
A Variational Perspective on Diffusion-Based
Generative Models and Score Matching

Chin-Wei Huang, Jae Hyun Lim, Aaron Courville
University of Montreal & Mila

{chin-wei.huang, jae.hyun.lim, aaron.courville}@umontreal.ca

Abstract

Discrete-time diffusion-based generative models and score matching methods
have shown promising results in modeling high-dimensional image data. Re-
cently, Song et al. (2021) show that diffusion processes that transform data into
noise can be reversed via learning the score function, i.e. the gradient of the log-
density of the perturbed data. They propose to plug the learned score function into
an inverse formula to define a generative diffusion process. Despite the empirical
success, a theoretical underpinning of this procedure is still lacking. In this work,
we approach the (continuous-time) generative diffusion directly and derive a vari-
ational framework for likelihood estimation, which includes continuous-time nor-
malizing flows as a special case, and can be seen as an infinitely deep variational
autoencoder. Under this framework, we show that minimizing the score-matching
loss is equivalent to maximizing a lower bound of the likelihood of the plug-in
reverse SDE proposed by Song et al. (2021), bridging the theoretical gap.

1 Introduction

Generative modeling can be thought of as inverting an inference process. If the inference process
is invertible, then one can focus on transforming the data into a tractable distribution (Dinh et al.,
2016). If the inference process is deterministic yet non-invertible, one could learn to invert it stochas-
tically (Dinh et al., 2019; Nielsen et al., 2020). Most generally, both inference and generation can be
stochastic. This is known as the variational autoencoder (Kingma & Welling, 2014; Rezende et al.,
2014, VAE).

Under the variational framework, one has a lot of flexibility in choosing the generative and infer-
ence models. Recent work on diffusion-based modeling (Sohl-Dickstein et al., 2015; Ho et al., 2020)
can be thought of as removing one degree of freedom, by freezing the inference path. The infer-
ence model is a fixed discrete-time Markov chain, that slowly transforms the data into a tractable
prior, such as the standard normal distribution. The generative model is another Markov chain that
is trained to revert this process iteratively. Diffusion-based models have been shown to perform
remarkably well on image synthesis (Dhariwal & Nichol, 2021), rivaling the performance of state-
of-the-art Generative Adversarial Networks (Brock et al., 2018).

Song et al. (2021) connect diffusion-based model and score matching (Hyvärinen & Dayan, 2005),
by looking at the stochastic differential equation (SDE) associated with the inference process. They
realize that the dynamic of the inference process can be inverted if one has access to the score
function of the perturbed data, by solving another SDE reversed in time. They then propose to learn
the score function of the inference process and substitute the approximate score into the formula of
the reverse SDE to obtain a generative model. We call the resulting generative model the plug-in
reverse SDE.
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Figure 1: Three special cases of generative SDEs. The stars indicate the initial values, followed by
some random sample paths. Left: trained with no diffusion σ = 0 (i.e. neural ODE). Middle: trained
with some fixed diffusion σ > 0. Right: trained with a fixed inference process, f and g (i.e. the
plug-in reverse SDE).

Conceptually simple as this learning procedure may seem, little is known about how the score match-
ing loss relates to the plug-in reverse SDE. In this paper, we propose a variational framework suitable
for likelihood estimation for general generative diffusion processes, and use this framework to con-
nect score matching with maximum likelihood. We do so by combining two important theorems
in stochastic calculus: the Feynman-Kac formula for representing the marginal density of the gen-
erative diffusion as an expectation (Section 3), and the Girsanov theorem for performing inference
in function space (Section 4). We derive a functional evidence lower bound that consistently ex-
tends discrete-time diffusion models to have infinite depth, i.e. the number of layers goes to infinity
(Section 5). Finally, by reparameterizing our generative and inference SDEs, we obtain a train-
ing objective equivalent to minimizing the (implicit) score matching loss (Section 6). Our theory
suggests that by matching the score, one actually maximizes a lower bound on the log marginal
density of the plug-in reverse SDE, laying a theoretical foundation for this learning procedure. We
further generalize our result to a family of marginal-equivalent plug-in reverse SDEs, including an
equivalent ODE as a limiting case.

Notation: We use (Ys, s) to denote the inference process (where Y0 is the data), and (Xt, t) to
denote the generative process (where X0 is a random variable following an unstructured prior). We
use s and t to distinguish the two directions, and always integrate the differential equations from 0 to
T > 0 (different from the literature, where sometimes one might see integration from T to 0). B̂s and
Bt denote the Brownian motions associated with the inference and generative SDEs, respectively.
B′s is a reparameterization of B̂s (see Section 4). q(y, s) and p(x, t) denote the probability density
functions of Ys and Xt, respectively. We let sθ denote a time-indexed parameterized function that
will be used to approximate the score∇ log q(y, s). ∇ is the gradient wrt the spatial variable (x or y,
which we sometimes call position), ∂t, ∂s and ∂xi are partial derivatives, and H∗ denotes Hessian.

2 Background

Assume Y0 follows the data distribution q(y, 0), and Ys satisfies the Itô SDE (Øksendal, 2003)

dY = f(Y, s) ds+ g(Y, s) dB̂s, (1)

where f and g are chosen such that the density q(y, s) will converge to some tractable prior p0 as
s → T . Following Song et al. (2021), we assume g is position-independent. It is possible to find a
“reverse” SDE, whose marginal density evolves according to q(y, s), reversed in time, for example1

dX = (gg>∇ log q(X,T − t)− f) dt+ g dBt. (2)

If X0 ∼ p0, then the density p(x, t) of Xt is equal to q(x, T − t). This means that if we have access
to the score function ∇ log q, we can solve the above SDE to obtain XT

d
= Y0. Song et al. (2021)

1See Appendix G for a family of equivalent (reverse) SDEs indexed by some parameter λ, of which equation
(2) is a special case with λ = 0.
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Method Loss

LESM
1
2E[||sθ(Ys, s)−∇ log q(Ys)||2Λ]

LISM E[ 1
2 ||sθ(Ys, s)||

2
Λ +∇ · (Λ>sθ)]

LSSM E[ 1
2 ||sθ(Ys, s)||

2
Λ + v>∇(Λ>sθ)v]

LDSM
1
2E[||sθ(Ys, s)−∇ log q(Ys|Y0)||2Λ]

Table 1: Score matching losses. v follows the
Rademacher distribution.

F-K F-P

v(y, ς) p(y, T − ς)
c(y, ς) −∇ · µ(y, T − ς)
b(y, ς) −µ(y, T − ς)
η(y, ς) σ(T − ς)
g(y) p0(y)

Table 2: Feynman-Kac coefficients.

propose to approximate the score via a parameterized score function sθ by minimizing∫ T

0

EYs
[

1

2
||sθ(Ys, s)−∇ log q(Ys, s)||2Λ(s)

]
ds

where the expectation in the integral is known as the explicit score matching (ESM) loss LESM, and
Λ(s) is a positive definite matrix2 that serves as a weighting function for the overall loss. LESM
is not immediately useful, since we do not have access to the ground truth score ∇ log q. A few
alternative losses can be used, which are all equal to one another up to a constant, including implicit
score matching (Hyvärinen & Dayan, 2005, ISM), sliced score matching (Song et al., 2020, SSM),
and denoising score matching (Vincent, 2011, DSM). The losses are summarized in Table 1, and are
related through the following identity (see Appendix A for the derivation):

LESM −
1

2
I(q(ys, s)) = LISM = LSSM = LDSM −

1

2
EY0

[I(q(ys|y0))], (3)

where I(q) = E[||∇ log q||2Λ] is a constant. After training, Song et al. (2021) plug sθ into (2) to
define a generative model. We refer to this SDE as the plug-in reverse SDE. The plug-in reverse
SDE has been demonstrated to have impressive empirical results, but a theoretical underpinning
of this learning framework is still lacking. For example, it is unclear how the training objective
(minimizing the score matching loss) relates to the sampling procedure, e.g. whether the probability
distribution induced by the plug-in reverse SDE gets closer to the data distribution in the sense of any
statistical divergence or metric. We seek to answer the following question in this paper: How will
minimizing the score-matching loss impact the plug-in reverse SDE? We first provide a framework
to estimate the likelihood of generative SDEs, and then get back to this question in Section 6.

3 Marginal density and stochastic instantaneous change of variable

Let Xt be a diffusion process solving the following Itô SDE3:

dX = µ(X, t) dt+ σ(X, t) dBt (4)

with the initial condition X0 ∼ p0, which induces a family of densities Xt ∼ p(·, t). We use this
SDE as the generative SDE, and we are interested in log p(x, T ) for maximum likelihood. The
density p(x, t) follows the Kolmogorov forward (or the Fokker Planck) equation:

∂tp(x, t) = −
∑
j

∂xj [µj(x, t) p(x, t)] +
∑
i,j

∂2
xi,xj [Dij(x, t) p(x, t)] (5)

with the initial value p(·, 0) = p0(·), where D = 1
2σσ

T is the diffusion matrix. We can expand the
Fokker Planck and rearrange the terms to obtain

∂tp(x, t) =

−∇ · µ(x, t) +
∑
i,j

∂2
xi,xjDij(x, t)

 p(x, t) +

∑
i

−µi(x, t) + 2
∑
j

∂xjDij(x, t)

 ∂xip(x, t) +
∑
i,j

Dij(x, t)∂
2
xi,xjp(x, t) (6)

2We use this matrix to induce a Mahalanobis norm ||x||2Λ := x>Λx, which will be used in Section 6.
3For generality, we use the notation µ and σ to describe a generative SDE, which will be set to g2sθ − f

and g when we come back to the discussion of the plug-in reverse SDE in Section 6.
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so that all coefficients of the same order are grouped together. For simplicity, we assume the diffu-
sion term σ is independent of x throughout the paper. Then (6) reduces to

∂tp(x, t) = − (∇ · µ(x, t)) p(x, t)− µ(x, t)>∇p(x, t) +D(t) : Hp(x, t) (7)

where : denotes the Frobenius inner product between matrices. Even with this simplification, solv-
ing (7) is not trivial. Fortunately, we can estimate this quantity using the Feynman-Kac formula,
which tells us that the solution of certain second-order linear partial differential equations have a
probabilistic representation.

Theorem 1 (Feynman-Kac representation, Chapter 5.7 of Karatzas & Shreve (2014)). Let T > 0.
Let y and ς be the spatial and temporal arguments to the function v ∈ C2,1(Rd × [0, T ]) solving

∂ςv + cv + b>∇v +A : Hv = 0 (8)

with the terminal condition v(y, T ) = h(y), where A = 1
2ηη
> for some matrix-valued function

η(y, ς). Under the assumption stated in Appendix B, if B′s is a Brownian motion and Ys solves

dY = b(Y, s) ds+ η(Y, s) dB′s, (9)

with the initial datum Yς = y, then

v(y, ς) = E

[
h(YT ) exp

(∫ T

ς

c(Ys, s) ds

) ∣∣∣∣∣Yς = y

]
. (10)

To estimate the density p(·, T ) of (7), we can apply the change of variable p(x, t) := v(x, T − t)
by letting the Feynman-Kac (F-K) coefficients correspond to their Fokker-Planck (F-P) counterparts
according to Table 2. This way, solving (8) backward is equivalent to solving (7) forward, and we
have the following representation of the marginal density at T :

p(x, T ) = E

[
p0(YT ) exp

(∫ T

0

−∇ · µ(Ys, T − s) ds

) ∣∣∣∣∣Y0 = x

]
, (11)

where Ys is a diffusion process solving

dY = −µ(Y, T − s) ds+ σ(T − s) dB′s. (12)

Remark 1 (Marginalization). This representation can be interpreted as a mixture of continuous
time flows. Assume a sample path of the Brownian motion is given, and we are interested in how
the density evolves following the dynamic (4). In the infinitesimal setting, it can been seen as
applying the invertible map x 7→ x+ µ(x, t)∆t+ σ(t)∆Bi, where ∆Bi := B(i+1)∆t−Bi∆t is the
Brownian increment. Since the diffusion term is independent of the spatial variable, it can be seen as
a constant additive transformation, which is volume preserving, so it will not be taken into account
when computing the change of density. The only contribution to the change of density will be from
the log-determinant of the Jacobian of id+µ∆t, which means we can simply apply the instantaneous
change of variable formula (Chen et al., 2018). This will be the conditional density given the entire
{Bt : t ≥ 0}, and marginalizing it out results in the expectation in (11). See Appendix C for details.

Our framework also works with the general case where σ depends on x, but the formulae need to be
adapted to account for the spatial partial derivatives. See Appendix D for the derivation.

4 Inferring latent Brownian motion

As our goal is to estimate likelihood, we would like to compute the log density value using (11).
However, this involves integrating out all possible Brownian paths, which is intractable. To resolve
this, we view the Brownian motion as a latent variable, and perform inference by assigning higher
probability to sample paths that are more likely to generate the observation. One can view this as a
VAE, except we have an infinite dimensional latent variable.

Formally, let (Ω,F ,P) be the underlying probability space for which B′s is a Brownian motion.
Suppose Q is another probability measure on (Ω,F) equivalent to P; that is, P and Q are similar in
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the sense that they have the same measure zero sets. This allows us to apply the change-of-measure
trick and lower bound the log-likelihood with a finite quantity using Jensen’s inequality:

log p(x, T ) ≥ EQ

[
log

dP
dQ

+ log p0(YT )−
∫ T

0

∇ · µds

∣∣∣∣Y0 = x

]
. (13)

Note that dP
dQ is the Radon-Nikodym derivative of P wrt Q. When both measures are absolutely

continuous wrt a third measure, say Lebesgue, then the derivative can be expressed as the ratio
of the two densities. However, since we are dealing with an infinite dimensional space, we are
immediately faced with the following problems:

1. Is there a measure Q (equiv. to P) for which dP
dQ can be easily computed, or at least numer-

ically approximated?
2. Can we find a reparameterization (similar to the Gaussian reparameterization) of B′s under

the new law Q to estimate the gradient needed for training?

We resort to the Girsanov theorem, which describes a general framework for dealing with the change
of measure of Gaussian random variables under additive perturbation. It allows us to consider the
law of a diffusion process as Q. See Appendix E for an explanation using the more familiar notion
of probability densities.

Theorem 2 (Girsanov theorem, Theorem 8.6.3 of Øksendal (2003)). Let B̂s be an Itô process
solving

dB̂s = −a(ω, s) ds+ dB′s, (14)

for ω ∈ Ω, 0 ≤ s ≤ T and B̂0 = 0, where a(ω, s) satisfies the Novikov’s condition

E
[
exp

(
1
2

∫ T
0
a2 ds

)]
<∞. Then B̂s is a Brownian motion wrt Q where

dQ
dP

(ω) := exp

(∫ T

0

a(ω, s) · dB′s −
1

2

∫ T

0

||a(ω, s)||22 ds

)
. (15)

Equation (14) provides a standarization formula of B′s under Q, which means we can “invert” it to
reparameterize B′s. This leads to the following lower bound.
Theorem 3 (Continuous-time ELBO). Let Q be defined via the density (15). Then the RHS of (13)
can be rewritten as

E

[
−1

2

∫ T

0

||a(ω, s)||22 ds+ log p0(YT )−
∫ T

0

∇ · µds

∣∣∣∣∣Y0 = x

]
=: E∞, (16)

where the expectation is taken wrt the Brownian motion B̂s, and Ys solves4

dY = (−µ+ σa) ds+ σdB̂s. (17)

We call Ys solving (17) the inference SDE, and E∞ the continuous-time ELBO (CT-ELBO).
Remark 2 (Computation). This lower bound can be numerically estimated by using any black box
SDE solver, by augmenting the dynamic of y with the accumulation of ||a||2 and ∇ · µ. Computing
the divergence term ∇ · µ directly can be expensive, but it can be efficiently estimated using the
Hutchinson trace estimator (Hutchinson, 1989) along with reverse-mode automatic differentiation,
similar to Grathwohl et al. (2018). As the parameters of both the generative and inference models
are decoupled from the random variable B̂s, their gradients can be estimated via the reparameteri-
zation trick (Kingma & Welling, 2014; Rezende et al., 2014). Furthermore, backpropagation can be
computed using an adjoint method with a constant memory cost (Li et al., 2020).

Remark 3 (Drift a). (i) In general, the drift term of the approximate posterior to the latent Brownian
motion can be amortized, so that it will encode the information of individual datum x. (ii) The
regularization ||a||2 ensures that a is kept close to 0, since it represents the deviation of the measure

4Note that µ and σ run backward in time from T , whereas a runs forward.
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it induces (i.e. Q) from the classical Wiener measure (which is a centered Gaussian measure). (iii)
When the diffusion coefficient σ is 0, the inference SDE reduces to the reverse dynamic of the
generative ODE, and if a ≡ 0 in this case, the lower bound is tight. (iv) There is generally no
constraint on the form of a(ω, s), so one can potentially augment it with additional dimensions to
have a non-Markovian inference SDE. For simplicity, we let the inference SDE be a Markovian
model, i.e. a = a(y, s). This is justified by the following theorem.

Theorem 4 (Variational gap and optimal inference SDE). The variational gap can be written as

log p(x, T )− E∞ =

∫ T

0

E
[
||a(ω, s)− σ>∇ log p(Ys, T − s)||2

]
ds. (18)

In particular, E∞ = log p(x, T ) if and only if a(ω, s) can be written as a(ω, s) = a(Ys(ω), s) for
almost every s ∈ [0, T ] and ω ∈ Ω, and a(y, s) = σ>∇ log p(y, T − s) almost everywhere.

Remark 4 (Variational gap). Even though the inference SDE seemingly takes a simple form, it
is sufficiently flexible in that this type of variational problem can be generally solved by taking the
supremem over all progressively measurable processes a(ω, s) (Boué et al., 1998). In fact, the above
theorem shows that E∞ = log p(x, T ) if and only if a(y, s) = σ>∇ log p(y, T − s). This means a
non-amortized Markovian inference process is powerful enough.

5 Infinitely deep hierarchical VAE

Before we make the connection to score matching, we formally address the common belief that
“diffusion models can be viewed as the continuous limit of hierarchical VAEs” (Tzen & Raginsky,
2019), and show that the CT-ELBO consistently extends their discrete-time counterpart. We do
so by inspecting the ELBO of a hierarchical VAE defined as discretized5 generative and inference
SDEs. We assume the generative model (i.e. the decoder) follows the transitional distributions

p(xi+1|xi) = N (xi+1; µ̃i(xi), σ̃
2
i ) (19)

σ̃2
i = ∆tσ2(i∆t), (20)

where ∆t = T/L is the step size and L is the number of layers. For the inference model (i.e. the
encoder), we assume

q(xi|xi+1) = N (xi; µ̂i+1(xi+1), σ̂2
i+1) (21)

µ̂i(x) = x+ ∆t(−µ(x, i∆t) + σ(i∆t)a(x, T − i∆t)) σ̂2
i = ∆tσ2(i∆t). (22)

These transition kernels constitute a hierarchical variational autoencoder of L stochastic layers,
whose marginal likelihood can be lower bounded by

log p(xL) ≥ Eq

[
log p(x0) +

L−1∑
i=0

log
p(xi+1|xi)
q(xi|xi+1)

]
=: EL, (23)

which we refer to as the discrete-time ELBO (DT-ELBO). The reconstruction error of the stochastic
layer can be seen as some form of finite difference approximation to differentiation, which gives rise
to∇ · µ in the CT-ELBO in the infinitesimal limit (as ∆t approaches 0). The regularization of ||a||2
pops up when we compare the difference between µ̃i and µ̂i using the Gaussian reparameterization
to compute the reconstruction error. We formalize this idea in the following theorem.

Theorem 5 (Consistency). Assume µ, σ, σ−2, a, ||a||2 and their derivatives up to the fourth order
are all bounded and continuous, and that σ is non-singular. Then EL → E∞ as L→∞.

This theorem tells us that the CT-ELBO we derive for continuous-time diffusion models is not that
different from the traditional ELBO, and that maximizing the CT-ELBO can be seen as training an
infinitely deep hierarchical VAE. We present the proof in Appendix F, which formalizes the above
intuition, using Taylor’s theorem to control the polynomial approximation error, which will go to 0
as the step size ∆t vanishes when the number of layers L increases to infinity.
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Figure 2: Left: Samples from plug-in reverse SDEs with different λ values (rows). We use the same
score function sθ trained on the Swiss roll dataset, and plug it into (27). For generation, we use the
Euler Maruyama method with a step size of ∆t = 1/1000. We visualize the samples for the i-th
iterates (columns), which approximately represent the same marginal distribution when the score
function is well trained. Right: Lower bound on the marginal likelihood of a continuum of plug-in
reverse SDEs. The lower bound is optimized when the score matching loss is minimized, which will
push up the entire dark blue curve.

6 Score-based generative modeling

Recall that our goal is to analyze the plug-in reverse SDE and draw connection to score matching.
To this end, we reparameterize the generative (4) and inference (17) SDEs as

dX = (gg>sθ − f) dt+ g dBt and dY = f ds+ g dB̂s, (24)

by letting a = g>sθ, where the time variable is reversed (T − t) for the generative process, and
forward in time (s) for inference. The ELBO (16) can be rewritten as

E∞ = EYT [log p0(YT ) |Y0 = x]−
∫ T

0

EYs
[

1

2
||sθ||2gg> +∇ · (gg>sθ − f)

∣∣∣∣Y0 = x

]
ds. (25)

Comparing the integrand to the implicit score matching loss in Table 1, we immediately see that the
network sθ approximates ∇ log q(y, s), the score function of the marginal density of Ys. That is,
matching the score of q(y, t) amounts to maximizing the lower bound on the marginal likelihood of
the plug-in reverse SDE.

Recently, Durkan & Song (2021)6 also attempt to establish the equivalency between maximum like-
lihood and score matching, by showing the following relationship between the forward KL diver-
gence and a weighted sum of score matching loss (aka the Fisher divergence):

DKL(q(y, 0)||r(y, 0)) =
1

2

∫ T

0

Eq(·,s)
[
||∇ log r(Ys, s)−∇ log q(Ys, s)||2gg>

]
ds, (26)

where r(y, s) is the density of Ys solving the same inference SDE with the initial condition y0 ∼
r(·, 0), assuming q(y, T ) = r(y, T ). However, it is inaccurate to claim that score matching is
equivalent to maximum likelihood. This is because if we simply let r(y, 0) = p(y, T ), i.e. the
density of the generative SDE evaluated at y, r(y, s) will not necessarily be the same as either
p(y, T − s) or sθ(y, s). This means the KL divergence is not equal to the integral of the weighted
score matching loss E[ 1

2 ||sθ −∇ log q||2gg> ]. In fact, the latter corresponds to a lower bound on the
likelihood (the cross-entropy term of the KL) up to some constant, as equation (25) suggests.

More generally, we can apply our analysis to a family of plug-in reverse SDEs indexed by some
parameter λ ≤ 1:

dX =
((

1− λ
2

)
g2sθ − f

)
dt+

√
1− λg dBt and dY =

(
f − λ

2 g
2∇ log q

)
ds+

√
1− λg dB̂s,

(27)

5We follow the Euler-Maruyama (EM) scheme. Other discretization scheme may also work; we leave that
for future work.

6This refers to the v1 of the paper on arXiv. This version was later on replaced with a new version where
they derived a similar bound as ours.
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where we assume g is diagonal for simplicity. We defer the formal discussion to Appendix G, but the
essence is that this inference SDE induces the same marginal distribution as (1), and the generative
SDE is its corresponding plug-in reverse. Equation (27) includes the original plug-in reverse SDE
(24) and an equivalent ODE as special cases with λ = 0 and λ = 1. Denote its corresponding
CT-ELBO by E∞λ . Specifically, (25) becomes E∞0 . Then we have the following relationship.

Theorem 6 (Plug-in reverse SDE ELBO, abridged). For λ < 1,

EY0
[E∞λ ] = EY0

[E∞0 ]−
(

λ2

4(1− λ)

)∫ T

0

EYs
[

1

2
||sθ(Ys, s)−∇ log q(Ys, s)||2g2

]
ds (28)

We state the full theorem in Appendix H, where we rearrange the terms to show that the average
CT-ELBO of the λ-plug-in reverse SDE is also equivalent to the ISM loss, similarly to (25) but
up to some multiplying and additive constants. The implication is that while minimizing the score
matching loss, we implicitly maximize the likelihood of a continuum of plug-in reverse SDEs which
include the ODE as a limiting case (λ → 1). See Figure 2 (right) for illustration. This suggests
the likelihood of the equivalent ODE can be improved by minimizing the score matching loss, as
the ODE’s likelihood will be close to plug-in reverse SDEs with λ ≈ 1, which explains the good
likelihood of the equivalent ODE reported in Song et al. (2021). In practice, we can only estimate
the ELBO of the case λ = 0 since otherwise there will be some constant we do not have access to,
but their gradients can all be estimated via score matching.

6.1 Computational trade-off

Having a general framework for estimating the likelihood of diffusion processes allows us to com-
pare a wide family of models, including continuous-time flows and plug-in reverse SDEs trained
by score matching. We compare the two by measuring the negative ELBO throughout training to
highlight their computation-estimation trade-off. We train the models on the Swiss roll toy data. For
continuous-time flow, we set σ = 0, using the Hutchinson trace estimator following Grathwohl et al.
(2018). The ELBO in this case is tight since a will be penalized to be 0. We use the torchdiffeq
library (Chen et al., 2018) for numerical integration for fairer comparison7. For plug-in reverse SDE,
we train the drift network a using SSM and DSM (for DSM the loss is weighted to reduce variance,
which introduces some bias; see the next subsection). We use the variance-preserving inference
SDE from Song et al. (2021), which allows us to sample Ys using a closed form formula, for s sam-
pled uniformly between [0, T ]. The trained models are visualized in Figure 1, the learning curves
presented in Figure 3.

From the learning curve figures, we see that neg-likelihood decreases rapidly for the continuous-time
flow in terms of the number of parameter updates. But once the x-axis is normalized by runtime, the
convergence speed becomes almost indistinguishable. This is because for continuous-time flows,
numerical integration takes time, whereas for plug-in reverse SDEs, we train on a random time step
s; that is, within a fixed amount of time the latter can make more parameter updates at the cost of
noisier gradients. Note that both models have constant memory cost (wrt T or L, the number of
integration steps), so a large batch size can be used to reduce variance for training.

6.2 Bias and variance trade-off

The integral in equation (25) can be estimated by sampling (Ys, s), and using the Hutchinson trace
estimator to estimate the divergence, which corresponds to implicit score matching. However, in
practice the variance of this estimator is very high when the norm of the Jacobian ∇sθ is large.
Another popular approach is to use the denoising estimator (recall the identity from (3)),

EYs
[

1

2
||sθ(Ys, s)−∇ log q(Ys|Y0)||2gg>

∣∣∣∣Y0 = x

]
. (29)

The inference SDE is typically chosen so that Ys can be easily sampled, e.g. following N (µs, σ
2
s),

where µs and σs are functions of Y0 and s. In this case, if we reparameterize Ys = µs + σsε where

7Black-box SDE solvers such as torchsde (Li et al., 2020) might not be optimized for the deterministic
case, since their stochastic adjoint method scales O(L logL) in time whereas deterministic numerical solvers
are usually faster. This matters for our runtime comparison.
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Figure 3: Neural ODE vs plug-in reverse SDE (denoising or slice score matching). The learning
curves are presented as a function of iterations (left) and runtime (right) to emphasize the computa-
tional distinction between the two families of models.
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Figure 4: Likelihood estimation on MNIST (first row) and CIFAR10 (second row). sθ and a denote
which model we parameterize. Y-axes are bits-per-dim and the standard error of BPD of the test set.
The debiased curves improve upon the original biased gradient estimator (Song et al., 2021) since it
maximizes a proper ELBO. Shaded area reflects the uncertainty estimated by 3 random seeds.

ε ∼ N (0, I), then the score becomes ∇ log q = − ε
σs

. Since σs → 0 as s → 0, this estimator
normally has unbounded variance. Song & Ermon (2019); Song et al. (2021) propose to remedy this
by multiplying the DSM loss by σ2

s/g
2 (assuming g is a scalar for simplicity), so that the target has

constant magnitude on average E[ 1
2 ||σssθ + ε||2], which would result in a biased gradient estimate

with much smaller variance. We can debias this estimator by sampling s ∼ q(s) ∝ g2/σ2
s . This

ratio, however, is usually not normalizable in practice (as it integrates to ∞). As an alternative,
we consider the following unnormalized density q̃ε(s) = g2(sε)/σ

2
sε for s ∈ [0, sε], and q̃ε(s) =

g2(s)/σ2
s for s ∈ [sε, T ]. We experiment with this debiased procedure by sampling s ∼ qε ∝ q̃ε, for

f and g chosen to be the variance-preserving SDE. sε is small so that the bias is negligible.

We train the model on MNIST (LeCun et al., 1998) and CIFAR10 (Krizhevsky et al., 2009). We
present the learning curves and the standard error of the estimate of the ELBO in Figure 4. The lower
bound is estimated using the Hutchinson trace estimator with s sampled uniformly from [0, T ], with
the same batch size, so the only thing that will affect the dispersion is the magnitude of ∇sθ. Since
smaller values of s are more likely to be sampled under qε, the debiased model will see samples with
less perturbation more often. On the contrary, sampling s uniformly will bias the model to learn from
noisier data, causing the learned score to be smoother. We also experiment with parameterizing sθ vs
parameterizing a. We find the latter parameterization to be helpful since the relationship sθ = g−1a
has the effect of negating the multiplier σs in the reweighted loss, i.e. E[ 1

2 ||
σs
g a + ε||2]. This is

similar to the noise conditioning technique introduced in Song & Ermon (2020).

7 Related work

Diffusion-based generative models Our work lays a theoretical foundation for Song et al. (2021),
which recognizes that conditional denoising score matching (Song & Ermon, 2019, 2020) and

9



discrete-time diffusion-based generative models (Sohl-Dickstein et al., 2015; Goyal et al., 2017;
Ho et al., 2020) can be viewed as learning to revert an inference process (using the plug-in reverse
SDE). Different from Ho et al. (2020), which shows the ELBO of discrete time diffusion process
can be likened to DSM (Section 3.2 of the paper), we show that ISM loss naturally arises from
the Fokker-Planck equation of the marginal density, via the Fenman-Kac representation and the
Girsanov change of measure. This line of work has been successfully applied to modeling high di-
mensional natural images (Dhariwal & Nichol, 2021; Saharia et al., 2021), audio (Kong et al., 2020),
3D point cloud (Cai et al., 2020; Zhou et al., 2021), and discrete data (Hoogeboom et al., 2021).

Time-reversal of diffusion processes Plenty of works have studied the reverse-time diffusion
processes (2), including Anderson (1982); Föllmer (1985); Elliott & Anderson (1985); Haussmann
& Pardoux (1986). These are different from our marginal-equivalent (reverse) processes (27) when
sθ = ∇ log q, since the latter is related by the marginals only.

Score matching for energy-based models Besides the connection to diffusion models, score
matching is also often used as a method for learning energy based models (EBM)— see Song &
Kingma (2021) for a comprehensive review on useful techniques—. When used as an EBM, sam-
pling from the conditional score model can be achieved by running the annealed Langevin diffusion
(Neal, 2001), which is connected to free-energy estimaton in physics (Jarzynski, 1997), wherein the
path integral is essentially a Feynman Kac representation.

De Bruijn’s identity To connect maximum likelihood and score matching, Durkan & Song (2021)
shows that KL divergence can be represented as an integral of weighted Fisher divergence, gener-
alizing the case of Lyu (2009) where the inference perturbation is a simple Brownian motion. This
type of formulas fall into the category of de Bruijn’s identity (Cover, 1999) for relative entropy. A
similar differential form result can be found in Wibisono et al. (2017).

Learning SDEs Tzen & Raginsky (2019); Li et al. (2020) also propose to learn a neural SDE
by applying Girsanov’s theorem. The key difference is that they treat the SDE entirely as a latent
variable, with an additional emission probability, whereas we use the Feynman-Kac formula to
directly express the marginal density as an expectation, side-stepping the need to smooth out the
density using the emission probability (which will be a Dirac point mass in our case). In their case,
the inference direction is the same as the generative direction, since they infer the latent SDE directly,
whereas we apply Girsanov to the Feynman-Kac diffusion (opposite the generative direction). Xu
et al. (2021) further apply neural SDE as an infinitely deep Bayesian neural network.

8 Conclusion and Discussion

In this work, we derive a general variational framework for estimating the marginal likelihood of
continuous-time diffusion models. This framework allows us to study a wide spectrum of models,
including continuous-time normalizing flows and score-based generative models. Using our frame-
work, we show that performing score matching with a particular choice of mixture weighting is
equivalent to maximizing a lower bound on the marginal likelihood of a family of plug-in reverse
SDEs, of which the one used in Song et al. (2021) and the equivalent ODE are special cases. Em-
pirically, we validate our theory by monitoring the ELBO while performing score matching, and
discuss the implication of the choice of mixture weighting and the potential of debiasing via non-
uniform sampling. We emphasize that our theory does not explain the impressive sample quality of
this family of models, which is still an open research problem and we leave it for future work.

This work introduces a general framework to estimate the likelihood of diffusion-based models,
which allows the parameters of both the generative and inference SDEs to be learned, using a nu-
merical solver with constant memory cost (as per Remark 2). The training time can be reduced
via the connection to score matching and the reverse-time parameterization (24) as long as f and
g take a simple form (so that Yt can be sampled without numerical integration). For example, one
can generalize the Ornstein-Uhlenbeck process to have non-linear (in time) f and g, similar to the
variance-presering SDE, by parameterizing the integral of f using a monotone network (Sill, 1998;
Kay & Ungar, 2000; Daniels & Velikova, 2010; Huang et al., 2018). This has been explored in a
concurrent work by Kingma et al. (2021) in a different framework.
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A Score matching losses

In this section, we prove the score matching loss identity for completeness. These proofs are adapted
from Hyvärinen & Dayan (2005); Song et al. (2020); Vincent (2011) with slight modifications since
we project the score onto the eigen-basis of Λ(s). Recall the definition of the ESM loss

LESM = EYs
[

1

2
||sθ(Ys, s)−∇ log q(Ys, s)||2Λ(s)

]
(30)

where Ys ∼ q(Ys, s). Expanding the quadratic equation, we have

LESM = EYs
[

1

2
||sθ(Ys, s)||2Λ(s) − sθ(Ys, s)>Λ(s)∇ log q(Ys, s) +

1

2
||∇ log q(Ys, s)||2Λ(s)

]
(31)

Moving I(q(Ys, s)) from the RHS to the LHS gives us

LESM −
1

2
I(q(Y )s, s)) = EYs

[
1

2
||sθ(Ys, s)||2Λ(s) − sθ(Ys, s)>Λ(s)∇ log q(Ys, s)

]
(32)

A.1 Implicit score matching

Now to draw connection to ISM, we apply integration by parts and the general Stokes’ theorem
(with mild regularity condition on sθ) to the inner product term to obtain∫

q(y, s)sθ(y, s)>Λ(s)∇ log q(y, s) dy =

∫
sθ(y, s)>Λ(s)∇q(y, s) dy

=
���

���
���:

0∫
∇ ·
(
qΛ>sθ

)
dy −

∫
q∇ ·

(
Λ>sθ

)
dy

= EYs
[
∇ ·
(
Λ>sθ

)]
A.2 Sliced score matching

For the SSM loss, use the Hutchinson trace estimator (Hutchinson, 1989) to replace the divergence
operator, which is simply the trace of the Jacobian matrix.

A.3 Denoising score matching

For DSM, similarly we first look at the inner product term∫
q(y, s)sθ(y, s)>Λ(s)∇ log q(y, s) dy =

∫
sθ(y, s)>Λ(s)∇q(y, s) dy

=

∫
sθ(ys, s)>Λ(ys)∇

∫
q(ys|y0)q(y0, 0) dy0 dys

=

∫ ∫
q(y0, 0)s>θ Λ∇q(ys|y0) dys dy0

=

∫ ∫
q(y0, 0)q(ys|y0)s>θ Λ∇ log q(ys|y0) dys dy0

= EY0,Ys

[
s>θ Λ∇ log q(Ys|Y0)

]
where q(ys|y0) denotes the conditional density of Ys given Y0. Combining this with EYs [||sθ||2Λ],
we have

EY0,Ys

[
1
2 ||sθ||

2
Λ − s>θ Λ∇ log q(Ys|Y0)

]
= EY0,Ys

[
1
2 ||sθ −∇ log q(Ys|Y0)||2Λ

]
− 1

2EY0
[I(q(ys|Y0))]
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B Assumption of Feynman-Kac

Assumption 1 (Feynman-Kac). We assume the following: There exist some constants Bh, Bv > 0
and ph, pv ≥ 1 such that h ∈ C0(Rd) and v ∈ C2,1(Rd × [0, T ]) satisfy

|h(y)| ≤ Bh
(
1 + ||y||2ph

)
or h(y) ≥ 0 (33)

max
0≤ς≤T

|v(y, ς)| ≤ Bv
(
1 + ||y||2pv

)
(34)

C Mixture of continuous-time flows

Continuing the discussion in Remark 1, we analyze the limit of the determinant of the Jacobian of
the finite approximation given the Brownian path: x ← x + µ(x, t)∆t + σ(t)∆Bi. When the step
size decreases to 0, this should converge to the Itô integral. When ∆t is small enough, under the
assumption that µ is uniformly Lipschitz, the finite approximation will be invertible for all steps.
Then the determinant of the Jacobian of the overall transformation is just the product of determinant
of each step:∏

i

det
(
∇ (x+ µ(x, t)∆t+ σ(t)∆Bi)

)
=
∏
i

det
(
I + ∆t∇µ

)
=
∏
i

(
1 + ∆tTr(∇µ) +O(∆t2)

)
= exp

(∑
i

log
(
1 + ∆t∇ · µ+O(∆t2)

))

= exp

(∑
i

∆t∇ · µ+O(∆t2)

)

→ exp

(∫
∇ · µ

)
as ∆t→ 0

This leads to the same derivation for the instantaneous change of variable formula for continuous
time flow (Chen et al., 2018), but the argument of µ will be the solution of the Itô integral, instead
of the solution of the deterministic dynamics only.

D Marginal density of diffusion models (general case)

In Section 3, we assume σ is position-independent for simplicity. The general case of the Fokker-
Planck equation can also be represented using the Feynmann-Kac formula. Following a similar
conversion as in Table 2, we have

p(x, T ) = E

p0(YT ) exp

∫ T

0

−∇ · µ(Ys, T − s) +
∑
i,j

∂2
xi,xjDij(Ys, T − s) ds

 ∣∣∣∣Y0 = x


where Ys solves

dY = −µ̃(Y, T − s) ds+ σ(Y, T − s) dB′s

where µ̃(y, s)i := µi(y, s)− 2
∑
j ∂xjDij(y, s).

E One-dimensional explanation of Girsanov and variational inference

The Girsanov theorem (aka the Cameron–Martin-Girsanov theorem) describes how translation af-
fects Wiener (Gaussian) measures. In Section 4, we deal with the infinite dimensional case, there-
fore demanding a formal measure-theoretic treatment. In this section, we use a one-dimensional
case to illustrate how to interpret the Girsanov theorem and how we use it to derive the CT-ELBO,
using the more familiar notion of probability density functions. Now imagine we do not have an
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infinite-dimensional latent variable (i.e. the Brownian motion B′). Instead, imagine we have a one-
dimensional latent variable ε′ following a standard normal distribution. One can think about it as
a VAE. This way, instead of having a classical Wiener measure (i.e. the distribution of Brownian
motion) we would only need to deal with the standard Gaussian distribution, then P in (13) has den-
sity p = N (0, 1). Suppose Q also has density q Then we can rewrite (13) using the more familiar
density ratio

Eq
[
log

p

q
+ · · ·

∣∣∣∣ · · · ]
Recall p(ε′) = N (ε′; 0, 1) = 1√

2π
e−

1
2 ε
′2

. If we translate this density by a and let it be q, we have

q(ε′) =
1

2π
e−

1
2 (ε′−a)2

This definition of q gives us the density ratio
q(ε′)

p(ε′)
= eaε

′− 1
2a

2

Also, under the density q,
ε̂ := ε′ − a

is again a standard normal random variable (which means ε′ is a Gaussian random variable with
mean a). Note the striking resemblance between the last two formulas and (14,15).

Now if we want to use this q to perform inference as well as reparameterization, we simply just
invert the standardization formula, by first sampling ε̂ from the standard normal distribution, and
letting ε′ = ε̂ + a. Under this reparameterization, the log-likelihood ratio log p/q in the ELBO
becomes

−aε′ + 1

2
a2 = −a(ε̂+ a) +

1

2
a2 = −aε̂− 1

2
a2

Note that since ε̂ is the standard normal (under q), the first term is equal to 0 in expectation. This
derivation leads to the CT-ELBO in (16). See Section F for the formal proof.

F Proofs

Theorem 3 (Continuous-time ELBO). Let Q be defined via the density (15). Then the RHS of (13)
can be rewritten as

E

[
−1

2

∫ T

0

||a(ω, s)||22 ds+ log p0(YT )−
∫ T

0

∇ · µds

∣∣∣∣∣Y0 = x

]
=: E∞, (16)

where the expectation is taken wrt the Brownian motion B̂s, and Ys solves8

dY = (−µ+ σa) ds+ σdB̂s. (17)

Proof. By inverting the relationship (14), we have

dB′s = dB̂s + a(ω, s) ds

This allows us to reparameterize Ys as

dY = −µds+ σ dB′s = −µds+ σ(dB̂s + ads) = (−µ+ σa) ds+ σ + dB̂s

The log density can be written as

log
dP
dQ

= −
∫ T

0

a · dB′s +
1

2

∫ T

0

||a||2 ds

= −
∫ T

0

a · (dB̂s + a ds) +
1

2

∫ T

0

||a||2 ds

= −
∫ T

0

a · dB̂s −
1

2

∫ T

0

||a||2 ds

8Note that µ and σ run backward in time from T , whereas a runs forward.
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Finally, since the first term is in expectation equal to zero (Øksendal, 2003, Theorem 3.2.1), we
conclude the proof.

Theorem 4 (Variational gap and optimal inference SDE). The variational gap can be written as

log p(x, T )− E∞ =

∫ T

0

E
[
||a(ω, s)− σ>∇ log p(Ys, T − s)||2

]
ds. (18)

In particular, E∞ = log p(x, T ) if and only if a(ω, s) can be written as a(ω, s) = a(Ys(ω), s) for
almost every s ∈ [0, T ] and ω ∈ Ω, and a(y, s) = σ>∇ log p(y, T − s) almost everywhere.

Proof. To characterize the variational gap, we directly subtract the lower bound from the marginal
likelihood:

log p(x, T )− E∞ = E

[
log p(Y0, T )− log p(YT , 0) +

1

2

∫ T

0

||a(ω, s)||22 ds+

∫ T

0

∇ · µds

∣∣∣∣∣Y0 = x

]

The first two terms can be written as an integral

log p(Y0, T )− log p(YT , 0) = −
∫ T

0

d log p(Ys, T − s) (35)

Using Itô’s formula, we can rewrite the differential as

d log p(Ys, T − s) = −∂sp(Ys, T − s)
p(Ys, T − s)

ds+∇ log p · dYs +
1

2
Hlog p : dYsdY

>
s

where dYsdY
>
s = σσ> ds.

After rearrangement, we have∫ T

0

[
∂sp

p
−∇ log p>(−µ+ σa)− 1

2
Hlog p : σσ> +

1

2
||a||2 +∇ · µ

]
ds−

∫ T

0

∇ log p>σ dB̂s

(36)

where the second term is equal to 0 in expectation.

Now using the Fokker Planck equation to expand ∂sp, with further rearrangement and cancellation
and by a final application of the conditional Fubini’s theorem, we end us with the desired character-
ization of the gap.

Theorem 5 (Consistency). Assume µ, σ, σ−2, a, ||a||2 and their derivatives up to the fourth order
are all bounded and continuous, and that σ is non-singular. Then EL → E∞ as L→∞.

Proof. By definition of the log transitional distributions

log p(xi+1|xi) = −d
2

log 2π − log det(σ̃i)−
1

2
||xi+1 − µ̃i(xi)||2σ̃−2

i

(37)

Using the definition of µ̃i, the quadratic term becomes

||xi+1 − xi −∆tµ(xi, i∆t)||2σ̃−2
i

Due the the Gaussian reparameterization (under q), we can write

xi = µ̂i+1(xi+1) + σ̂i+1ε (38)

= xi+1 + ∆t
(
− µ(xi+1, (i+ 1)∆t)

+ σ((i+ 1)∆t)a(xi+1, T − (i+ 1)∆t)
)

+
√

∆tσ((i+ 1)∆t)ε
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Plugging this into the quadratic term yields

|| · · · ||2 = ||∆t(µ(xi+1, (i+ 1)∆t)− µ(xi, i∆t)) (39)

−∆tσ((i+ 1)∆t)a(xi+1, T − (i+ 1)∆t)−
√

∆tσ((i+ 1)∆t)ε||2

We take care of the deviation in µ first, by taking the Taylor expansion around (xi, i∆t):

µ(xi+1,(i+ 1)∆t) = µ(xi, i∆t) +∇µ(xi, i∆t)
>(xi+1 − xi) +O(∆t) (40)

Note that the first order term wrt the time variable is alsoO(∆t), so it’s absorbed into the remainder.
Combining the last three identities, we have

1

2
||xi+1 − µ̃i(xi)||2σ̃−2

i

(41)

=
1

2
ε>σ>(σσ>)−1σε+ ∆tε>σ>∇µ>(σσ>)−1σε+

1

2
∆ta>σ>(σσ>)−1σa

+ o(∆t) + (∆t)1/2ε>σ>(σσ>)−1σa

Note that we’ve dropped the arguments of the functions for notational convenience. All the σs in the
denominator are σ(i∆t). The o(∆t) term can be neglected since it decays fast enough even though
there are L = 1/∆t of them. The last term is 0 in expectation since ε is Gaussian distributed. To
take care of the first term (*), we turn to the log density of the inference model.

log q(xi|xi+1) = −d
2

log 2π − log det(σ̂i+1)− 1

2
||xi − µ̂i+1(xi+1)||2

σ̂−2
i+1

(42)

= −d
2

log 2π − log det(σ̂i+1)− 1

2
||σ̂i+1ε||2σ̂−2

i+1

(43)

Comparing the third term with (*), we have
1

2
ε>σ>i+1

(
(σi+1σ

>
i+1)−1 − (σiσ

>
i )−1

)
σi+1ε, (44)

where σi := σ(i∆). Using the differential notation, in expectation, the above can be rewritten as

E
[

1

2
ε>σ>

(
∂t(σσ

>)−1
)
σε

]
dt = − tr(σ−1∂tσ) dt = −∂t log det(σ) dt, (45)

where we used Hutchinson’s trace identity and Jacobi’s formula. Therefore, the summation of
the differences will converge to log det(σ(0)) − log det(σ(T )). This quantity will be negated by
summing up the differences between the normalizing constants for all L terms, which gives us
log det(σ(T ))− log det(σ(0)), by the telescoping cancellation.

Now we only have two terms from the quadratic function, which will converge to

ε>σ>∇µ>σ−>ε dt+
1

2
||a||2 dt

Using the trace identity again, and the fact that trace is similarity-invariant, we see that the above
quantity is equal to (

∇ · µ+
1

2
||a||2

)
dt

in expectation. Now summing up all the layers, we can decompose the approximate error as∣∣∣∣E [∑ log
p

q

]
− E

[
−
∫ (
∇ · µ+

1

2
||a||2

)]∣∣∣∣ ≤ ∣∣∣∣E [∑ log
p

q
+
∑(

∇ · µ+
1

2
||a||2

)
∆t

]∣∣∣∣
+E

[∣∣∣∣∑(
∇ · µ+

1

2
||a||2

)
∆t−

∫ (
∇ · µ+

1

2
||a||2

)∣∣∣∣]
As all the approximation errors are bounded and converge to 0 as L → ∞, the first term goes to
0 by the Dominated Convergence Theorem. The assumption on the coefficients also guarantees the
convergence in mean square error (Milshtein, 1975) of the Euler Maruyama scheme, which implies
the second term goes to 0. The same applies to the last step for the prior term: x0 → y(T ) in L2.
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G Equivalent SDEs

We use the following definition to formalize what we mean by equivalent SDEs

Definition 1 (Equivalent processes / SDEs). Let Ys, Ỹs and Xt be stochastic processes for 0 ≤
s, t ≤ T . If Ys and Ỹs have the same distribution for all s, then they are said to be equivalent. If Xt

and YT−t have the same distribution for all t, then we say Xt is an equivalent reverse process. Two
SDEs are equivalent if the processes they induce are equivalent. Two SDEs are equivalent reverse
of each other if the processes they induce are equivalent reverse of one another.

Note that when talking about the equivalency between SDEs, the dependency on an initial condition
is implied.

In this section, we show how to construct a family of equivalent (reverse) SDEs. Let Ys be a diffusion
process solving

dY = f ds+ g dB̂s

We assume g is position-independent and diagonal for simplicity. Let λ ≤ 1, We can rearrange the
Fokker-Planck equation to get

∂sq = −∇ · (fq) +
1

2
g2 : Hq = −∇ ·

((
f − λ

2
g2∇ log q

)
q

)
+

1− λ
2

g2 : Hq (46)

Now let fλ := f − λ
2 g

2∇ log q, and gλ :=
√

1− λg. Then the SDE dY = fλ ds + gλ dB̂s has
the same Fokker Planck equation as (46), which means the SDEs defined this way form a family of
equivalent SDEs9.

Now to construct an equivalent reverse SDE, we rearrange the Fokker Planck of this new SDE,

∂sq = −∇ · (fλq) +
1

2
g2
λ : Hq = −∇ ·

((
fλ − g2

λ∇ log q
)
q
)
− 1

2
g2
λ : Hq (47)

Now let µλ(x, t) := g2
λ(x, T − t)∇ log q(x, T − t)− fλ(x, T − t) and σλ = gλ(x, T − t). Then the

SDE dX = µλ dt + σλ dBt with the initial condition X0 ∼ q(·, T ) is an equivalent reverse SDE,
since

∂tp = −∇ · (µλp) +
1

2
σ2
λ : Hp = ∇ ·

((
fλ − g2

λ∇ log q
)
p
)

+
1

2
g2
λ : Hp (48)

is the time-reversal of (47). This also means there is a family of plug-in reverse SDEs parameterized
by λ and sθ:

dX = (g2
λsθ − fλ) dt+ σλ dBt (49)

=

((
1− λ

2

)
g2sθ − f

)
dt+

√
1− λg dBt (50)

The plug-in reverse SDE used by Song et al. (2021) corresponds to λ = 0, and the equivalent
(plug-in) reverse ODE corresponds to λ = 1. See Figure 5 for the simulation.

H Score matching and plug-in reverse SDEs

In Section 6 we establish the connection between the score matching loss and the CT-ELBO of the
plug-in reverse SDE for λ = 0. If we want to do the same for different values of λ, we need to
make sure the generative and inference SDEs have the same diffusion coefficient (this is to make
sure the Radon-Nikodym derivative is finite). In light of this, we define the following generative and
inference pair

dX =
((

1− λ
2

)
g2sθ − f

)
dt+

√
1− λg dBt and dY =

(
f − λ

2 g
2∇ log q

)
ds+

√
1− λg dB̂s

(27)

Note that this is just the same equivalent SDE and equivalent (plug-in) reverse SDE from the Ap-
pendix G. We show that maximizing the ELBO of this family of plug-in reverse SDEs is also equiv-
alent to performing score matching.

9Note that more generally the same would also hold if we let λ be a time-dependent function.
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Figure 5: Samples from plug-in reverse SDEs with different λ values (rows).

Theorem 7 (Plug-in reverse SDE ELBO). Assume the generative and inference SDEs follow (27).
For λ < 1, then the CT-ELBO (denoted by E∞λ ) can be written as

E∞λ = EYT [log p0(YT ) |Y0 = x]−
∫ T

0

(
1− λ

2

)
EYs

[
1

2
||sθ||2g2 +∇ ·

(
g2sθ −

(
2

2− λ

)
f

) ∣∣∣∣Y0 = x

]
+
λ

2
EYs

[
1

2
||sθ||2g2 − g2s>θ ∇ log q(Ys, s)

∣∣∣∣Y0 = x

]
+

λ2

4(1− λ)
EYs

[
1

2
||sθ −∇ log q(Ys, s)||2g2

∣∣∣∣Y0 = x

]
ds

As a result, averaging the ELBO over the data distribution and applying the identity (3) yield

EY0 [E∞λ ] = EYT [log p0(YT )]−
∫ T

0

(
1 +

λ2

4(1− λ)

)
EYs

[
1

2
||sθ||2g2 +∇ · (g2sθ)

]
ds+ Const.

(51)

= EY0 [E∞0 ]−
(

λ2

4(1− λ)

)∫ T

0

EYs
[

1

2
||sθ(Ys, s)−∇ log q(Ys, s)||2g2

]
ds (52)

Before proving this theorem, we first make a few remarks. First, setting λ = 0, this ELBO will
reduce to (25). Second, (51) tells us that while matching the score, we implicitly maximize the
likelihood of the entire family of plug-in reverse SDEs. Third, (52) tells us that the average CT-
ELBO is maximized when λ = 0 (recall Figure 2). Lastly, the theorem excludes the case where
λ = 1, i.e. the equivalent ODE, since otherwise there will be a division-by-zero problem. But an
ODE can be seen as having λ very close to 1, which will make the SDE effectively deterministic in
practice. This explains the low BPD of the equivalent plug-in ODE reported in Song et al. (2021).
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Proof. Plugging (27) in (4) and (17), we get

µ =

(
1− λ

2

)
g2sθ − f

σ =
√

1− λg

a =
1√

1− λ

[
(1− λ) gsθ +

λ

2
g (sθ −∇ log q)

]
Then we have

1

2
||a||22 =

1

2(1− λ)

[
(1− λ)

2 ||sθ||2g2 + (1− λ)λg2s>θ (sθ −∇ log q) +
λ2

4
||sθ −∇ log q||2g2

]
=

(
1− λ

2

)
1

2
||sθ||2g2 +

λ

2

(
1

2
||sθ||2g2 − g

2s>θ ∇ log q

)
+

λ2

4(1− λ)

1

2
||sθ −∇ log q||2g2

∇ · µ =

(
1− λ

2

)
∇ ·
(
g2sθ −

(
2

2− λ

)
f

)
Summing up these two parts gives us E∞λ . Under the expectation, we can rewrite
EYs [g2s>θ ∇ log q] = −EYs [∇ · (g2sθ)] using the score matching loss identity (see Appendix A),
to obtain the second part of the statement.

I Non-uniform sampling for debiasing

We perform non-uniform sampling to debias the denoising score matching loss weighted by σ2
s/g

2,
as discussed in subsection 6.2. We experiment with the variance-preserving SDE from Song et al.
(2021) (originally from Ho et al. (2020)), whose drift and diffusion coefficients are

f(y, s) = −1

2
β(s)y (53)

g(y, s) = g(s) =
√
β(s) (54)

where β(s) = (βmax − βmin)s+ βmin, for some constants βmax and βmin.

Solving the Fokker Planck of this SDE with a Dirac point mass as initial condition gives us a condi-
tional Gaussian, whose variance is

σ2
s :=

∫ s

0

g2(s′)ds′ =
1

2
s2(βmax − βmin) + sβmin (55)

Our goal is to sample from a density function proposal to g2/σ2
s for most of the part. So for some

small sε > 0, we define the following unnormalized density

q̃ε(s) =


g2(sε)
σ2
sε

s ∈ [0, sε)

g2(s)
σ2
s

s ∈ [sε, T ]
(56)

To simplify our notation, we let

φ(s) := log

(
exp

(
1

2
s2(βmax − βmin)sβmin

)
− 1

)
(57)

ϕ(u) := log

(
1 + exp

(
Zu+ φ(sε)−

g2(sε)

σ2
sε

sε

))
(58)

Φ̃ε(s) :=


g2(sε)
σ2
sε

s s ∈ [0, sε)

g2(sε)
σ2
sε

sε + φ(s)− φ(sε) s ∈ [sε, T ]
(59)
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where Φ̃ε is the cumulative function of the unnormalzied density. Evaluating it at T gives us the
normalizing constant Z = Φ̃ε(T ), from which we obtain the CDF, Φε(s) = Φ̃ε(s)

Z , the pdf qε(s) =
q̃ε(s)
Z , and the inverse CDF that we need for sampling (using the inverse CDF transform):

Φ−1
ε (u) =

Z
σ2(sε)
g2(sε)

u u ∈
[
0, sε

g2(sε)
Zσ2

sε

)
1

βmax−βmin

(
−βmin +

√
β2

min + 2 (βmax − βmin)ϕ(u)
)

u ∈
[
sε
g2(sε)
Zσ2

sε

, 1
] (60)

J Experiments

J.1 MNIST and CIFAR 10

We use the variance preserving SDE described in Appendix I, with βmin = 0.1, βmax = 20, and
T = 1. We use the same architecture following Ho et al. (2020) for the CIFAR10 experiment (which
is a modified U-Net (Ronneberger et al., 2015)). For MNIST, we use 3 feature map resolutions
(instead of 4) and reduce the number of channels from 128 to 32. Also we did not apply dropout.

For optimization, we use the Adam optimizer with a learning rate of 0.0001. We use minibatch size
128 for all experiments. We apply the standard uniform dequantization, and map the data to the real
space using the logit transform (with a squeeze coefficient α = 0.05 to avoid numerical instability).
For CIFAR10, we additionally apply random horizontal flipping for regularization.

More details can be found in https://github.com/CW-Huang/sdeflow-light.
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