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A APPENDIX

A.1 ONE-STEP DENOISING EXPERIMENTS

We have included additional figures for our one-step denoiser experiments. Figures 5 and 6 show the
one step denoiser performance of the various methods at the measurement noise level and a lower
test noise level for the AFHQ and NBU datasets respectively. We observe that our method performs
better at denoising below the measurement noise level compared to other self-supervised denoising
techniques.

Figure 5: Example restorations of various denoisers on AFHQ dataset at test noise levels ωt = 0.075
(top) and ωt = 0.02 (bottom). All models, except for supervised were trained on only noisy data
with ωn = 0.075.

Figure 6: Example restorations of various denoisers on NBU dataset at test noise levels ωt = 0.075
(top) and ωt = 0.02 (bottom). All models, except for supervised were trained on only noisy data
with ωn = 0.075.

A.2 DIFFUSION SAMPLING

Additional figures have been provided for diffusion sampling experiments on the AFHQ and NBU
datasets. Figures 7 and 8 show example diffusion samples for supervised and self-supervised ap-
proaches discussed in the paper on AFHQ and NBU respectively. Figure 9 shows diffusion samples
for different training + inference noise levels with accompanying radial spectrum plots in Figure 10.
Here we see that while one-step supervised and self-supervised MMSE denoisers tend to reduce
high frequency features, our method retains higher frequencies lending to our method providing
better perceptual images.
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Figure 7: Example of various denoisers using diffusion sampling (except MMSE(Self Sup.) and
MMSE(Sup.) columns) on AFHQ dataset with training and test noise level ωn = ωt = 0.075.

Figure 8: Example of various denoisers using diffusion sampling (except MMSE(Self Sup.) and
MMSE(Sup.) columns) on NBU dataset with training and test noise level ωn = ωt = 0.075.

A.3 EXTENSION TO LINEAR INVERSE PROBLEMS

We provide example reconstructions for the inpainting and demosaicing tasks in Figures 11 and 12
respectively.

A.4 INFERENCE PROCEDURE

For diffusion sampling in our experiments we use a slightly modified version of the samplers pro-
posed in Karras et al. (2022) by conducting sampling in measurement space. We show the inference
procedure in Algorithm 1.

Algorithm 1 Equivariant Sampling Inference
Require: Dω(·,ω), {ωK = ωn, . . . ,ω1 = ωmin},y

1: ynext = y
2: for i → {K, . . . , 1} do
3: ycur = ynext
4: x̂ =

(
xcur ↑Dω(A→ycur,ωi)

)
/ωi

5: ynext = ycur + 2(ωi+1 ↑ ωi)Ax̂
6: ω ↓ N (0, I)
7: ynext = ynext +

√
2(ωi+1 ↑ ωi)ωi ω

8: if i > 1 then
9: x̂↑ = (xnext ↑Dω(A→ynext,ωi+1))/ωi+1

10: ynext = ycur +
1
2 (ωi+1 ↑ ωi)A(x̂+ x̂↑)

11: return x̂
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Figure 9: Example reconstructions for different training + inference noise levels on AFHQ.

Figure 10: Radial Spectrum of images in Figure 9.

A.5 PATCH NORMS

To investigate the assumption that many real image distributions are approximately scale-invariant
we plot the histogram of patch-wise norms for several image distributions using various patch sizes
in Figure 13. We see that, in fact, we have a spread in energy within each dataset which implies we
may be observing a dataset that exhibits weak invariance.
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Figure 11: AFHQ inpainting example where the models are all trained in a self-supervised fashion.

Figure 12: AFHQ demosaic example where the models are all trained in a self-supervised fashion.

Figure 13: Histogram of image patches for each image distribution.
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