
In this part, we will introduce the gradient perturbation, the proofs of the major equations and the
theorem, and some extra experiments. In Section A, we provide a explanation for understanding the
gradient perturbation step in our proposed FedSpeed. In Section C, we provide the full proofs of the
major equation in the text, some main lemmas and the theorem. In Section B, we provide the details
of the implementation of the experiments including the setups, dataset, hyper-parameters and some
extra experiments.

A GRADIENT PERTURBATION

A.1 UNDERSTANDING OF GRADIENT PERTURBATION

We propose the gradient perturbation in the local training stage instead of the traditional stochastic
gradient, which merges an extra gradient ascent step to the vanilla gradient by a hyper-parameter
α. While its ascent step usually approximates the worst point in the neighbourhood. This has
been studied in many previous works, e.g. for the form of extra gradient and the sharpness aware
minimization. In our studies, we perform the extra gradient ascent step instead of the descent step in
extra gradient method. It also could be considered as a variant of the sharpness aware minimization
method via weighted averaging the ascent step gradient and the vanilla gradient, instead of the
normalized gradient. Here we illustrate the implicit of this quasi-gradient g̃ in our proposed FedSpeed
and explain the positive efficiency for the local training from the perspective of objective functions.

Firstly we consider to minimize the non-convex problem Lp(x). To approach the stationary point
of Lp, we can simply introduce a penalized gradient term as a extra loss in Lp, which is to solve
the problem minx{L(x) ≜ Lp(x) +

β
2 ∥∇Lp(x)∥2}. The final optimization target is consistent with

the vanilla target, while penalizing gradient term can approach a flatten minimal empirically. We
compute the gradient form as follows:

∇L(x) = ∇Lp(x) +
β

2
∇∥∇Lp(x)∥2 = ∇Lp(x) + β∇2Lp(x) · ∇Lp(x). (1)

The update in Equation (1) contains second-order Hessian information, which involves a huge amount
of parameters for calculation. To further simplify the updates, we consider an approximation for the
gradient form. We expand the function Lp via Taylor expansion as:

Lp(x+∆) = Lp(x) +∇Lp(x)∆ +
1

2
∆T∇2Lp(x)∆ +R∆,

where R∆ = O(∥∆∥2) is the infinitesimal to ∥∆∥2, which is directly omitted in our approximation.

Thus we have the gradient form on ∆ as:

∇Lp(x+∆) ≈ ∇Lp(x) +∇2Lp(x)∆.

R∆ is relevant to ∆. We set the ∆ = ρ∇Lp(x) and then we have:

∇2Lp(x)∇Lp(x) ≈
1

ρ

(
∇Lp

(
x+ ρ∇Lp(x)

)
−∇Lp(x)

)
. (2)

Thus we connect Equation (1) and Equation (2), we have:

∇L(x) = ∇Lp(x) + β∇2Lp(x) · ∇Lp(x)

≈ ∇Lp(x) +
β

ρ

(
∇Lp

(
x+ ρ∇Lp(x)

)
−∇Lp(x)

)
=
(
1− β

ρ

)
∇Lp(x) +

β

ρ
∇Lp

(
x+ ρ∇Lp(x)

)
= (1− α)∇Lp(x) + α∇Lp

(
x+ ρ∇Lp(x)

)
.

Here we can see that the balance weight α in our proposed method is actually the ratio of the
gradient penalized weight β and the gradient ascent step size ρ. To fix the step size ρ, increasing α
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means increasing the gradient penalized weight β, which facilitates searching for a flatten stationary
point to improve the generalization performance. While the second term of ∇L(x) can not be directly
computed for its nested form, we approximate the second term with the chain rule as follows:

∇Lp

(
x+ ρ∇Lp(x)

)
≈ ∇Lp(θ)|θ=x+ρ∇Lp(x).

Finally we have:
∇L(x) ≈ (1− α)∇Lp(x) + α∇Lp(θ)|θ=x+ρ∇Lp(x). (3)

The Equation (3) provides an understanding for the weighted quasi gradient g̃ on the local training
stage in our proposed FedSpeed. We select an appropriate 0 ≤ β ≤ ρ to satisfy the update of
perturbation gradient. It executes a gradient ascent step firstly with the step size ρ to x̆. Then it
generates the stochastic gradient by the same sampled mini-batch data as the ascent step at x̆. The
quasi-gradient is merged as Equation (3) to execute the gradient descent step.

This is just a simple approximation for the gradient perturbation to help for understanding the implicit
of the quasi-gradient and its performance in the training stage. Actually the error of the approximation
depends a lot on ρ. The smaller ρ, the higher the accuracy of this estimation, but the smaller ρ, the
less efficient the optimizer performs.

B EXPERIMENTS

B.1 SETUPS

Table 1: Dataset introductions.
Dataset Training Data Test Data Class Size

CIFAR-10 50,000 10,000 10 3×32×32
CIFAR-100 50,000 10,000 100 3×32×32

TinyImagenet 100,000 10,000 200 3×64×64

Dataset and Backbones. Extensive experiments are tested on CIFAR-10/100 dataset. We test on
the two different settings as 10% participation of total 100 clients and 2% participation of total 500
clients. CIFAR-10 dataset contains 50,000 training data and 10,000 test data in 10 classes. Each data
sample is a 3×32×32 color image. CIFAR-100 Krizhevsky et al. (2009) includes 50,000 training
data and 10,000 test data in 100 classes as 500 training samples per class. TinyImagenet involves
100,000 training images and 10,000 test images in 200 classes for 3×64×64 color images, as shown
in Table 1. To fairly compare with the other baselines, we train and test the performance on the
standard ResNet-18 He et al. (2016) backbone with the 7×7 filter size in the first convolution layer
as implemented in the previous works, e.g. for Karimireddy et al. (2020); Durmus et al. (2021); Xu
et al. (2021). We follow the Hsieh et al. (2020) to replace the batch normalization layer with group
normalization layer Wu & He (2018), which can be aggregated directly by averaging. These are all
common setups in many previous works.

Dataset Partitions. To fairly compare with the other baselines, we follow the Hsu et al. (2019)
to introduce the heterogeneity via splitting the total dataset by sampling the label ratios from the
Dirichlet distribution. An additional parameter is used to control the level of the heterogeneity of the
entire data partition. In order to visualize the distribution of heterogeneous data, we make the heat
maps of the label distribution in different dataset, as shown in Figure 1. Since the heat map of 500
clients cannot be displayed normally, we show 100 clients case. It could be seen that for heterogeneity
weight equals to 0.6, about 10% to 20% of the categories dominate on each client, which is white
block in the Figure 1. The IID dataset is totally averaged in each client.

Data Argumentation. For CIFAR-10/100, we follow the implementation in the Karimireddy et al.
(2020); Durmus et al. (2021) to normalize the pixel value within a specific mean and std value
in our code, which are [0.491, 0.482, 0.447] for mean, [0.247, 0.243, 0.262] for std and [0.5071,
0.4867, 0.4408] for mean, [0.2675, 0.2565, 0.2761] for std. We randomly flip the training samples
and randomly crop the images enlarged with the padding equal to 4. For TinyImagenet, the same
argumentation is applied except for the padding equal to 8.
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Figure 1: Heat maps for different dataset under heterogeneity weight equals to 0.6 for Dirichlet
distribution.

Baselines. FedAvg McMahan et al. (2017) is proposed as the basic framework in the federated
learning. And FedOpt improves it as a two-stage optimizer with a local and global optimizer update
alternatively. Yang et al. (2021) proves a specific ηg (not the average weight) can achieve faster
convergence (non-dominant term). FedAdam Reddi et al. (2020) utilizes a adaptive optimizer on
the global server and SGD optimizer on the clients, which average the averaged local gradients as a
quasi-gradient for global server to implement the adaptive update. SCAFFOLD Karimireddy et al.
(2020) applies the variance reduction technique , i.e. SVRG, to approximate the global gradient as the
averaged local gradients and transfer an extra variable to the client per round. This implementation
can accelerate the convergence rate of the non-dominant term theoretically and achieve a high
performance empirically. FedCM Xu et al. (2021) proposes a client-level momentum to merge
the global update as a momentum buffer to the local updates, which extremely reduces the local
consistency. Though it introduces a unpredictable biases into the local updates, it achieves the SOTA
performance ahead of other methods. FedProx Sahu et al. (2018) implements the prox-point optimizer
into the FL framework on local updates with a regularization prox-term regularizer. It limits the
local updates towards the initial point at the start of each local stage. Many previous works have
analyzed its advantages and weaknesses. Durmus et al. (2021); Wang et al. (2022); Gong et al.
(2022) use different variants of primal-dual method into FL and achieve nice satisfactory in the
FL framework. It does not need a heterogeneity bounded assumption theoretically, which requires
a high local convergence guarantees. Our proposed FedSpeed achieve the same convergence rate
without assuming the local exact solution and we provide the local interval bound to achieve this
faster convergence. Both theoretical analysis and empirical results verifies the performance of our
proposed FedSpeed.

B.2 EXPERIMENTS

B.3 HYER-PARAMETERS

Hyper-parameters Selections. We fix the local learning rate as 0.1 and global learning rate as
1.0 for average, except for the FedAdam which is applied 0.1. The penalized weight of prox-term
in FedProx, FedDyn, FedADMM and FedSpeed is selected from the [0.001, 0.01, 0.1, 0.5]. The
learning rate decay is fixed as 0.998 expect for the FedDyn, FedADMM and FedSpeed is selected
from [0.998, 0.999, 0.9995, 0.99995]. The perturbation weight is selected from [0, 0.5, 0.75, 0.875,
0.9375, 1]. The batchsize is selected from [20, 50]. The local interval K is selected from [1, 2, 5,
10, 20]. For the specific parameters in FedAdam, the momentum weight is set as 0.1 and the second
order momentum weight is set as 0.01. The minimal value is set as 0.001 to prevent the calculation of
dividing by 0. The client-level momentum weight of FedCM is set as 0.1.
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Table 2: Communication rounds required to achieve the target accuracy. On CIFAR-10/100 it trains
1,500 rounds and on TinyImagenet it trains 3,000 rounds. ”-” means the test accuracy can not achieve
the target accuracy within the fixed training rounds. DIR represents for the Dirichlet distribution with
the heterogeneity weight equal to 0.6. Local interval K is set as 5 on CIFAR-10 (100-10%) and 2 on
others. Other hyper-parameters are introduced above.

Dataset CIFAR-10 (100-10%) CIFAR-10 (500-2%)

Heterogeneity IID. DIR. IID. DIR.

Target Acc. (%) 80.0 85.0 80.0 85.0 75.0 82.5 75.0 82.5

FedAvg 344 - 472 - 772 - 1357 -

FedProx 338 - 465 - 720 - 1151 -

FedAdam 324 1343 689 - 613 1476 878 -

SCAFFOLD 207 654 272 - 628 - 967 -

FedCM 109 620 192 1092 325 1160 449 1399

FedDyn 121 400 166 - 547 - 673 -

FedADMM 169 917 174 756 505 1440 687 -

FedSpeed 136 280 169 380 495 926 662 1148

Dataset CIFAR-100 (500-2%) TinyImagenet (500-2%)

Heterogeneity IID. DIR. IID. DIR.

Target Acc. 40.0 50.0 40.0 50.0 33.0 40.0 33.0 40.0

FedAvg 1013 - - - 1615 - - -

FedProx 957 - - - 1588 - - -

FedAdam 614 1277 847 - 1151 2495 1584 -

SCAFFOLD 720 - 784 - 949 - 1187 -

FedCM 505 1150 526 1336 661 1360 817 1843

FedDyn 661 - 703 - 1419 - 2559 -

FedADMM 687 - 715 - 921 - 2711 -

FedSpeed 522 973 541 1038 684 1373 962 1885

B.3.1 BEST PERFORMING HYPER-PARAMETERS.

For fair comparison, the learning rate is fixed for all the methods.

For CIFAR-10 dataset, we select the batchsize as 50 for 100 clients and 20 for 500 clients. The total
dataset is 50,000 and there are 100 images under a single client if it is set as 500 clients. Thus we
decay it to 20 for 5 iterations per local epoch. The local epochs is set as 5, the same as the experiments
of Karimireddy et al. (2020); Durmus et al. (2021); Xu et al. (2021) etc. and their performance is
matching. We select the local interval K as 5. The prox-term weight is selected as 0.1. The learning
rate decay is selected as 0.9995 for prox-term based methods. We train the total dataset for 1,500
communication rounds.

For CIFAR-100 dataset, we select the 500 clients with 2% participation ratio in the experiments.
Thus for each hyper-parameters we fine-tune a little. The batchsize is selected as 20 to avoid too little
iterations per local epoch. The local epochs is set as 2 for the final results comparison. The ablation
study on local interval K indicates that our proposed FedSpeed outperforms significantly than other
methods when K is large. Thus to compare the performance more clearly, we select the 2 as the local
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epochs. We decay the prox-term weight as 0.01 for prox-term based methods. The learning rate decay
is selected as 0.99995 for prox-based methods. We train 1,500 rounds and then test the performance.

For TinyImagenet dataset, the most selections are the same as for the CIFAR-100 dataset. The
prox-term weight is selected as 0.1 and the learning rate decay is selected as 0.9995. Total 3,000
communication rounds are implemented in the training stage.

B.3.2 SPEED COMPARISON.

Table 2 shows the communication rounds required to achieve the target test accuracy. At the beginning
of training, FedCM performs faster than others and usually achieve a high accuracy finally. FedSpeed
is faster in the middle and late stages of training. We bold the data for the top-2 in each test and
generally FedCM and FedSpeed significantly performs well on the training speed.
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0 200 400 600 800 1000 1200 1400
Communication Rounds

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

Te
st

 To
p-

1 
Ac

c

=0.01
=0.05
=0.1
=0.2
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0 200 400 600 800 1000 1200 1400
Communication Rounds

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

Te
st

 To
p-

1 
Ac

c

=0.01
=0.05
=0.1
=0.2

(c) Prox-term weight=0.01.
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(d) Prox-term weight=0.001.

Figure 2: Performance of different ascent step size ρ under different prox-term weights of
[0.001, 0.01, 0.1, 0.5].

Figure 2 shows the performance of different learning rate decay and prox-term weight for FedSpeed.

B.3.3 TIME COST

Table 3: Training wall-clock time comparison.

α1 Times (s/Round) Rounds Total (s) Cost Ratio

FedAvg 10.44 - - -
FedProx 11.33 - - -

FedAdam 14.74 1343 19795.8 4.31×
SCAFFOLD 14.34 654 9378.3 2.03×

FedCM 13.22 622 8222.8 1.78×
FedDyn 14.11 400 5644.0 1.22×

FedSpeed 16.42 281 4614.0 1×
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We test the time on the A100-SXM4-40GB GPU and show the performance in the Table B.3.3.
Experimental setups are the same as the CIFAR-10 10% participation among total 100 clients on the
DIR-0.6 dataset. The rounds in the table are the communication rounds required that the test accuracy
achieves accuracy 85%. ”-” means it can not achieve the target accuracy.

FedSpeed is slower due to the requirement of computing an extra gradient. So it gets slower in one
single update, approximately 1.57× wall-clock time costs than FedAvg. But its convergence process
is very fast. For the final convergence speed, FedSpeed still has a considerable advantage over other
algorithms. The issue is possibly one of the improvements for FedSpeed in the future. For example,
introduces a single-call gradient method to save half the costs during backpropagation. We are also
currently trying to introduce new module to save the cost.

B.3.4 DIFFERENT HETEROGENEITY.

Table 4: Comparison on different heterogeneous dataset.

α1 IID Dir-0.6 Dir-0.3 Drops (i.i.d. > Dir-0.6) Drops (Dir-0.6 > Dir-0.3)

FedAvg 77.01 75.21 71.96 1.80 3.25
FedAdam 82.92 80.55 76.87 2.37 3.68

SCAFFOLD 80.11 77.71 74.34 2.40 3.37
FedCM 84.20 83.48 81.02 0.72 2.46
FedDyn 83.36 80.57 77.33 2.79 3.24

FedSpeed 85.80 84.79 82.68 1.01 2.11

We test on the Dir-0.3 setups on CIFAR-10 and show the results as Table B.3.4, the other settings are
the same as the test in the text. The (i.i.d. > Dir-0.6) is the difference between the IID dataset and the
Dir-0.6 dataset and (Dir-0.6 > Dir-0.3) is the difference between the Dir-0.6 dataset and the DIR-0.3
dataset. FedSpeed can outperform the others on the Dir-0.3 setups whose heterogeneity is much
stronger than Dir-0.6 setups. the heterogeneity becomes stronger, FedSpeed can still maintain a stable
generalization performance. The correction term helps to correct the biases during the local training,
while the gradient perturbation term helps to resist the local over-fitting on the heterogeneous dataset.
FedSpeed can benefit from avoiding falling into the biased optima.

B.3.5 ABLATION STUDIES

Table 5: Comparison on different heterogeneous dataset.

Prox-term Prox-correction term Gradient perturbation Accuracy (%)

- - - 81.92√ - - 82.24
√ √ - 83.94
√ - √ 83.88
√ √ √ 85.70

From the practical training point of view, compared with the vanilla FedAvg, FedSpeed adds three
main modules: (1) prox-term, (2) prox-correction term, and (3) gradient perturbation. We test the
performance of 500 communication rounds of the different combination of the modules above on the
CIFAR-10 with the settings of 10% participating ratio of total 100 clients. The TableB.3.5 shows
their performance.

From the table above, we can clearly see the performance of different modules. The prox-term is
proposed by the FedProx. But due to some issues we point out in our paper, this term has also
a negative impact on the performance in FL. When the prox-correction term is introduced in, it
improves the performance from 82.24% to 83.94%. When the gradient perturbation is introduced in,
it improves the performance from 82.24% to 83.88%. While FedSpeed applies them together and
achieves a 3.46% improvement.

Different performance of these modules:
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As introduced in our paper, the prox-term simply performs as a balance between the local and global
solutions, and there still exists the non-vanishing inconsistent biases among the local solutions, i.e.,
the local solutions are still largely deviated from each other, implying that local inconsistency is still
not eliminated. Thus we utilize the prox-correction term to correct the inconsistent biases during the
local training. About the function of gradient perturbation, we refer to a theoretical explanation in
the main text, and its proof is provided in the supplementary material due to the space limitations.
This perturbation is similar to utilize a penalized gradient term to the objective function during local
optimization process. The additional penalty will bring better properties to the local state, e.g. for
flattened minimal and smoothness. For federated learning, the smoother the local minima is, the
more flatness the model merged on the server will be. FedSpeed benefits from these two modules to
improve the performance and achieves the SOTA results.

C PROOFS FOR ANALYSIS

In this part we will demonstrate the proofs of all formula mentioned in this paper. Each formula is
presented in the form of a lemma.

C.1 PROOF OF EQUATION (2)

Equation (2) shows the update in the total local training stage.

Lemma C.1 For ∀ xt
i,k ∈ Rd and i ∈ St, we denote δti,k = xt

i,k − xt
i,k−1 with setting δti,0 = 0, and

∆t
i,K =

∑K
k=0 δ

t
i,k = xt

i,K − xt
i,0, under the update rule in Algorithm Algorithm 1, we have:

∆t
i,K = −λγ

K−1∑
k=0

γk
γ
g̃t
i,k + γλĝt−1

i , (4)

where
∑K−1

k=0 γk =
∑K−1

k=0
ηl

λ

(
1− ηl

λ

)K−1−k
= γ = 1− (1− ηl

λ )
K .

Proof 1 According to the update rule of Line.11 in Algorithm Algorithm 1, we have:

δk = ∆t
i,k −∆t

i,k−1 = xt
i,k − xt

i,k−1

= −ηl
(
g̃t
i,k−1 − ĝt−1

i +
1

λ
(xt

i,k−1 − xt
i,0)
)
= −ηl(g̃

t
i,k−1 − ĝt−1

i +
1

λ
∆t

i,k−1).

Then We can formulate the iterative relationship of ∆t
i,k as:

∆t
i,k = ∆t

i,k−1 − ηl(g̃
t
i,k−1 − ĝt−1

i +
1

λ
∆t

i,k−1) = (1− ηl
λ
)∆t

i,k−1 − ηl(g̃
t
i,k−1 − ĝt−1

i ).

Taking the iteration on k and we have:

xt
i,K − xt

i,0 = ∆t
i,K = (1− ηl

λ
)K∆t

i,0 − ηl

K−1∑
k=0

(1− ηl
λ
)K−1−k(g̃t

i,k − ĝt−1
i )

(a)
= −ηl

K−1∑
k=0

(1− ηl
λ
)K−1−k(g̃t

i,k − ĝt−1
i )

= −λ

K−1∑
k=0

ηl
λ
(1− ηl

λ
)K−1−k(g̃t

i,k − ĝt−1
i )

= −λ

K−1∑
k=0

ηl
λ
(1− ηl

λ
)K−1−kg̃t

i,k +
(
1− (1− ηl

λ
)K
)
λĝt−1

i

= −λγ

K−1∑
k=0

γk
γ
g̃t
i,k + γλĝt−1

i .

(a) applies ∆t
i,0 = δti,0 = 0.
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C.2 PROOF OF EQUATION (3)

Equation (3) shows the update of the prox-correction term, which utilizes the weighted sum of the
previous local offsets as a bias controller for eliminating the non-vanishing bias resulting from the
prox-term.

Lemma C.2 Under the update rule in Algorithm Algorithm 1, we have:

ĝt
i = (1− γ)ĝt−1

i + γ

K−1∑
k=0

γk
γ
g̃t
i,k. (5)

where
∑K−1

k=0 γk =
∑K−1

k=0
ηl

λ

(
1− ηl

λ

)K−1−k
= γ = 1− (1− ηl

λ )
K .

Proof 2 According to the update rule of Line.13 in Algorithm Algorithm 1, we have:

ĝt
i = ĝt−1

i − 1

λ
(xt

i,K − xt
i,0)

(a)
= ĝt−1

i +
ηl
λ

K−1∑
k=0

(
1− ηl

λ

)K−1−k
(g̃t

i,k − ĝt−1
i )

= ĝt−1
i +

ηl
λ

K−1∑
k=0

(
1− ηl

λ

)K−1−k
g̃t
i,k − ηl

λ

(K−1∑
k=0

(
1− ηl

λ

)K−1−k
)
ĝt−1
i

= ĝt−1
i +

ηl
λ

K−1∑
k=0

(
1− ηl

λ

)K−1−k
g̃t
i,k − ηl

λ

1− (1− ηl

λ )
K

ηl

λ

ĝt−1
i

= (1− ηl
λ
)K ĝt−1

i +
ηl
λ

K−1∑
k=0

(
1− ηl

λ

)K−1−k
g̃t
i,k

= (1− γ)ĝt−1
i + γ

K−1∑
k=0

γk
γ
g̃t
i,k.

(a) applies the Lemma C.1.

C.3 PROOF OF EQUATION (4) AND (5)

Lemma C.3 Considering the ut+1 = 1
m

∑
i∈[m] x

t
i,K is the mean averaged parameters among the

last iteration of local clients at time t, the auxiliary sequence
{
zt = ut + 1−γ

γ (ut − ut−1)
}
t>0

satisfies the update rule as:

zt+1 = zt − λ
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k. (6)

Proof 3 Firstly, according to the lemma C.1 and Line.14 and Line.16 in Algorithm 1, we have:

ut+1 − ut =
1

m

∑
i∈[m]

(xt
i,K − xt−1

i,K )

=
1

m

∑
i∈[m]

(xt
i,K − xt

i,0 − λĝt−1
i )

=
1

m

∑
i∈[m]

(−λγ

K−1∑
k=0

γk
γ
g̃t
i,k + λγĝt

i − λĝt−1
i )
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= −λ
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ

(
γg̃t

i,k + (1− γ)ĝt−1
i

)
.

This could be considered as a momentum-like term with the coefficient of γ. Here we define a virtual
observation sequence {ut} and its update rule is:

ut
i,k+1 = ut

i,k − λ
γk
γ

(
γg̃t

i,k + (1− γ)ĝt−1
i

)
,

ut+1
i,0 = ut+1 =

1

m

∑
i∈[m]

ut
i,K .

According to the lemma C.2 and above update rule, we can get that:

ĝt
i = (1− γ)ĝt−1

i + γ

K−1∑
k=0

γk
γ
g̃t
i,k

= − 1

λ
(ut

i,K − ut
i,0)− γ

K−1∑
k=0

γk
γ
g̃t
i,k + γ

K−1∑
k=0

γk
γ
g̃t
i,k = − 1

λ
(ut

i,K − ut
i,0).

This function indicates that the virtual sequence ut could be considered as a momentum-based update
method with a global correction term to guide the local update, and the correction term is calculated
from the offset of the virtual observation sequence during the training process at round t.

Then we expand the the auxiliary sequence zt as:

zt+1 − zt = (ut+1 − ut) +
1− γ

γ
(ut+1 − ut)− 1− γ

γ
(ut − ut−1)

=
1

γ
(ut+1 − ut)− 1− γ

γ
(ut − ut−1)

= −λ
1

m

∑
i∈[m]

((K−1∑
k=0

γk
γ
g̃t
i,k

)
+

1− γ

γ
ĝt−1
i

)
− 1− γ

γ
(ut − ut−1)

= −λ
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k − 1− γ

γ

1

m

∑
i∈[m]

λĝt−1
i − 1− γ

γ
(ut − ut−1)

= −λ
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k − 1− γ

γ

1

m

∑
i∈[m]

(ut − ut−1 + λĝt−1
i )

= −λ
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k − 1− γ

γ

1

m

∑
i∈[m]

(xt−1
i,K − xt−2

i,K + λĝt−1
i )

= −λ
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k − 1− γ

γ

1

m

∑
i∈[m]

(xt−1
i,K − xt−1

i,0 + λĝt−1
i − λĝt−2

i )

= −λ
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k.

C.4 PROOF OF THEOREM 4.5

Firstly we state some important lemmas applied in the proof.
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Lemma C.4 (Bounded global update) The global update 1
m

∑
i∈[m] ĝ

t
i holds the upper bound of:

Et∥
1

m

∑
i∈[m]

ĝt−1
i ∥2 ≤ 1

γ

Et∥
1

m

∑
i∈[m]

ĝt−1
i ∥2 − Et∥

1

m

∑
i∈[m]

ĝt
i∥2
+ Et∥

1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k∥2.

Proof 4 According to the lemma C.2,we have:

1

m

∑
i∈[m]

ĝt
i = (1− γ)

1

m

∑
i∈[m]

ĝt−1
i + γ

1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k.

Take the L2-norm and we have:

∥ 1

m

∑
i∈[m]

ĝt
i∥2 = ∥(1− γ)

1

m

∑
i∈[m]

ĝt−1
i + γ

1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k∥2

≤ (1− γ)∥ 1

m

∑
i∈[m]

ĝt−1
i ∥2 + γ∥ 1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k∥2.

Thus we have the following recursion,

Et∥
1

m

∑
i∈[m]

ĝt−1
i ∥2 ≤ 1

γ

Et∥
1

m

∑
i∈[m]

ĝt−1
i ∥2 − Et∥

1

m

∑
i∈[m]

ĝt
i∥2
+ Et∥

1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k∥2.

Lemma C.5 (Bounded local update) The local update ĝt
i holds the upper bound of:

1

m

∑
i∈[m]

Et∥ĝt−1
i ∥2 ≤ P

γ

1

m

∑
i∈[m]

(
Et∥ĝt−1

i ∥2 − Et∥ĝt
i∥2
)
+

24PL2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − xt∥2

+ 12PEt∥∇F (zt)∥2 + P (12σ2
g + σ2

l ),

where 1
P = 1− 24λ2L2(1−2γ)2

γ2 .

Proof 5 According to the lemmaC.2, we have:

ĝt
i = (1− γ)ĝt−1

i + γ

K−1∑
k=0

γk
γ
g̃t
i,k.

Take the L2-norm and we have:

∥ĝt
i∥2 = ∥(1− γ)ĝt−1

i + γ

K−1∑
k=0

γk
γ
g̃t
i,k∥2

(a)

≤ (1− γ)∥ĝt−1
i ∥2 + γ∥

K−1∑
k=0

γk
γ
g̃t
i,k∥2

(b)

≤ (1− γ)∥ĝt−1
i ∥2 + γ

K−1∑
k=0

γk
γ
∥g̃t

i,k∥2

= (1− γ)∥ĝt−1
i ∥2 +

K−1∑
k=0

γk∥g̃t
i,k∥2.
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(a) and (b) apply the Jensen inequality.
Thus we have the following recursion:

1

m

∑
i∈[m]

Et∥ĝt−1
i ∥2 ≤ 1

γ

1

m

∑
i∈[m]

(
Et∥ĝt−1

i ∥2 − Et∥ĝt
i∥2
)
+

1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥g̃t

i,k∥2.

Here we provide a loose upper bound as a constant for the quasi-stochastic gradient:

1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥g̃t

i,k∥2

=
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥(1− α)gt

i,k,1 + αgt
i,k,2∥2

=
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥gt

i,k,1 + α(gt
i,k,2 − gt

i,k,1)∥2

≤ 2

m

∑
i∈[m]

K−1∑
k=0

γk
γ

(
Et∥∇Fi(x

t
i,k)∥2 + α2Et∥∇Fi(x̆

t
i,k)−∇Fi(x

t
i,k)∥2

)
+ σ2

l

≤ 2

m

∑
i∈[m]

K−1∑
k=0

γk
γ

(
Et∥∇Fi(x

t
i,k)∥2 + α2L2ρ2Et∥∇Fi(x

t
i,k)∥2

)
+ σ2

l

≤ 4

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥∇Fi(x

t
i,k)−∇Fi(z

t) +∇Fi(z
t)−∇F (zt) +∇F (zt)∥2 + σ2

l

≤ 12L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − zt∥2 + 12Et∥∇F (zt)∥2 + (12σ2
g + σ2

l )

≤ 12L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − xt + xt − ut + ut − zt∥2

+ 12Et∥∇F (zt)∥2 + (12σ2
g + σ2

l )

≤ 24L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − xt∥2 + 24L2∥xt − ut + ut − zt∥2 + (12σ2
g + σ2

l )

+ 12Et∥∇F (zt)∥2

≤ 24L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − xt∥2 + 24L2λ2(1− 2γ)2

γ2

1

m

∑
i

Et∥ĝt−1
i ∥2

+ 12Et∥∇F (zt)∥2 + (12σ2
g + σ2

l ).

We applies the Jensen inequality, the basic inequality ∥
∑n

i=1 ai∥2 ≤ n
∑n

i=1 ∥ai∥2, and the upper

bound of ρ ≤ 1
αL . Combining the above inequalities, let 1

P = 1− 24L2λ2(1−2γ2)
γ2 is the constant, we

have:

1

m

∑
i∈[m]

Et∥ĝt−1
i ∥2 ≤ P

γ

1

m

∑
i∈[m]

(
Et∥ĝt−1

i ∥2 − Et∥ĝt
i∥2
)
+

24PL2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − xt∥2

+ 12PEt∥∇F (zt)∥2 + P (12σ2
g + σ2

l ).
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C.4.1 L-SMOOTHNESS OF THE FUNCTION F

For the general non-convex case, according to the Assumptions and the smoothness of F , we take the
conditional expectation at round t+ 1 and expand the F (zt+1) as:

Et[F (zt+1)] ≤ F (zt) + Et⟨∇F (zt), zt+1 − zt⟩+ L

2
Et∥zt+1 − zt∥2

= F (zt) + ⟨∇F (zt),Et[z
t+1]− zt⟩+ L

2
Et∥zt+1 − zt∥2

= F (zt) + Et⟨∇F (zt),−λ
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k⟩+

L

2
Et∥zt+1 − zt∥2

= F (zt)− λEt⟨∇F (zt),
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k −∇F (zt) +∇F (zt)⟩

+
L

2
Et∥zt+1 − zt∥2

= F (zt)− λ∥∇F (zt)∥2 −λEt⟨∇F (zt),
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k −∇F (zt)⟩

︸ ︷︷ ︸
R1

+
L

2
Et∥zt+1 − zt∥2︸ ︷︷ ︸

R2

.

C.4.2 BOUNDED R1

Note that R1 can be bounded as:

R1 = −λEt⟨∇F (zt),
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k −∇F (zt)⟩

(a)
= −λEt⟨∇F (zt),

1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k − 1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
∇Fi(z

t)⟩

(b)
=

λ

2
∥∇F (zt)∥2 + λ

2
Et∥

1

m

∑
i∈[m]

K−1∑
k=0

γk
γ

(
Eg̃t

i,k −∇Fi(z
t)
)
∥2 − λ

2m2
Et∥

∑
i∈[m]

K−1∑
k=0

γk
γ
Eg̃t

i,k∥2

(c)

≤ λ

2
∥∇F (zt)∥2 + λ

2

1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥Eg̃t

i,k −∇Fi(z
t)∥2

︸ ︷︷ ︸
R1.a

− λ

2m2
Et∥

∑
i∈[m]

K−1∑
k=0

γk
γ
Eg̃t

i,k∥2.

(a) applies the fact that 1
m

∑
i∈[m] ∇Fi(z

t) = ∇F (zt). (b) applies −⟨x,y⟩ = 1
2

(
∥x∥2 + ∥y∥2 −

∥x+ y∥2
)
. (c) applies the Jensen’s inequality and the fact that

∑K−1
k=0

γk

γ = 1.
According to the update rule we have:
Eg̃t

i,k = (1− α)E
[
gt
i,k,1

]
+ αE

[
gt
i,k,2

]
= (1− α)E

[
∇Fi(x

t
i,k; ε

t
i,k)
]
+ αE

[
∇Fi(x̆

t
i,k; ε

t
i,k)
]

= (1− α)∇Fi(x
t
i,k) + α∇Fi(x̆

t
i,k) = (1− α)∇Fi(x

t
i,k) + α∇Fi(x

t
i,k + ρgt

i,k,1).

Let ρ ≤ 1√
3αL

, thus we could bound the term R1.a as follows:

1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥Eg̃t

i,k −∇Fi(z
t)∥2
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=
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥(1− α)∇Fi(x

t
i,k) + α∇Fi(x

t
i,k + ρgt

i,k,1)−∇Fi(z
t)∥2

=
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥∇Fi(x

t
i,k)−∇Fi(z

t) + α
(
∇Fi(x

t
i,k + ρgt

i,k,1)−∇Fi(x
t
i,k)
)
∥2

≤ 2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥∇Fi(x

t
i,k)−∇Fi(z

t)∥2 + 2α2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥∇Fi(x̆

t
i,k)−∇Fi(x

t
i,k)∥2

≤ 2L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − zt∥2 + 2α2L2ρ2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥gt

i,k,1∥2

=
2L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − xt + xt − ut + ut − zt∥2 + 2α2L2ρ2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥gt

i,k,1∥2

≤ 4L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − xt∥2 + 4L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥(xt − ut) + (ut − zt)∥2

+
2α2L2ρ2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥gt

i,k,1 −∇Fi(x
t
i,k)∥2 +

2α2L2ρ2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥∇Fi(x

t
i,k)∥2

≤ 4L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − xt∥2 + 2α2L2ρ2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥∇Fi(x

t
i,k)∥2 + 2α2L2ρ2σ2

l

+ 4L2Et∥(xt − ut) + (ut − zt)∥2

=
4L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − xt∥2 + 2α2L2ρ2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥∇Fi(x

t
i,k)∥2 + 2α2L2ρ2σ2

l

+ 4L2Et∥ −
1

m

∑
i∈[m]

λĝt−1
i +

γ − 1

γ
(ut − ut−1)∥2

=
4L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − xt∥2 + 2α2L2ρ2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥∇Fi(x

t
i,k)∥2 + 2α2L2ρ2σ2

l

+ 4L2Et∥
1

m

∑
i∈[m]

(
(ut − ut−1 + λĝt−1

i )− 1

γ
(ut − ut−1 + λĝt−1

i ) + (
1− 2γ

γ
)λĝt−1

i

)
∥2

=
4L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − xt∥2 + 2α2L2ρ2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥∇Fi(x

t
i,k)∥2 + 2α2L2ρ2σ2

l

+
4λ2L2(1− 2γ)2

γ2
Et∥

1

m

∑
i∈[m]

ĝt−1
i ∥2

=
4L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − xt∥2 + 4λ2L2(1− 2γ)2

γ2
Et∥

1

m

∑
i∈[m]

ĝt−1
i ∥2 + 2α2L2ρ2σ2

l

+
2α2L2ρ2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥∇Fi(x

t
i,k)−∇Fi(z

t) +∇Fi(z
t)−∇F (zt) +∇F (zt)∥2

(a)

≤ 4L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − xt∥2 + 4λ2L2(1− 2γ)2

γ2
Et∥

1

m

∑
i∈[m]

ĝt−1
i ∥2 + 2α2L2ρ2σ2

l
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+
2L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − zt∥2 + 6α2L2ρ2σ2
g + 6α2L2ρ2Et∥∇F (zt)∥2

≤ 8L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − xt∥2 + 8λ2L2(1− 2γ)2

γ2
Et∥

1

m

∑
i∈[m]

ĝt−1
i ∥2 + 2α2L2ρ2σ2

l

+ 6α2L2ρ2σ2
g + 6α2L2ρ2Et∥∇F (zt)∥2.

(b)

≤ 8L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − xt∥2 + 8λ2L2(1− 2γ)2

γ3

Et∥
1

m

∑
i∈[m]

ĝt−1
i ∥2 − Et∥

1

m

∑
i∈[m]

ĝt
i∥2


+
8λ2L2(1− 2γ)2

γ2
Et∥

1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k∥2 + 2α2L2ρ2σ2

l + 6α2L2ρ2σ2
g + 6α2L2ρ2Et∥∇F (zt)∥2.

(a) applies the bound of ρ as ρ ≤ 1√
3αL

. (b) applies the lemma C.4. These others use the fact
E[x− E[x]]2 = E[x2]− [E[x]]2 and ∥x+ y∥2 ≤ (1 + a)∥x∥2 + (1 + 1

a )∥y∥
2.

We denote ct = 1
m

∑
i∈m

∑K−1
k=0 (γk/γ)Et∥xt

i,k − xt∥2 term as the local offset after k iterations
updates, we firstly consider the ctk = 1

m

∑
i∈m Et∥xt

i,k − xt∥2 and it can be bounded as:

ctk =
1

m

∑
i∈[m]

Et∥xt
i,k − xt∥2 =

1

m

∑
i∈[m]

Et∥xt
i,k − xt

i,k−1 + xt
i,k−1 − xt

i,0∥2

=
1

m

∑
i∈[m]

Et∥ − ηl(g̃
t
i,k−1 − ĝt−1

i ) + (1− ηl
λ
)(xt

i,k−1 − xt
i,0)∥2

≤ (1 + a)(1− ηl
λ
)2

1

m

∑
i∈[m]

Et∥xt
i,k−1 − xt

i,0∥2 + (1 +
1

a
)
η2l
m

∑
i∈[m]

Et∥g̃t
i,k−1 − ĝt−1

i ∥2

= (1 + a)(1− ηl
λ
)2ctk−1 + (1 +

1

a
)
η2l
m

∑
i∈[m]

Et∥(1− α)gt
i,k−1,1 + αgt

i,k−1,2 − ĝt−1
i ∥2

= (1 +
1

a
)
η2l
m

∑
i∈[m]

Et∥∇Fi(x
t
i,k−1)− ĝt−1

i + α(∇Fi(x̆
t
i,k−1)−∇Fi(x

t
i,k−1))∥2

+ (1 +
1

a
)η2l σ

2
l + (1 + a)(1− ηl

λ
)2ctk−1

≤ (1 +
1

a
)
3η2l
m

∑
i∈[m]

(
Et∥∇Fi(x

t
i,k−1)∥2 + Et∥ĝt−1

i ∥2 + α2L2ρ2Et∥∇Fi(x
t
i,k−1)∥2

)
+ (1 +

1

a
)η2l σ

2
l + (1 + a)(1− ηl

λ
)2ctk−1

≤ (1 +
1

a
)
4η2l
m

∑
i∈[m]

Et∥∇Fi(x
t
i,k−1)∥2 + (1 +

1

a
)
3η2l
m

∑
i∈[m]

Et∥ĝt−1
i ∥2 + (1 +

1

a
)η2l σ

2
l

+ (1 + a)(1− ηl
λ
)2ctk−1

≤ (1 +
1

a
)
4η2l
m

∑
i∈[m]

Et∥∇Fi(x
t
i,k−1)−∇Fi(x

t) +∇Fi(x
t)−∇Fi(z

t) +∇Fi(z
t)−∇F (zt)

+∇F (zt)∥2 + (1 +
1

a
)
3η2l
m

∑
i∈[m]

Et∥ĝt−1
i ∥2 + (1 +

1

a
)η2l σ

2
l + (1 + a)(1− ηl

λ
)2ctk−1

≤ (1 +
1

a
)
16η2l L

2

m

∑
i∈[m]

Et∥xt
i,k−1 − xt∥2 + (1 +

1

a
)16η2l L

2∥xt − zt∥2 + (1 +
1

a
)η2l (16σ

2
g + σ2

l )
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+ (1 +
1

a
)16η2l ∥∇F (zt)∥2 + (1 +

1

a
)
3η2l
m

∑
i∈[m]

Et∥ĝt−1
i ∥2 + (1 + a)(1− ηl

λ
)2ctk−1

≤
[
(1 + a)(1− ηl

λ
)2 + (1 +

1

a
)16η2l L

2

]
ctk−1 + (1 +

1

a
)η2l (16σ

2
g + σ2

l )

+ (1 +
1

a
)16η2l Et∥∇F (zt)∥2 + (1 +

1

a
)η2l

[
3 +

16λ2L2(1− 2γ)2

γ2

]
1

m

∑
i∈[m]

Et∥ĝt−1
i ∥2

=

[
(1 + a)(1− ηl

λ
)2 + (1 +

1

a
)16η2l L

2

]
ctk−1 + (1 +

1

a
)η2l (16σ

2
g + σ2

l )

+ (1 +
1

a
)η2l L

2 (88P − 16) ct + (1 +
1

a
)
2η2l (P − 1)

3
(12σ2

g + σ2
l )

+ (1 +
1

a
)16η2l Et∥∇F (zt)∥2 + (1 +

1

a
)η2l (44P − 8)Et∥∇F (zt)∥2

+ (1 +
1

a
)
2η2l (P − 1)

3γ

1

m

∑
i∈[m]

(
Et∥ĝt−1

i ∥2 − Et∥ĝt
i∥2
)

When P satisfies the condition of P ≤ 2, which means 1
P = 1− 24λ2L2(1−2γ)2

γ2 ≥ 1
2 , then we have

the constant of 2(P−1)
3 ≤ 2

3 < 1, let the last 12σ2
g enlarged to 16σ2

g for convenience, we have:

ctk ≤
[
(1 + a)(1− ηl

λ
)2 + (1 +

1

a
)16η2l L

2

]
ctk−1 + 2(1 +

1

a
)η2l (16σ

2
g + σ2

l ) + 160(1 +
1

a
)η2l L

2ct

96(1 +
1

a
)η2l Et∥∇F (zt)∥2 + 2(1 +

1

a
)
η2l
γ

1

m

∑
i∈[m]

(
Et∥ĝt−1

i ∥2 − Et∥ĝt
i∥2
)
.

Here we get the recursion formula between the ctk and ctk−1. Actually we need to upper bound the
ct =

∑K−1
k=0 (γk/γ)c

t
k, thus let the weight satisfies that:

(1 + a)(1− ηl
λ
)2 + (1 +

1

a
)16η2l L

2 ≤ γK−2

γK−1
=

γK−3

γK−2
= · · · = γ1

γ0
= 1− ηl

λ
,

let ηl ≤ λ and thus we have:

ct =

K−1∑
k=0

γk
γ
ctk

≤ 2(1 +
1

a
)
η2l
γ

K−1∑
k′=0

k
′
−1∑

k=0

γk

(16σ2
g + σ2

l + 48Et∥∇F (zt)∥2 + 80L2ct

+
1

mγ

∑
i∈[m]

(
Et∥ĝt−1

i ∥2 − Et∥ĝt
i∥2
))

(a)

≤ 2(1 +
1

a
)η2l

K−1∑
k′=0

(
K−1∑
k=0

γk
γ

)(
16σ2

g + σ2
l + 48Et∥∇F (zt)∥2 + 80L2ct

+
1

mγ

∑
i∈[m]

(
Et∥ĝt−1

i ∥2 − Et∥ĝt
i∥2
))

= 2(1 +
1

a
)η2l K

16σ2
g + σ2

l + 48Et∥∇F (zt)∥2 + 1

mγ

∑
i∈[m]

(
Et∥ĝt−1

i ∥2 − Et∥ĝt
i∥2
)
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+ 160(1 +
1

a
)η2l L

2Kct.

(a) enlarge the sum from k
′

to K − 1 where k
′ ≤ K − 1.

Let ηl satisfies the upper bound of ηl ≤ 1√
320(1+1/a)KL

for convenience, we can bound the ct as:

ct = 4(1 +
1

a
)η2l K

16σ2
g + σ2

l + 48Et∥∇F (zt)∥2 + 1

mγ

∑
i∈[m]

(
Et∥ĝt−1

i ∥2 − Et∥ĝt
i∥2
) .

Let the a satisfies a = 1 for convenience, we summarize the extra terms above and bound the term
R1.a as:

R1.a =
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥E[g̃t

i,k]−∇Fi(z
t)∥2

≤ 8L2ct +
8λ2L2(1− 2γ)2

γ3

Et∥
1

m

∑
i∈[m]

ĝt−1
i ∥2 − Et∥

1

m

∑
i∈[m]

ĝt
i∥2
+ 2α2L2ρ2σ2

l

+
8λ2L2(1− 2γ)2

γ2
Et∥

1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k∥2 + 6α2L2ρ2σ2

g + 6α2L2ρ2Et∥∇F (zt)∥2

≤ 8λ2L2(1− 2γ)2

γ3

Et∥
1

m

∑
i∈[m]

ĝt−1
i ∥2 − Et∥

1

m

∑
i∈[m]

ĝt
i∥2
+ 2α2L2ρ2σ2

l + 6α2L2ρ2σ2
g

+
8λ2L2(1− 2γ)2

γ2
Et∥

1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k∥2 +

64η2l L
2K

mγ

∑
i∈[m]

(
Et∥ĝt−1

i ∥2 − Et∥ĝt
i∥2
)

+ 3072η2l L
2KEt∥∇F (zt)∥2 + 6α2L2ρ2Et∥∇F (zt)∥2 + 64η2l L

2K(16σ2
g + σ2

l ).

thus we can bound the R1 as follow:

R1 ≤ λ

2
Et∥∇F (zt)∥2 + λ

2
R1.a− λ

2m2
Et∥

∑
i∈[m]

K−1∑
k

γk
γ
E[g̃t

i,k]∥2

≤
(
λ

2
+ 3λα2L2ρ2 + 1536λη2l L

2K

)
Et∥∇F (zt)∥2 + 32ληlL

2K

γm

∑
i∈[m]

(
E∥ĝt−1

i ∥2 − E∥ĝt
i∥2
)

+
4λ3L2(1− 2γ)2

γ3

Et∥
1

m

∑
i∈[m]

ĝt−1
i ∥2 − Et∥

1

m

∑
i∈[m]

ĝt
i∥2
+ λα2L2ρ2(3σ2

g + σ2
l )

+
4λ3L2(1− 2γ)2

γ2
Et∥

1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k∥2 + 32λη2l L

2K(16σ2
g + σ2

l ).

We notice that R1 contains the same term with a negative weight, thus we can set another constrains
for λ to eliminate this term. We will prove it in the next part.

C.4.3 BOUNDED GLOBAL GRADIENT

As we have bounded the term R1 and R2, according to the smoothness inequality, we combine the
inequalities above and get the inequality:

Et[F (zt+1)] ≤ F (zt)− λ∥∇F (zt)∥2 +R1+
L

2
R2
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= F (zt)−
(
λ

2
− 3λα2L2ρ2 − 1536λη2l L

2K

)
∥∇F (zt)∥2 + λα2L2ρ2(3σ2

g + σ2
l )

+
(4λ3L2(1− 2γ)2

γ2
+

λ2L

2m2
− λ

2m2

)
Et∥

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k∥2

+
32ληlL

2K

γm

∑
i∈[m]

(
E∥ĝt−1

i ∥2 − E∥ĝt
i∥2
)
+ 32λη2l L

2K(16σ2
g + σ2

l )

+
4λ3L2(1− 2γ)2

γ3

Et∥
1

m

∑
i∈[m]

ĝt−1
i ∥2 − Et∥

1

m

∑
i∈[m]

ĝt
i∥2
 .

We follow as Yang et al. (2021) to set λ that it satisfies 4λ3L2(1−2γ)2

γ2 + λ2L
2m2 − λ

2m2 ≤ 0, which is
easy to verified that λ has a upper bound for the quadratic inequality. Thus, the stochastic gradient
term is diminished by this λ. We denote the constant λκ = λ

2 − 3λα2L2ρ2 − 1536λη2l L
2K and take

the full expectation on the bounded global gradient as:

λκE∥∇F (zt)∥2 ≤
(
EF (zt)− EF (zt+1)

)
+

32ληlL
2K

γm

∑
i∈[m]

(
E∥ĝt−1

i ∥2 − E∥ĝt
i∥2
)

+
4λ3L2(1− 2γ)2

γ3

Et∥
1

m

∑
i∈[m]

ĝt−1
i ∥2 − Et∥

1

m

∑
i∈[m]

ĝt
i∥2


+ 32λη2l L
2K(16σ2

g + σ2
l ) + λα2L2ρ2(3σ2

g + σ2
l ).

Take the full expectation and telescope sum on the inequality above and applying the fact that
F ∗ ≤ F (x) for x ∈ Rd, we have:

1

T

T−1∑
t=1

Et∥∇F (zt)∥2 ≤ 1

λκT

(
F (z1)− Et[F (zT )]

)
+

32ηlL
2K

κγmT

∑
i∈[m]

(
E∥ĝ0

i ∥2 − E∥ĝt
i∥2
)

+
4λ2L2(1− 2γ)2

κγ3T

Et∥
1

m

∑
i∈[m]

ĝ0
i ∥2 − Et∥

1

m

∑
i∈[m]

ĝt
i∥2


+
1

κ

(
32λη2l L

2K(16σ2
g + σ2

l ) + λα2L2ρ2(3σ2
g + σ2

l )
)

≤ 1

λκT

(
F (z0)− F ∗)

)
+

32ηlL
2K

κγmT

∑
i∈[m]

E∥ĝ0
i ∥2

+
4λ2L2(1− 2γ)2

κγ3T
Et∥

1

m

∑
i∈[m]

ĝ0
i ∥2

+
1

κ

(
32λη2l L

2K(16σ2
g + σ2

l ) + λα2L2ρ2(3σ2
g + σ2

l )
)

Here we summarize the conditions and some constrains in the above conclusion. Firstly we should
note that γ = 1 − (1 − ηl

λ )
K < 1 when ηl ≤ 2λ. Thus we have 1/γ > 1. When K satisfies

that K ≥ λ
ηl

, (1 − ηl

λ )
K ≤ e−

ηl
λ K ≤ e−1, and then γ > 1 − e−1 and 1/γ < e

e−1 < 2. To let
κ = 1

2 − 3α2L2ρ2 − 1536η2l L
2K > 0 hold, ρ and ηl satisfy that ρ < 1√

6αL
and ηl <

1
32

√
3KL

.

1

T

T−1∑
t=1

E∥∇F (zt)∥2 ≤ 2(F (z1)− F ∗)

λκT
+

64ηlL
2K

κT

1

m

∑
i∈[m]

E∥ĝ0
i ∥2 +

32λ2L2

κT
Et∥

1

m

∑
i∈[m]

ĝ0
i ∥2

17



+
1

κ

(
32λη2l L

2K(16σ2
g + σ2

l ) + λα2L2ρ2(3σ2
g + σ2

l )
)
.
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