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A APPENDIX

A.1 ONE-STEP DENOISING EXPERIMENTS

We have included additional figures for our one-step denoiser experiments. Figures[5]and[6]show the
one step denoiser performance of the various methods at the measurement noise level and a lower
test noise level for the AFHQ and NBU datasets respectively. We observe that our method performs
better at denoising below the measurement noise level compared to other self-supervised denoising
techniques.
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Figure 5: Example restorations of various denoisers on AFHQ dataset at test noise levels o, = 0.075
(top) and o; = 0.02 (bottom). All models, except for supervised were trained on only noisy data
with o, = 0.075.
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Figure 6: Example restorations of various denoisers on NBU dataset at test noise levels o, = 0.075
(top) and o, = 0.02 (bottom). All models, except for supervised were trained on only noisy data
with o, = 0.075.

A.2 DIFFUSION SAMPLING

Additional figures have been provided for diffusion sampling experiments on the AFHQ and NBU
datasets. Figures [7] and [§] show example diffusion samples for supervised and self-supervised ap-
proaches discussed in the paper on AFHQ and NBU respectively. Figure 9] shows diffusion samples
for different training + inference noise levels with accompanying radial spectrum plots in Figure
Here we see that while one-step supervised and self-supervised MMSE denoisers tend to reduce
high frequency features, our method retains higher frequencies lending to our method providing
better perceptual images.
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Figure 7: Example of various denoisers using diffusion sampling (except MMSE(Self Sup.) and
MMSE(Sup.) columns) on AFHQ dataset with training and test noise level o,, = oy = 0.075.
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Figure 8: Example of various denoisers using diffusion sampling (except MMSE(Self Sup.) and
MMSE(Sup.) columns) on NBU dataset with training and test noise level o,, = oy = 0.075.

A.3 EXTENSION TO LINEAR INVERSE PROBLEMS

We provide example reconstructions for the inpainting and demosaicing tasks in Figures [[T]and [12]
respectively.

A.4 INFERENCE PROCEDURE

For diffusion sampling in our experiments we use a slightly modified version of the samplers pro-
posed in |Karras et al. (2022) by conducting sampling in measurement space. We show the inference
procedure in Algonthm 1]

Algorithm 1 Equivariant Sampling Inference

Require: Dg(-,0), {0k =0n,...,01 = Omin}, ¥
I Vet =Y
2: forie {K,...,1} do
3' ycl.lr - ynext
: X = (Xcur - DO(A ycur7Uz)) /Ji
Ynext = Yeur + 2(0'14-1 - Uz)A)A(
n-~ N(Oa I)
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ik Ynext = Ynext + 2(0'1‘-',-1 — Ui)o'i n
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if 7 > 1 then
x' = (Xnexl DG(A Ynexlvaerl))/o—
Ynext = Yeur + ;(0’1-{-1 - Ul)A( +x' )
return x
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Figure 9: Example reconstructions for different training + inference noise levels on AFHQ.
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Figure 10: Radial Spectrum of images in Figure 0]

A.5 PATCH NORMS

To investigate the assumption that many real image distributions are approximately scale-invariant
we plot the histogram of patch-wise norms for several image distributions using various patch sizes
in Figure [I3] We see that, in fact, we have a spread in energy within each dataset which implies we
may be observing a dataset that exhibits weak invariance.
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Figure 12: AFHQ demosaic example where the models are all trained in a self-supervised fashion.
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Figure 13: Histogram of image patches for each image distribution.
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