is applied instead, which is the reason why it is the slowest. This also corresponds to the
results of the neighbor comparison experiments shown in Figure 5. Another interesting result is that
Hill Climbing, which is not a meta-heuristic algorithm but a simple heuristic method instead, has
the second-best result. This may suggest TRACE do not have many local optima in the feasible set
St.

F THE TRADE-OFF BETWEEN PERFORMANCE AND EFFICIENCY

The trade-off between the optimality of TRACE and the efficiency is inevitable given the nature of
combinatorial optimization algorithms. And the running time is affected by the number of iterations.

When efficiency is preferred for explanations, TRACE-Greedy-Le or TRACE-SA-Le−Mo with a
smaller number of iterations are preferred for explanations. When the ground truth is required for
benchmarking of the metrics, we push the optimization process of TRACEto the limit by applying a
larger number of iterations. We include the running time and the LeRF−MoRF deletion scores of
all explanation methods and TRACE-Greedy, TRACE-SA. The results are shown in Table 2. Here
Extremal Perturbation and RISE are implemented in the default settings suggested in the original
papers. It can be found that (a) All TRACE variants outperform explanation methods in the deletion
scores by a significant margin. (b) Increasing the number of iterations of SA consistently gives
rise to the deletion score. (c) The running time of TRACE is very comparable and even outperforms
popular perturbation-based explanation methods. With the trade-off on the efficiency, TRACE pushes
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Figure 9: The comparison of different algorithms on solving TRACE.

Table 2: The comparison between the running time and the LeRF−MoRF
Methods LeRF-MoRF Score Time (s)

Gradient 11.52 ∼0.005
GradCAM 16.24 ∼0.005

Excitation Back-Propagation 15.38 ∼0.014
Integrated Gradient 10.28 ∼0.116

Input x Gradient 8.21 ∼0.006
IBA 15.92 ∼0.144
RISE 14.52 ∼5.161

Extremal Perturbation 13.41 ∼28.975
TRACE-Greedy-Le 27.09 ∼0.656

TRACE-SA-Le−Mo (K = 100) 28.42 ∼4.079
TRACE-SA-Le−Mo (K = 500) 29.32 ∼20.105
TRACE-SA-Le−Mo (K = 1000) 29.83 ∼40.245
TRACE-SA-Le−Mo (K = 5000) 31.69 ∼200.635

the deletion score to the limit gradually. (d) Back-propagation-based explanations do have the best
efficiency.

G SUPPLEMENTARY RESULTS.

Visualizations and Qualitative Inspections of TRACE. Instead of attribution-based visualizations
in the main manuscript, TRACE is better visualized as the deletion process. Because it is proposed
that way. Here we demonstrate this in Figures 13 and 14, where the deletions are w.r.t. the proba-
bility and the logit respectively. The deletion process is visualized in the LeRF criterion. Hence the
lastly deleted features are those that preserve the model’s performance (or even significantly increase
it as shown previously) when preserved. We focus on the deletion process following the probability
in Figure 14.

In the first figure, we can see that the top left corner has a small bump on the ground, which is
preserved till the last few steps. This indicates that keeping this bump can greatly preserve/increase
the predicted probability of the snake class, suggesting that the model might recognize that feature
as a part of snakes by mistake. Similarly, in the figure of row 3 column 2, the wings are the features
that are preserved till the end, suggesting the importance of wings in recognizing birds. Also, it can
be found in the figure of row 3 column 4 that the arms contribute greatly for the prediction of the
crane.

Exhaustive Results w.r.t. Logits. Due to the space limit, we only present the exhaustive results
w.r.t. the probability in Table 1. Here we include the results of the same experiment, where we
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Figure 10: Demonstration of the deletion metrics under different criteria (MoRF or LeRF). The
demonstration is based on ResNet-18 and GradCAM applied to the first image in ILSVRC2012. In
the middle, MoRF (top) deletes the features with the highest attribution first, while LeRF (bottom)
deletes the lowest feature first. On the top right, it shows the deletion metric results of MoRF (red
curve) and LeRF (blue curve) for the single input using the probability as the indicators. On the
bottom right, it shows the TRACE result for the same model and input.

focus on the logits instead. The results are shown in Table 3, and are consistent with the probability
experiments.

Extensive Comparisons of Attribution Methods. In order to compare attribution methods compre-
hensively, we include more explanation methods such as guided GradCAM (Selvaraju et al., 2017),
LRP (Bach et al., 2015), guided back-propagation (Springenberg et al., 2014), deconvolution (Zeiler
& Fergus, 2014), GradientSHAP (Lundberg & Lee, 2017). The results are visualized in Figure 11.
13 methods apart from TRACE have been included in the test.

Tabular Data. Based on perturbing input features, the optimality of TRACE is independent of the
data modality, making it readily applicable to other domains. Here we briefly demonstrate how
TRACE works for tabular datasets. We train an MLP over the breast cancer dataset (Wolberg &
Street, 1995), and test the explanation methods and TRACE using the deletion metric. Note that
methods like GradCAM, Excitation-BP, IBA, etc. are specifically designed for image understand-
ing. Therefore, here we only include explanation methods that are universal for all data types,
including Gradient, Input × Gradient (IxG), Integrated Gradient (IG), Layerwise Relevance Prop-
agation (LRP), and Gradient SHAP. The deletion results are shown in Figure 12. It can be found
that TRACE (red) explores the principled deletion trajectory of features that push the limit of the
deletion metric to a new level. Without the red curves, one can hardly imagine the seemingly good
AUCs are still far from the optimum.

H TRANSFERABILITY OF THE OPTIMAL TRAJECOTIRES

Now that TRACE can be seen as a principled explanation of a model reflecting the influence of
feature deletion, it can serve other uses. Previously, given x, f1, f2 and an explanation method
φ, the explanation method provides explanations ϕf1(x), ϕf2(x) for the two models, respectively.
It can be observed that although the two explanations reflect the mechanism of the corresponding
models, they do not provide an opportunity for the evaluation of the cross-model mechanism – e.g.
the explanation ϕf1(x) of model f1 has very limited meaning for model f2. Thus explanations are
usually compared through d(φf1(x), φf2(x)) where d(·, ·) is usually a distance defined on Rd×Rd.
It is well-known such distance is limited due to the curse of dimensionality. Inspired by (Madry
et al., 2017; Shi et al., 2019), we study the transferability of TRACE among different models. The
correlation matrices are reported in Figure 15. All six matrices are the combinations of the two
indicators: the logit and the probability, and the three references: zeros, means, and Gaussian blurs.
By considering the transferability of the trajectory between the two models, we are able to quantify
the difference between models in a more reasonable way.
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Figure 11: The comparison between the deletion tests of TRACE and more attribution methods
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Figure 12: Deletion test results of the breast cancer dataset.
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Figure 13: The deletion process of images from ILSVRC2012 on ResNet-18. Here all the trajecto-
ries are generated under TRACE-y. That is, the predicted logits are the measurement.
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Figure 14: The deletion process of images from ILSVRC2012 on ResNet-18. Here all the trajecto-
ries are generated under TRACE-p. That is, the predicted probability is the measurement.
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Figure 15: The transferability of the trajectory among 6 different DNNs. In each subfigure, the y-
axis is the list of source models, which the trajectories are optimized over. The trajectories are then
tested over the target models listed on the x-axis. The upper row is the result when the predicted
logits are used as the measurement. The lower row is the result of the predicted probability. And each
column represents a certain type of reference value. Results show that AlexNet and MobileNetV3’s
best trajectories are the most distant from others.
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Table 3: The comparison among commonly studied DNNs on ILSVRC2012 with three different
reference values. Here we present the difference between AUCs of the logits for LeRF and MoRF.

Reference Model T-y T-p Grad GC IBA RISE EP EBP IG IxG

Zero

ResNet-18 654.63 494.39 246.28 345.30 368.63 330.01 271.24 330.95 217.46 170.96
VGG-16 733.33 570.08 354.31 389.71 446.96 422.11 342.14 412.27 340.36 273.04
AlexNet 528.92 387.99 235.47 215.60 234.70 262.67 225.70 215.60 228.04 199.65

GoogLeNet 436.03 373.45 186.15 230.28 217.85 217.04 184.37 219.79 170.78 147.61
MobileNetV3 564.07 412.34 140.08 279.24 228.40 198.11 173.48 200.90 146.53 111.26
DenseNet-161 748.21 553.13 231.28 389.69 361.18 375.25 312.25 377.49 236.95 73.57

Mean

ResNet-18 677.82 490.32 255.54 349.48 332.02 332.77 259.02 334.96 225.60 179.44
VGG-16 761.62 563.88 360.30 401.50 456.45 432.31 352.19 423.36 348.54 276.86
AlexNet 541.18 396.74 252.16 242.20 241.08 313.22 257.51 242.20 235.24 197.67

GoogLeNet 446.35 368.47 189.38 233.79 218.98 218.78 182.57 223.79 175.87 152.19
MobileNetV3 568.10 411.44 146.17 284.28 238.15 210.70 183.48 212.35 148.70 109.74
DenseNet-161 755.73 521.30 231.56 389.62 357.16 368.78 315.32 380.62 237.05 173.82

Blurring

ResNet-18 667.50 488.25 237.36 347.15 329.25 338.98 270.65 332.68 218.25 169.08
VGG-16 785.37 572.89 355.51 409.08 457.24 450.51 356.16 420.88 350.53 279.70
AlexNet 580.66 424.06 252.31 242.59 240.95 313.36 256.44 242.59 235.26 197.64

GoogLeNet 441.68 369.25 178.26 218.80 206.72 221.96 180.74 207.93 169.69 144.81
MobileNetV3 567.15 419.61 180.00 296.19 264.50 221.05 227.01 251.26 177.09 135.86
DenseNet-161 724.62 507.72 194.39 340.50 317.74 337.16 286.58 331.22 199.23 141.73
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