
Under review as submission to TMLR

A Model Implementation Details

In this section, we provide more details on the implementation of our model used for the experiments.

A.1 Decoder Output

For simple graphs, the edge representation eLi,j after the last layer L is a scalar, which we pass through a

sigmoid function σ. The result is interpreted as the probability of the presence of an edge σ(eLi,j) = pθ(ϵi,j =
1|Zq). In the case of annotated graphs with discrete attributes, the outputs corresponding to each node
x
L
i ∈ R and each edge each edge e

L
i,j ∈ S are passed through a softmax function σ, yielding the probability

distribution over their attributes, i.e., softmax(eLi,j) = pθ(ei,j |Z
q) and softmax(xL

i) = pθ(xi|Z
q). Note that

for edges, the absence of an edge has to be encoded as one of the output category.

Our model output dierent value for ei,j and ej,i. So, we can model directed graph. For undirected graphs,
we enforce the symmetry of the adjacency by averaging the output matrix by its transpose.

For sampling, we always chose the mode of the discrete distribution x̂i = argmax{r∈N:r≤R}(pθ(xi,r|Z
q)) and

êi,j = argmax{s∈N:s≤S}(pθ(ei,j,s|Z
q)).

A.2 Auto-encoder Training

Codebooks initialization The codebook initialization is important for the training quality of the auto-
encoder. As proposed by Łańcucki et al. (2020), we initiate the auto-encoder training for Tinit steps without
quantization. Next, we collect S node embeddings, S being an hyperparameter, and perform k-means++
clustering. We use the resulting vectors as initial codebook vectors. We use S = 100K samples. Unlike
Łańcucki et al. (2020), we do not re-estimate the codebook vector periodically. After initialization, we
continue to update the codebooks thanks to a dedicated loss function details in Section 4.1.5.

Reconstruction loss We dene the reconstruction loss as the negative log-likelihood. In practice, we use
the binary cross-entropy loss for simple graphs and the cross-entropy loss for annotated graphs.

Also, for annotated graphs, the respective weight of the nodes and the edges in the loss function is an
hyperparameter choice. In practice, for all our experiments, we use a constant weight for the edges and the
nodes. For instance, for a graph with categorical distributions over nodes and edges, we used:

Lrecon. =
1

n+ n2









n


i=1

R


r=1

xi,r ln (x̃i,r) +

n


i=1

n


j=1

j ̸=i

S


s=1

ei,j,s ln (ẽi,j,s)









, (17)

where R and S are distribution supports of the node and the edge, respectively. The reconstruction loss can
be easily modify to t multiple variables per node and edge.

Commitment loss To prevent the expansion of the encoder outputs, we incorporate a regularization,
similar to van den Oord et al. (2017), which keeps the learnt representations close to the cluster centers. We
dene it as the mean square distance between the partition vector and its corresponding codeword:

Lcommit▷ =
1

nC

n


i=1

C


c=1

||zh
i,c − sg[zq

i,c]||
2

2
▷ (18)

27

Under review as submission to TMLR

A.3 Hyperparameters

Table 6: Parameters shared across experiments.

Data Features augmentation all

GNNs
layers in the neural networks 3
activation function ReLu
Size of the hidden representations eli,j and x

l
i 32

Quantizer

partitions C 2
latent vector size 8
β (loss commitment cost) 0.25
γ (loss weight) 0.1

Training
betas (adam optimizer) 0.9, 0.99
learning rate decay 0.5

2d-transfomer

heads in multihead att. 16
layers in the neural networks 4
units in the hidden layers of the mlp’s 2× dmodels

activation function ReLu

Table 7: Parameters for the various experiments.

dataset Zinc Qm9 Ego Com-ity Enzymes

GNNs
number of GNN layers 4 4 2 2 6
units in mlp’s hidden layers 128 128 64 64 128

Quantizer
codebook size K 32 16 8 16 32
initialization steps 1000 1000 0 0 100

Training
batch size 32 32 32 32 16
param. updates between decay 25k 25k 10k 10k 10k

2d-transformer
blocks 6 6 3 3 6
dmodel 256 128 64 64 128

Table 8: Number of parameters in our experimental models

Datasets Zinc Qm9 Ego Community Enzymes
Auto-encoder 749K 746K 107k 107 1.14M
2D-Transformer 75.4M 18.9M 2.47M 2.47M 18.9M
Total 76.2M 19.7M 2.58M 2.58M 20.1M

B Detailed results

All results in this section, except DGAE, are taken from Jo et al. (2022). Unfortunately, the results for
GraphARM and DiGress are taken from Kong et al. (2023), which do not produce the standard deviation.
So, we do not have more information than the ones produced in the core of the text.

B.1 Qm9

Results are the means and the standard deviations of 3 runs.

28

Under review as submission to TMLR

Table 9: Generation results on the Qm9 dataset.

Model NSPDK↓ FCD↓ Val. wo. corr. %↑

GraphAF 0.021 ± 0.003 5.53 ± 0.40 74.4 ± 2.6
GraphDF 0.064 ± 0.000 10.92 ± 0.0 93.8 ± 4.8
GraphARM 0.002 1.22 90.3
MoFlow 0.017 ± 0.003 4.47 ± 0.60 91.4 ± 1.2

EDP-GNN 0.005 ± 0.001 2.68 ± 0.22 47.5 ± 3.6
GDSS 0.003 ± 0.000 2.90 ± 0.28 95.7 ± 0.8
DiGress 0.0005 0.36 99.0

DGAE 0.0015 ± 0.0000 0.86 ± 0.02 92.0 ± 0.25

Table 10: Generation results on the Qm9 dataset.

Model Uniqueness↓ Novelety.↓ Validity %↑

GraphAF 88.64 ± 2.37 86.59 ± 1.95 100.00 ± 0.00
GraphDF 98.58 ± 0.25 98.54 ± 0.48 100.00 ± 0.00
GraphARM
MoFlow 98.65 ± 0.25 94.72 ± 0.77 100.00 ± 0.00

EDP-GNN 99.25 ± 0.05 86.58 ± 1.85 100.00 ± 0.00
GDSS 98.46 ± 0.61 86.27 ± 2.29 100.00 ± 0.00
DiGress

DGAE 97.61 ± 0.17 79.09 ± 0.42 100.00 ± 0.00

B.2 Zinc

Results are the means and the standard deviations of 3 runs.

Table 11: Generation results on the Zinc dataset.

Model NSPDK↓ FCD↓ Val. wo. corr. %↑

GraphAF 0.044 ± 0.005 16.0 ± 0.5 68.5 ± 1.0
GraphDF 0.177 ± 0.001 33.5 ± 0.2 90.6 ± 4.3
MoFlow 0.046 ± 0.002 20.9 ± 0.2 63.1 ± 5.2

EDP-GNN 0.049 ± 0.006 16.7 ± 1.3 83.0 ± 2.7
GDSS 0.019 ± 0.001 14.7 ± 0.7 97.0 ± 0.8

DGAE 0.007 ± 0.000 4.4 ± 0.0 77.9 ± 0.5

Table 12: Generation results on the Zinc dataset.

Model Uniqueness↓ Novelty↓ Validity %↑

GraphAF 98.64 ± 0.69 99.99 ± 0.01 100.00 ± 0.00
GraphDF 99.63 ± 0.01 100.00 ± 0.00 100.00 ± 0.00
MoFlow 99.99 ± 0.01 100.00 ± 0.00 100.00 ± 0.00

EDP-GNN 99.79 ± 0.08 100.00 ± 0.00 100.00 ± 0.00
GDSS 99.64 ± 0.13 100.00 ± 0.00 100.00 ± 0.00

DGAE 99.94 ± 0.03 99.97 ± 0.01 ±100.00 ± 0.00

29

Under review as submission to TMLR

B.3 Ego-small

Results are the means and the standard deviations of 15 runs, 3 dierent runs for 5 independently trained
models.

Table 13: Generation results on the Ego-Small datasets.

Model Degrees↓ Cluster.↓ Orbits↓

GraphRNN 0.090 0.220 0.003
GraphDF 0.04 0.13 0.01
EDP-GNN 0.052 0.093 0.007
GDSS 0.021 ± 0.008 0.024 ± 0.007 0.007 ± 0.005

DGAE (Ours) 0.021 ± 0.010 0.041 ± 0.026 0.007 ± 0.005

B.4 Community-small

Results are the means and the standard deviations of 15 runs, 3 dierent runs for 5 independently trained
models.

Model Degrees↓ Cluster.↓ Orbits↓

GraphRNN 0.080 0.120 0.040
GraphDF 0.06 0.12 0.03
EDP-GNN 0.053 0.144 0.026
GDSS 0.045 ± 0.028 0.086 ± 0.022 0.007 ± 0.004

DGAE (Ours) 0.032 ± 0.019 0.062 ± 0.032 0.0046 ± 0.004

Table 14: Generation results on the Community-Small dataset.

B.5 Enzymes

Results are the means and the standard deviations of 3 runs.

Table 15: Generation results on Enzymes datasets.

Model Deg.↓ Clust.↓ Orbit↓

GraphRNN 0.017 ± 0.007 0.062 ± 0.020 0.046 ± 0.031
GraphDF 1.503 ± 0.011 1.061 ± 0.011 0.202 ± 0.002
EDP-GNN 0.023 ± 0.012 0.268 ± 0.164 0.082 ± 0.078
GDSS 0.026 ± 0.008 0.061 ± 0.010 0.009 ± 0.005

DGAE (Ours) 0.020 ± 0.004 0.051± 0.017 0.003 ± 0.001

B.6 Generation time

Results are the means and the standard deviations of 3 runs.

30

Under review as submission to TMLR

Table 16: Generation time on molecular datasets in seconds.

Time (s)
Model Qm9 ↓ Zinc ↓

GraphDF 3791.67 ± 16.21 3859.23 ± 8.34
GDSS 28.07 ± 0.15 300.44 ± 1.94
DiGress 54.01 ± 1.02 799.43 ± 38.22

DGAE (Ours) 0.33 ± 0.01 1.80 ± 0.01

C Visualization

(a) Data (b) Generated

Figure 6: Example of graphs from the Ego-Small dataset and from generated samples.

(a) Data (b) Generated

Figure 7: Example of graphs from the Community-Small dataset and from generated samples.

31

Under review as submission to TMLR

(a) Data (b) Generated

Figure 8: Example of graphs from the Community-Small dataset and from generated samples.

(a) Data (b) Generated

Figure 9: Example of graphs from the Qm9 dataset and from generated samples.

32

Under review as submission to TMLR

(a) Data (b) Generated

Figure 10: Example of graphs from the Zinc250K dataset and from generated samples.

C.1 Additional experimental results

Figure 11: Eect of the codebook size and the partitioning on node (left) and edge (right) reconstruction
errors. We report the best error rates averaged over 3 runs. The black lines indicate the standard deviations.

D Feature augmentation

We use 4 types of feature augmentations: p-path information, spectral information, cycles information, and
random features.

33

Under review as submission to TMLR

Figure 12: We report the average of the best reconstruction loss over 3 runs. The black lines indicate the
standard deviations.

D.1 Paths feature

The p-paths information is the number of paths of length p connecting to nodes. We remind that path is a
walk in which all edges and vertices are distinct. However, we allow the rst and last vertices to be the same
(cycles). We only compute the paths up to p = 3. We use the following formulas, where A is the adjacency
matrix, D is the diagonal matrix of degrees and I is the identity matrix. We assume that the original graph
is connected.

P1 = A

P2 = A2
−D

P3 = A3
− AD − (D − I)A

We incorporate this information as a vector epi,j of edge attributes e
p
i,j = [p1(i,j), p2(i,j), p3(i,j)]

T . We adapt
the denition of the neighborhood to include all nodes that are reachable with one of the paths. Similarly,
we incorporate the p-degrees pj,i (pj = Pj1) as a vector of node attributes.

D.2 Spectral feature

The spectral features that we use are the k eigenvector associated with the k smallest eigenvalue of the
Laplacian L, which is dened as L = D − A. Each value in the eigenvectors are associated with one node.
By taking the k rst eigenvector, we create a vector of size k of synthetic node attributed.

D.3 Cycles feature

The c-cycle information consists of the number of cycle of size c a node is part of. As in Digress Vignac
et al. (2023), we incorporate the information of c ∈ {3, 4, 5}. The formulas for the computation are given in
the Appendix of Vignac et al. (2023).

D.4 Random feature

The random features are simply random value sampled from a known distribution. We used the standard
Gaussian distribution and a vector size of 4.

D.5 Examples of indistinguishable graph substructures

34

Under review as submission to TMLR

Figure 13: Assuming these two graphs are unannotated, any standard MPNN yields the same node features
for all the red nodes as well as for all the blues nodes. It is an example, where MPNN cannot distinguish
simple substructures as triangles and squares. However, any of the above methods yield synthetic features
that theoretically allow MPNN to distinguish the nodes in the upper graph from the ones in lower graph.

35

