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In Supplementary Materials, we provide additional experimental
results and implementation details for further comprehension of
our proposed method.

1 METHODS
In this section, we give a detailed derivation for the selection of 𝜆 in
Equation (4) of the main text. We introduce a regularization term,
𝜆∥mq − S𝑑w∥22, to constrain the reconstruction error. However,
note that, if 𝜆 is too large, the optimal solution would ignore the
sparse optimization of weight w. Conversely, if we choose a 𝜆

that is too small, the optimization process would not sufficiently
consider the reconstruction error penalty. Following [9], we utilize
the binary penalty search (BPS) algorithm to address this issue.
First, we rewrite Equation (4) as a penalty problem of 𝜆:

Γ(𝜆) : min
w

∥w∥1 + 𝜆∥mq − S𝑑w∥22 .

We establish the upper and lower bonds of 𝜆, i.e., 𝜆𝑟 > 𝜆𝑙 ≥ 0.
By solving Γ(𝜆𝑟 ), we obtain a solution w𝑟 that satisfies the recon-
struction constraint ∥mq − S𝑑w∥22 ≤ 𝜎 , while solving Γ(𝜆𝑙 ) yields
a solution w𝑙 that exceeds the error constraint. Our objective is
to find a 𝜆 in (𝜆𝑙 , 𝜆𝑟 ) with which solving Γ(𝜆) yields a solution
with sparser weights than that of Γ(𝜆𝑟 ) while still adhering to the
reconstruction constraint.

To achieve this, we employ a binary search for the optimal 𝜆. At
the start of each iteration, we set 𝜆 = (𝜆𝑙 + 𝜆𝑟 )/2 and assess the
solution of Γ(𝜆). If ∥mq−S𝑑w∥22 > 𝛿 , we update the lower bound 𝜆𝑙
to 𝜆; otherwise, we decrease the upper bound 𝜆𝑟 . The interval range
is halved after each iteration, progressively narrowing down to a
sufficiently small search range smaller than 𝜖 . The most appropriate
𝜆 is then determined as 𝜆𝑟 . The details of the BPS algorithm are
outlined below.

Algorithm 1 Binary Penalty Search
Require: mq, S𝑑 , 𝛿 , stop threshold 𝜖 .
Ensure: optimal solution w★

Initialize 𝜆𝑙 = 0, 𝜆𝑟 = 𝜆𝑚𝑎𝑥 .
repeat
𝜆 = (𝜆𝑙 + 𝜆𝑟 )/2;
Solve Problem (4) by ADM to obtain w★;
if ∥mq − S𝑑w★∥22 ≤ 𝛿 then
𝜆𝑟 = 𝜆;

else
𝜆𝑙 = 𝜆;

end if
until 𝜆𝑟 − 𝜆𝑙 ≤ 𝜖

2 MORE IMPLEMENTATION DETAILS
2.1 Dataset Details
We adopt the few-shot evaluation protocol to assess our method on
11 widely-used image classification datasets, spanning the breadth
of generic object classification (ImageNet [14], Caltech101 [5]), fine-
grained object classification (OxfordPets [12], StandfordCars [8],
Flowers102 [11], Food-101 [1], FGVCircraft [10]), texture classifica-
tion (DTD [3]), remote sensing recognition (EuroSAT [7]), scene
recognition (SUN397 [18]), and action recognition (UCF101 [15]).
We evaluate the domain generalization performance of ImageNet [4],
ImageNet-V2 [14] and ImageNet-Sketch [17]. The details of each
dataset are shown in Table 1, including the number of classes, the
sizes of training and testing sets, and the original tasks.

3 MORE EXPERIMENTAL RESULTS
3.1 Few-Shot Recognition Accuracy
In Section 4.2, we provide line charts to exhibit the performance
of our proposed TaCo and other baseline methods, including zero-
shot CLIP and [13] and CALIP [6], along with other state-of-the-art
training-free methods, encompassing APE [21], Tip-X [16] and Tip-
Adapter [20]. Here we provide detailed per-dataset results on all
11 recognition datasets in Table 2. We include results from those
existing works for easier comparison and bold the best result for
each shot and each dataset in the table. All the few-shot recognition
results are based on the ResNet-50 backbone. According to the table,
our proposed method demonstrates strong consistency across all
types of recognition tasks and remarkably outperforms APE on
Average by +1.72% across all few-shot settings.

Meanwhile, to test the additional performance improvement of
TaCo when incorporated with other training-methods, we present
the per-dataset accuracy result when combined with PLOT [2] and
[19], respectively. As shown in Table 3, we compare the incorpo-
rated methods with PLOT [2], Tip-Adapter-F [20] and APE-T [21].
It can be observed that with the aid of TaCo, both prompt-based
and adapter-based method surpasses baseline methods and on ac-
tion recognition task (UCF101), our method remarkably surpasses
APE-T by 4.8% with PLOT on the 8-shot setting. All the experiment
results manifest the consistency and portability of our method.
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Table 1: The detailed statistics of datasets used in experiments.

Dataset Classes Training size Testing size Task

Caltech101 [5] 100 4,128 2,465 Object recognition
DTD [3] 47 2,820 1,692 Texture recognition
EuroSAT [7] 10 13,500 8,100 Satellite image recognition
FGVCAircraft [10] 100 3,334 3,333 Fine-grained aircraft recognition
Flowers102 [11] 102 4,093 2,463 Fine-grained flowers recognition
Food101 [1] 101 50,500 30,300 Fine-grained food recognition
ImageNet [14] 1,000 1.28M 50,000 Object recognition
OxfordPets [12] 37 2,944 3,669 Fine-grained pets recognition
StanfordCars [8] 196 6,509 8,041 Fine-grained car recognition
SUN397 [18] 397 15,880 19,850 Scene recognition
UCF101 [15] 101 7,639 3,783 Action recognition

ImageNet-V2 [14] 1,000 - 10,000 Robustness of collocation
ImageNet-Sketch [17] 1,000 - 50,889 Robustness of sketch domain

Table 2: Training-free few-shot recognition accuracy on 11 datasets.

Method Shots Dataset

ImageNet Caltech Pets Car Flowers Food Aircraft DTD SUN397 EuroSAT UCF101 Average

Zero-Shot CLIP 0 60.3 84.5 85.5 54.3 65.5 77.3 17.0 41.2 58.6 41.8 61.4 58.8

CALIP 0 60.6 87.7 86.2 56.4 66.5 77.4 17.8 42.4 58.6 38.9 61.7 59.4

Tip-Adapter

1 60.7 87.2 86.0 57.4 73.1 77.4 18.8 46.2 61.3 54.4 62.7 62.3
2 60.9 88.3 87.0 58.5 79.1 77.5 21.2 49.6 62.7 61.5 64.7 64.6
4 61.0 89.2 86.5 61.5 83.8 77.5 22.1 53.9 64.2 65.5 66.2 66.5
8 61.5 89.6 86.9 63.1 87.9 77.7 25.5 58.3 65.6 67.9 68.4 68.4
16 62.0 90.2 88.5 66.7 89.8 77.9 29.9 60.6 66.8 70.6 70.7 70.3

Tip-X

1 60.7 88.4 85.4 58.8 73.4 77.4 20.1 46.9 61.7 55.8 62.8 62.8
2 61.0 88.6 87.9 60.3 79.4 77.5 22.0 50.1 63.4 61.5 66.4 65.3
4 61.1 89.3 88.3 63.8 85.9 77.5 22.9 55.2 64.9 68.1 66.8 67.6
8 61.5 89.8 89.1 65.8 88.5 77.9 26.9 59.3 66.3 68.8 68.9 69.3
16 62.1 90.7 89.9 67.3 90.2 77.9 30.1 63.5 68.0 73.1 71.9 71.3

APE

1 62.0 90.5 86.3 59.6 79.6 77.6 20.8 52.6 64.4 59.7 63.2 65.1
2 62.3 91.0 87.1 61.4 83.6 77.6 22.9 58.6 65.9 62.8 65.7 67.2
4 62.5 91.8 87.3 65.1 87.9 77.6 24.4 60.7 66.6 70.3 69.9 69.4
8 62.8 91.9 87.5 66.7 91.1 78.3 28.3 66.0 68.4 74.4 71.7 71.6
16 63.4 92.5 88.9 70.3 91.9 78.5 31.2 67.7 69.7 78.1 74.5 73.3

TaCo (Ours)

1 62.5 91.3 87.1 61.0 81.0 78.6 23.2 53.6 65.3 61.3 65.3 66.4
2 63.0 92.4 88.0 63.6 84.9 79.0 25.3 60.4 68.0 64.8 69.0 68.9
4 63.6 93.2 88.4 66.3 89.4 79.0 28.7 62.6 68.7 72.2 71.6 71.2
8 64.2 93.8 89.0 69.7 92.5 79.4 32.4 66.9 69.9 77.1 76.8 73.8
16 65.2 94.0 90.7 73.2 94.1 80.6 35.6 70.0 71.9 81.9 78.0 75.9
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Table 3: Training-based few-shot recognition accuracy on 11 datasets.

Method Shots Dataset

ImageNet Caltech Pets Car Flowers Food Aircraft DTD SUN397 EuroSAT UCF101 Average

Zero-Shot CLIP 0 60.3 84.5 85.5 54.3 65.5 77.3 17.0 41.2 58.6 41.8 61.4 58.8

PLOT

1 59.5 89.7 87.5 56.6 71.7 77.7 17.9 46.6 62.6 54.1 64.5 62.6
2 60.6 90.8 86.6 57.5 81.2 77.7 18.9 51.2 61.7 64.2 66.8 65.2
4 61.5 90.8 88.6 63.4 87.8 77.2 22.4 56.0 65.1 72.4 69.6 68.6
8 61.9 91.5 87.4 67.0 92.4 75.3 26.5 61.7 67.7 78.2 74.7 71.3
16 63.0 92.2 87.2 72.8 94.8 77.1 31.5 65.6 70.0 82.2 77.3 74.0

Tip-Adapter-F

1 61.3 89.4 86.9 58.5 80.1 77.6 20.8 50.3 62.5 59.2 64.9 64.7
2 61.7 89.8 87.1 62.1 82.5 77.8 23.5 54.0 63.6 65.8 66.2 66.7
4 62.5 90.6 87.7 64.8 89.0 78.3 26.0 57.8 66.1 73.9 70.9 69.8
8 64.0 91.5 88.1 69.5 91.9 78.7 30.2 62.7 68.8 77.8 74.5 72.5
16 65.5 92.9 89.7 75.5 95.0 79.5 35.5 67.3 71.3 83.8 78.0 75.8

APE-T

1 62.5 90.5 87.1 60.8 83.3 77.6 24.6 54.6 66.0 65.9 66.5 67.2
2 63.3 90.8 87.3 63.9 87.9 78.1 25.5 58.8 67.3 71.7 69.2 69.4
4 63.7 91.7 88.5 68.4 92.1 78.6 29.1 65.4 69.0 74.8 73.4 72.2
8 64.8 93.0 88.8 71.4 94.7 78.9 33.3 67.0 71.1 80.8 75.4 74.5
16 66.1 93.2 90.2 76.5 96.2 79.5 39.5 69.6 72.7 86.8 79.7 77.3

TaskRes+TaCo

1 63.3 91.5 87.5 61.8 84.1 78.3 26.1 55.0 66.5 66.2 67.8 68.0
2 64.0 92.0 87.9 64.9 88.8 79.1 27.3 58.8 68.0 72.9 71.6 70.5
4 64.9 92.8 89.6 70.1 94.1 79.3 31.2 66.3 70.5 76.8 75.9 73.8
8 65.9 94.5 89.9 72.9 95.7 80.3 34.6 67.8 71.7 81.0 78.6 75.7
16 67.3 95.0 91.6 78.6 97.2 82.2 40.6 71.3 73.1 87.9 81.3 78.7

PLOT+TaCo

1 63.2 91.3 87.9 63.1 84.8 78.1 26.3 57.5 66.8 68.1 68.8 68.7
2 64.0 92.4 88.1 65.6 89.1 78.7 28.3 62.4 68.1 74.9 71.8 71.2
4 64.8 92.8 90.1 70.7 94.9 78.8 31.4 67.3 70.0 77.8 77.4 74.2
8 66.1 93.6 91.5 74.6 95.3 79.6 35.1 69.6 71.6 81.2 81.2 76.3
16 67.1 94.2 92.3 79.0 97.6 81.3 40.9 72.4 73.3 88.8 83.6 79.1
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