
Exploiting Domain-Specific Features to Enhance Domain Generalization
(Supplementary Material)

In this supplementary material, we collect proofs and remaining materials that were deferred from
the main paper. In Appendix A, we provide the proofs for all the results in the main paper, including:
proof of Lemma 1 in Appendix A.1, proof of Theorem 1 in Appendix A.2. In Appendix B, we
discuss when domain-specific will effect negatively on the unseen target domain in B.1, clarify the
gap between the presented theory and the implemented algorithm in B.2, and continue to discuss the
disentanglement technique as well as potential future directions in B.3. In Appendix C, we provide
additional information about our experiments, including: sufficient details about the dataset in
Appendix C.1, baseline details in Appendix C.2, implementation details to reproduce our experiments
in Appendix C.3, further analysis about the results for each benchmark dataset in Appendix C.4, our
model’s behaviour when training in Appendix C.5, and additional ablation study on the benchmark
dataset in Appendix C.6.

A Proofs

A.1 Proof of Lemma 1

Proof. When ZX1 is output of deterministic functions from X1, for any A in the sigma-algebra
induced by ZX1 we have

E[1ZX1∈A|X1,
{
Y,X2

}
] = E[1ZX1∈A|X1, X2] = E[1ZX1∈A|X1],

which implies Y ⊥⊥ ZX1 |X1 and X2 ⊥⊥ ZX1 |X1.

A.2 Proof of Theorem 1

Proof. The proofs contain two parts. The first one is showing the results for the label-related learned
representations and the second one is for the domain-invariant learned representations.

Part (1). Label-related Learned Representations: Adapting the Data Processing Inequality (DPI
by (41)) in the Markov chain X2 ↔ Y ↔ X1 → ZX1 (Lemma 1), I(ZX1 ;Y ) is maximized
at I(X1;Y ).
Since both label-related learned presentation (Zsup and Zsup∗ ) maximize I(ZX1 ;Y ), we conclude

I(Zsup;Y ) = I(Zsup∗ ;Y ) = I(X1;Y ).

Part (2). Domain-invariant Learned Representations: First, we have

I(ZX1 ;X2) = I(ZX1 ;Y )− I(ZX1 ;Y |X2) + I(ZX1 ;X2|Y ) = I(ZX1 ;Y ;X2) + I(ZX1 ;X2|Y )

and

I(X1;X2) = I(X1;Y )− I(X1;Y |X2) + I(X1;X2|Y ) = I(X1;Y ;X2) + I(X1;X2|Y ).

By DPI in the Markov chain X2 ↔ Y ↔ X1 → ZX1 (Lemma 1), we know

• I(ZX1 ;X2) is maximized at I(X1;X2)

• I(ZX1 ;X2;Y ) is maximized at I(X1;X2;Y )

• I(ZX1 ;X2|Y ) is maximized at I(X1;X2|Y )

Since both domain-invariant learned representation (ZI and ZI∗ ) maximize I(ZX1 ;X2), we have

I(ZI ;X
2) = I(ZI∗ ;X

2) = I(X1;X2).

Hence,
I(ZI ;X

2;Y ) = I(ZI∗ ;X
2;Y ) = I(X1;X2;Y )
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and
I(ZI ;X

2|Y ) = I(ZI∗ ;X
2|Y ) = I(X1;X2|Y ).

Using the result I(ZI ;X2;Y ) = I(ZI∗ ;X
2;Y ) = I(X1;X2;Y ), we get

I(ZI ;Y ) = I(X1;Y )− I(X1;Y |X2) + I(ZI ;Y |X2)

and
I(ZI∗ ;Y ) = I(X1;Y )− I(X1;Y |X2) + I(ZI∗ ;Y |X2).

Since I(ZX1 ;X1) = I(ZX1 ;X1|X2) + I(ZX1 ;X1;X2), where I(ZX1 ;X1;X2) = I(X1;X2)
(Lemma 1) and I(ZX1 ;X2) is maximized at ZI∗ . Then,

I(ZX1 ;X1|X2) = H(ZX1 |X2)−H(ZX1 |X1, X2),

where H(ZX1 |X2) contains no randomness (no information) as ZX1 being deterministic from X1.
Hence, minimizing I(ZX1 ;X1|X2) equivalents to minimizing H(ZX1 |X2).

Using the result I(ZI∗ ;Y ) = I(X1;Y ) − I(X1;Y |X2) + I(ZI∗ ;Y |X2) and due to H(ZX1 |X2)
is minimized at ZI∗ , I(ZI∗ ;Y |X2) = 0, we get

I(ZI∗ ;Y ) = I(X1;Y )− I(X1;Y |X2)

or
I(X1;Y ) = I(ZI∗ ;Y ) + I(X1;Y |X2).

Combining the result in Part (1). I(Zsup;Y ) = I(Zsup∗ ;Y ) = I(X1;Y ) and ε1 = I(X1;Y |X2)
(Assumption 1), then

I(Zsup∗ ;Y ) = I(ZI∗ ;Y ) + ε1.

Moreover, by assuming that ε1 > 0 (Assumption 1), we obtain

I(X1;Y ) = I(Zsup;Y ) = I(Zsup∗ ;Y ) = I(ZI∗ ;Y ) + ε1 > I(ZI∗ ;Y ).

B Further discussion

B.1 Domain-specific features may hurt classification performance in the test domain

Although our theorem 1 suggests that the representation learned by incorporating both domain-
invariant and domain-specific has a stronger dependence on labels than that learned by only consider-
ing domain-invariant information on source domains X1 and X2. However, there is no guarantee that
such representation can generalize well to the "unseen" target domain XT . In the setting of domain
generalization, as no target domain data is accessible, the domain-invariant feature may be "invariant"
to the source domains only. Moreover, the domain-specific features of the target domain are not able
to be extracted accurately if they correlate with other classes than they did in source domains.

In particular, the domain-specific features may hurt performance if they correlate with a different class
label in the unseen domain than they did in the source domains (i.e., I(ZI∗ , Y ) + ε1 6= I(XT ;Y T )).
Following the example about cow and camel in (18), if in an unseen domain, a camel stands in a
field rather than desert, it will hurt our model performance. Another observation is in our ablation
study that if the yellow background of number “2” in the source domain becomes the background of
number “1” in the target domain, our model’s classification accuracy on the class number “1” will
drop by 40% in the target domain.

However, the domain-specific features likely will help classification performance in the real world
(i.e., I(ZI∗ , Y )+ε1 = I(XT ;Y T )). The correlation between different class labels in the unseen than
they did in the source domain is unlikely to appear. For example, camels are more likely to appear in
the desert than in a field, and cows are more likely to appear in the field than in the desert. Moreover,
our empirical results show several observations in the real world dataset in which domain-specific
features of source domains strongly correlate with a class label in both source and target domains. In
such case, our mDSDI always have positive results when compared to other domain-invariant based
methods, showing our framework is able to select relevant domain-specific information from source
domains to generalize well on the target domain.
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B.2 From theory to a unified framework

Despite not exactly minimizing measures of mutual information as discussed in information theory
(which causes a high computational cost in DG), our implementation still has a strong connection
with the theory section, following these reasons:

• The classifier within standard cross-entropy minimization in Eq. (2) and Eq. (5) has been
shown to be similar to minimal and sufficient representation with the label (definition 3)
in (14). This is also a fundamental definition of the information bottleneck method, which is
proved in (12).

• The domain classifiers within an adversarial training framework in Eq. (1) can be used as a
proxy for the minimal and sufficient representations with domain-invariant in definition 4.
Because following the definition 4, it maximizes mutual information across source domains
and minimizes redundancy specific information in a particular domain. Its optimal solution
is similar to the adversarial training framework in Eq. (1).

• In the disentanglement loss in Eq. (3), minimizing Covariance between two random variables
is equivalent to minimizing mutual information between them. The reason is: we can derive

min I(ZI , ZS) = minDKL (P (ZI , ZS), P (ZI)P (ZS)) .

Two random variables X, Y are disentangled (independent) if covariance (X, Y) = 0. Hence,
if they are feature vectors ZI = [ZI1 , ZI2 , ...ZIm ] and ZS = [ZS1 , ZS2 , ...ZSn ], they will
be disentangled (independence) when Cov(ZIi , ZSj ) = 0 for every (i, j)-component in the
covariance matrix.

B.3 Disentangled two representations

The higher the feature dimensionality, the more expensive it is for calculating the Covariance matrix.
Specifically, in an experiment in the PACS dataset, if the backbone is Resnet50, we have to store a
2048× 2048 covariance matrix which causes our model to consume around 30GB (GPU).

Given this weakness, we tried an alternative solution with adversarial training to minimize the
mutual information between ZI and ZS . The idea is that we could derive min I(ZI , ZS) =
minDKL(P (ZI , ZS), P (ZI)P (ZS)), and if we shuffled w.r.t. to the index of samples in each
mini-batch, we also could disentangle these features without being affected by feature dimension.
More specifically, if we create a discriminator DIS to classify representation from P (ZI , ZS) as
fake samples and representations from P (ZI)P (ZS) as real samples. Samples from P (ZI , ZS) are
obtained by passing the sample X through the encoders Q and R to extract (ZI , ZS). Samples from
P (ZI)P (ZS) are obtained by shuffling the exclusive representations of a batch of samples from
P (ZI , ZS). The encoder function Q strives to generate exclusive representations ZI that combined
with ZS look like drawn from P (ZI)P (ZS). By minimizing the following objective function:

LDadv = EP (ZI)P (ZS) [logDIS(ZI , ZS)] + EP (ZI ,ZS) [log(1−DIS(ZI , ZS))] .

This is equivalent to minimizing the Jensen-Shannon divergence DJS(PZI ,ZS
||P (ZI)P (ZS)) and

thus the mutual information between ZI and ZS is minimized. However, since this is adversarial
training, the results had a higher variance in terms of accuracy, so we will try to investigate more in
future work.

C Additional experiments

C.1 Dataset details

This appendix provides more detail about the dataset in the main paper. Figure 5 visualizes examples
for each domain per dataset used in our experiments, including a totally of 7 image datasets widely
used for classification tasks in DG and our generated dataset Background-Colored-MNIST in Ablation
Study 3.4:

• Colored-MNIST (18) includes 70000 samples of dimension (2, 28, 28) in binary classifi-
cation problem with noisy label, from MNIST over 3 domains with noisy rate d ∈

{
0.1,
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Dataset Domains

Colored 
MNIST

10% flip 20% flip 90% flip

Rotated 
MNIST

0’ 15’ 30’ 45’ 60’ 75’

Background-
Colored 
MNIST

Blue Green Red Orange

VLCS Caltech101 LabelMe SUN09 VOC2007

PACS Art Cartoon Photo Sketch

Office Home Art Clipart Product Photo

Terra 
Incognita

L100 L38 L43 L46

DomainNet Clipart Infographic Painting QuickDraw Photo Sketch

Degree of correlation between color and label

Figure 5: The benchmark dataset summarizations. For each dataset, we pick a single class and show illustrative
images from each domain.

0.2, 0.9
}

. The noisy rate is the correlation ratio between digit and color label. In particular,
the construction including assigning a preliminary binary label ŷ to the image based on the
digit: ŷ = 0 for digits 0-4 and ŷ = 1 for 5-9, flipping ŷ with probability 0.25 to obtain the
final label y, flipping y with probability d corresponding to the noisy rate to obtain the color
id z, and coloring the image red if z = 1 or green if z = 0. By doing so, if the noise rate in
2 source domains is d = {0.1, 0.2} and d = 0.9 in the test domain (correlation is reversed
in the test environment), then this dataset will allow measuring the invariant learning ability
of the model in which the actual invariant is the digit, and the color is just noisy information
for the fooling model in source domains.

• Rotated-MNIST (19) contains 70000 samples of dimension (1, 28, 28) with 10 classes per
each domain, rotated from MNIST over 6 domains d ∈

{
0, 15, 30, 45, 60, 75

}
. This data set
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does not contain much domain-specific information since the background of binary images
is black while only the sketch of the digit is rotated. And so, we assume the domain-invariant
is the sketch of the digit.

• Background-Colored-MNIST (Ours) contains 1000 training samples of dimension
(3, 28, 28) and 10 classes from MNIST per each source domain, colored by digit’s color
over 3 domains dtr ∈

{
red, green, blue

}
. In addition, the background color is the same for

intra-class images but different across classes. There are 10000 testing samples in the target
domain, which are colored by dte ∈

{
orange

}
and each class’s background color is similar

to the same class’s background color in one of three source domains. This data set is used
for our ablation study, with the assumption that domain-invariant is the digit’s sketch and
domain-specific is the background color.

• VLCS (20) includes 10729 samples of dimension (3, 224, 224) and 5 classes, over 4 photo-
graphic domains d ∈

{
Caltech101, LabelMe, SUN09, VOC2007

}
. The samples from this

dataset are collected by taking pictures from real life, hence, contain a lot of domain-specific
information on the background such as the landscape of streets where the cars are parked or
fields where the bird is eating. However, we observe that in this dataset, besides samples
that only contain the object of the class (assume domain-invariant information) without in-
formative backgrounds such as zoom of car or bird, some samples only contain backgrounds
(assume domain-specific information) such as houses, ocean or sky landscape.

• PACS (2) contains 9991 images of dimension (3, 224, 224) and 7 classes, over 4 domains
d ∈

{
artpaint, cartoon, sketches, photo

}
. This is one of the most popular benchmark data

sets in DG, while in the artpaint and photo domain contains colored backgrounds that are
specific and correlate with the label such as dogs in the yard, the cartoon and sketches only
have a white background. And so, we assume the domain-invariant is the object of class and
domain-specific is the color and background.

• Office-Home (21) has 15588 daily images of dimension (3, 224, 224) and 65 categories,
over 4 domains d ∈

{
art, clipart, product, real

}
. Similar to PACS, the majority of images

in two domains clipart and product do not include much informative domain-specific
information such as color, backgrounds which is related to objects and we assume the
domain-invariant is the sketch of the object. Meanwhile, the art and real domains contain
more domain-specific features, for instance, the bed usually in a room.

• Terra Incognita (22) includes 24788 wild photographs of dimension (3, 224, 224) with 10
animals, over 4 camera-trap domains d ∈

{
L100, L38, L43, L46

}
. This dataset contains

photographs of wild animals taken by camera traps; camera trap locations are different across
domains. Since these cameras are static, different animals still have the same background, or
in other words, there is no correlation between background and animal label in this dataset.
Hence, lacks domain-specific features and mainly contains domain-invariant information of
the object animal.

• DomainNet (23) contains 596006 images of dimension (3, 224, 224) and 345 classes, over
6 domains d ∈

{
clipart, infograph, painting, quickdraw, real, sketch

}
. This is the biggest

dataset in terms of the number of samples and classes. The two domains: quickdraw and
sketch, only contain conceptual drawings of the object, and so, we assume only having
domain-invariant. In contrast, 4 domains: clipart, infographic, painting, and photo have
more domain-specific information such as colors, backgrounds, text to describe the object.

C.2 Baseline details

This appendix provides an exhaustive literature review about 14 related methods in DG which are
used to make comparisons with our model, divided by 5 common techniques:

Standard Empirical Risk Minimization:

• Empirical Risk Minimization (ERM (25)) aggregates all the source domain data together,
minimized with cross-entropy for classification loss.

Domain-specific learning:
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• Group Distributionally Robust Optimization (GroupDRO (26)) performs ERM while in-
creasing the importance of domains by weighing mini-batches of the training distribution
proportional with larger errors.

• Marginal Transfer Learning (MTL (1; 27)) estimates a kernel mean embedding per domain,
passed as a second argument to the classifier. Then, these embeddings are estimated using
single test examples at test time (only applicable when using RKHS-based learners).

• Adaptive Risk Minimization (ARM (28)) an extension of MTL where a separate CNN
computes the domain embedding, appended to the input images as additional channels.

Meta-learning:

• Meta-Learning for DG (MLDG (11)) is the first proposed meta-learning strategy that splits
meta train/test and performs gradient update each minibatch, this makes the model trained
on one domain to perform well on another domain.

Domain-invariant learning:

• Invariant Risk Minimization (IRM (18)) learns invariant feature representation such that the
optimal linear classifier on top of that representation matches across domains.

• Deep CORrelation ALignment (CORAL (29)) matches the mean and covariance (second-
order statistics) of features across training domain distributions at some level of representa-
tion.

• Maximum Mean Discrepancy (MMD (30)) employs the adversarial technique and the
maximum mean discrepancy (MMD (42)) criteria to align feature distribution across domain.

• Domain Adversarial Neural Networks (DANN (31)) uses an adversarial network to learn
feature representation that matches across domains.

• Class-conditional DANN (CDANN (32)) is a variant of DANN that matches the feature con-
ditional distributions across domains, for all class labels to enable alignment of multimodal
distributions.

• Risk Extrapolation (VREx (33)) approximates IRM to reduce the variance of error averages
across domains.

Augmenting data:

• Inter-domain Mixup (Mixup (34; 35; 36)) performs ERM on linear interpolations of exam-
ples from random pairs of domains and their labels.

• Style-Agnostic Networks (SagNets (37)) promote representations of data that ignore image
style and focus on content.

• Representation Self Challenging (RSC (38)) learns robust neural networks by iteratively
dropping out (challenging) the most activated (important) features.

C.3 Implementation details

In this appendix, we describe the data-processing techniques, neural network architectures, hyper-
parameters, and details for reproducing our experiments. We use similar settings from Do-
mainBed (24) for a fair comparison.

Data processing techniques. For experiments related to the MNIST dataset, we receive an image
with input size 28 × 28 x d pixels (where d is the image dimension, in which d = 2 for Colored-
MNIST, d = 1 for Rotated-MNIST, and d = 3 for Background-Colored-MNIST), and divide all
the digits evenly among domains. For the remaining datasets, we augment training data using the
following protocol: crops of random size and aspect ratio, resizing to 224 × 224 x 3 pixels, random
horizontal flips, random color jitter, grayscaling the image with 10% probability, and normalization
using the ImageNet channel statistics.

Architectures and hyper-parameters. We list the details of the backbone network, value of hyper-
parameters used for each dataset in Table 3. We optimize all models using Adam (43) optimizer
and employ the training-domain validation set technique for model selection. In particular, for all
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datasets, we first merge the raw training, validation, and test-set, then, we run the test three times
with three different seeds. For each random seed, we randomly split training and validation from
each source domain into 80% and 20% splits. and choose the model maximizing the accuracy on the
validation set, then compute performance on the domain test-sets after 5000 iterations.
For experiments related to the MNIST dataset, we use MNIST-ConvNet backbone that have the
structure following:
Conv2D (in=d, out=64)→ Relu→ GroupNorm (groups=8)→ Conv2D (in=64, out=128, stride=2)
→ ReLU → GroupNorm (8 groups) → Conv2D (in=128, out=128) → ReLU → GroupNorm (8
groups) → Conv2D (in=128, out=128) → ReLU → GroupNorm (8 groups) → Global average-
pooling.
For the remaining datasets, we finetune the ResNet-50 model (39) which is pre-trained on ImageNet
to avoid the inconsistent choice of network architecture in prior works. We customize the “ResNet-50”
by replacing the final (softmax) layer and fine-tune the entire network. Since mini-batches from
different domains follow different distributions, batch normalization degrades DG algorithms (44).
Therefore, we freeze all batch normalization layers before fine-tuning.

Table 3: Condition architectures, hyper-parameters, and their default values in our experiments.

Condition Hyper-parameters Default value

MNIST-ConvNet
learning rate 0.001
batch size 64
generator learning rate 0.001
discriminator learning rate 0.001

ResNet

learning rate 0.00005
batch size 32
batch size (if ARM) 8
generator learning rate 0.00005
discriminator learning rate 0.00005

DANN, C-DANN

lambda 1.0
discriminator weight decay 0
discriminator steps 1
discriminator width 256
discriminator depth 3
discriminator dropout 0
discriminator grad penalty 0
Adam β1 0.5

DRO eta 0.01

IRM labmda 100
warmup iterations 500

Mixup alpha 0.2

MLDG beta 1

MMD gamma 1

MTL ema 0.99

RSC feature drop percentage 1/3
batch drop percentage 1/3

SagNets adversary weight 0.1

VREx lambda 10
warmup iterations 500

mDSDI
domain-invariant weight 1.0
domain-specific weight 1.0
adversary weight 1.0

Dataset, source code, and computing system. The source code is provided in the zip file, including
scripts to download the dataset, setup for environment configuration, our provided code, and extending
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code from DomainBed (24) library (detail in README.md). We run the code on a single GPU:
NVIDIA DGX-1 Tesla A100-SXM4-40GB with 12 CPUs: Intel(R) Core(TM) i7-8700 CPU @
3.20GHz, RAM: 32GB, and require 40GB available disk space for storage.

C.4 Empirical result details

In this appendix, we show our full results and explain them in more detail when compared with other
baseline methods in each benchmark dataset.

Table 4: Classification accuracy (%) on Colored-MNIST.

Method 10% flip 20% flip 90% flip Average
ERM (25) 71.7±0.1 72.9±0.2 10.0±0.1 51.5
IRM (18) 72.5±0.1 73.3±0.5 10.2±0.3 52.0
GroupDRO (26) 73.1±0.3 73.2±0.2 10.0±0.2 52.1
Mixup (34; 35; 36) 72.7±0.4 73.4±0.1 10.1±0.1 52.1
MLDG (11) 71.5±0.2 73.1±0.2 9.8±0.1 51.5
CORAL (29) 71.6±0.3 73.1±0.1 9.9±0.1 51.5
MMD (30) 71.4±0.3 73.1±0.2 9.9±0.3 51.5
DANN (31) 71.4±0.9 73.1±0.1 10.0±0.0 51.5
CDANN (32) 72.0±0.2 73.0±0.2 10.2±0.1 51.7
MTL (1; 27) 70.9±0.2 72.8±0.3 10.5±0.1 51.4
SagNets (37) 71.8±0.2 73.0±0.2 10.3±0.0 51.7
ARM (28) 82.0±0.5 76.5±0.3 10.2±0.0 56.2
VREx (33) 72.4±0.3 72.9±0.4 10.2±0.0 51.8
RSC (38) 71.9±0.3 73.1±0.2 10.0±0.2 51.7
mDSDI (Ours) 73.4±0.2 73.1±0.3 10.1±0.2 52.2

Colored-MNIST. Table 4 compares our results with the mentioned baseline on the Rotate-MNIST
dataset. The average results show our model is not able to achieve a higher result than other methods,
especially when compared to ARM (28) with 56.2% on average while our result is only 52.2%.
However, it is worth noticing that if the unseen domain has a label-digit correlation which is reversed
with source domains (i.e., the unseen domain is 90% flip color), the performance of all models
including ARM (28) and IRM (18) (the original paper proposed this dataset), drop significantly,
only having around 10% accuracy. This implies that not only our mDSDI, but also all models still
concentrate on the color features in this challenging dataset. The color will hurt model performance
in this dataset because it will be flipped randomly with a higher probability in the "90% flip color"
domain. Therefore, the model should not rely on color features and only focus on digits.

Table 5: Classification accuracy (%) on Rotated-MNIST.
Method 0 15 30 45 60 75 Average
ERM (25) 95.9±0.1 98.9±0.0 98.8±0.0 98.9±0.0 98.9±0.0 96.4±0.0 98.0
IRM (18) 95.5±0.1 98.8±0.2 98.7±0.1 98.6±0.1 98.7±0.0 95.9±0.2 97.7
GroupDRO (26) 95.6±0.1 98.9±0.1 98.9±0.1 99.0±0.0 98.9±0.0 96.5±0.2 98.0
Mixup (34; 35; 36) 95.8±0.3 98.9±0.0 98.9±0.0 98.9±0.0 98.8±0.1 96.5±0.3 98.0
MLDG (11) 95.8±0.1 98.9±0.1 99.0±0.0 98.9±0.1 99.0±0.0 95.8±0.3 97.9
CORAL (29) 95.8±0.3 98.8±0.0 98.9±0.0 99.0±0.0 98.9±0.1 96.4±0.2 98.0
MMD (30) 95.6±0.1 98.9±0.1 99.0±0.0 99.0±0.0 98.9±0.0 96.0±0.2 97.9
DANN (31) 95.0±0.5 98.9±0.1 99.0±0.0 99.0±0.1 98.9±0.0 96.3±0.2 97.8
CDANN (32) 95.7±0.2 98.8±0.0 98.9±0.1 98.9±0.1 98.9±0.2 96.1±0.3 97.9
MTL (1; 27) 95.6±0.1 99.0±0.1 99.0±0.0 98.9±0.1 99.0±0.1 95.8±0.2 97.9
SagNets (37) 95.9±0.3 98.9±0.1 99.0±0.1 99.1±0.0 99.0±0.1 96.3±0.1 98.0
ARM (28) 96.7±0.2 99.1±0.0 99.0±0.0 99.0±0.1 99.1±0.1 96.5±0.4 98.2
VREx (33) 95.9±0.2 99.0±0.1 98.9±0.1 98.9±0.1 98.7±0.1 96.2±0.2 97.9
RSC (38) 94.8±0.5 98.7±0.1 98.8±0.1 98.8±0.0 98.9±0.1 95.9±0.2 97.9
mDSDI (Ours) 96.0±0.1 98.8±0.1 99.1±0.0 98.9±0.0 99.2±0.1 96.2±0.1 98.0

Rotated-MNIST. In Table 5, we compare our results with the mentioned baseline on the Rotated-
MNIST dataset. It can be seen that this dataset only contains domain-invariant information while
the domain-specific information is limited due to background-less images in the MNIST dataset.
However, our mDSDI model still has a competitive result with 98% on average when compared with
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other methods that concentrate on learning domain-invariant techniques such as IRM, Corral, MMD,
DANN, CDANN, or VREx. This proves that our model still preserves domain-invariant information
and the effectiveness of our adversarial training technique for extracting these features.

Table 6: Classification accuracy (%) on VLCS.

Method C L S V Average
ERM (25) 97.7±0.4 64.3±0.9 73.4±0.5 74.6±1.3 77.5
IRM (18) 98.6±0.1 64.9±0.9 73.4±0.6 77.3±0.9 78.5
GroupDRO (26) 97.3±0.3 63.4±0.9 69.5±0.8 76.7±0.7 76.7
Mixup (34; 35; 36) 98.3±0.6 64.8±1.0 72.1±0.5 74.3±0.8 77.4
MLDG (11) 97.4±0.2 65.2±0.7 71.0±1.4 75.3±1.0 77.2
CORAL (29) 98.3±0.1 66.1±1.2 73.4±0.3 77.5±1.2 78.8
MMD (30) 97.7±0.1 64.0±1.1 72.8±0.2 75.3±3.3 77.5
DANN (31) 99.0±0.3 65.1±1.4 73.1±0.3 77.2±0.6 78.6
CDANN (32) 97.1±0.3 65.1±1.2 70.7±0.8 77.1±1.5 77.5
MTL (1; 27) 97.8±0.4 64.3±0.3 71.5±0.7 75.3±1.7 77.2
SagNets (37) 97.9±0.4 64.5±0.5 71.4±1.3 77.5±0.5 77.8
ARM (28) 98.7±0.2 63.6±0.7 71.3±1.2 76.7±0.6 77.6
VREx (33) 98.4±0.3 64.4±1.4 74.1±0.4 76.2±1.3 78.3
RSC (38) 97.9±0.1 62.5±0.7 72.3±1.2 75.6±0.8 77.1
mDSDI (Ours) 97.6±0.1 66.4±0.4 74.0±0.6 77.8±0.7 79.0

VLCS. In Table 6, we compare our model’s performance on VLCS dataset. It shows mDSDI archives
the highest score on average with 79.0%, having competitive results on Caltech101 and dominating
other baselines on three domains, including LabelMe, Sun09, and VOC2007. Interestingly, we
observe that there are many samples in this dataset that miss the object and only contain a background
such as an image of the bird but only having a sky picture or car image but only contain houses in the
city. Therefore, the reason why our model outperforms other baselines could be explained by the fact
that their domain-invariant method could not capture this domain-specific information (sky, houses),
and so have a poor performance. Meanwhile, when comparing with other domain-specific based
methods, the reason for our higher results would be that their method only concentrates on domain-
specific techniques, and so, in some background-less images (e.g., only bird, car), these methods
provide inferior domain-invariant information to our techniques. In contrast, due to considering
disentangle domain-invariant and domain-specific features, our model captures both this useful
information, hence, outperforms their results.

Table 7: Classification accuracy (%) on PACS.

Method A C P S Average
ERM (25) 84.7±0.4 80.8±0.6 97.2±0.3 79.3±1.0 85.5
IRM (18) 84.8±1.3 76.4±1.1 96.7±0.6 76.1±1.0 83.5
GroupDRO (26) 83.5±0.9 79.1±0.6 96.7±0.3 78.3±2.0 84.4
Mixup (34; 35; 36) 86.1±0.5 78.9±0.8 97.6±0.1 75.8±1.8 84.6
MLDG (11) 85.5±1.4 80.1±1.7 97.4±0.3 76.6±1.1 84.9
CORAL (29) 88.3±0.2 80.0±0.5 97.5±0.3 78.8±1.3 86.2
MMD (30) 86.1±1.4 79.4±0.9 96.6±0.2 76.5±0.5 84.6
DANN (31) 86.4±0.8 77.4±0.8 97.3±0.4 73.5±2.3 83.6
CDANN (32) 84.6±1.8 75.5±0.9 96.8±0.3 73.5±0.6 82.6
MTL (1; 27) 87.5±0.8 77.1±0.5 96.4±0.8 77.3±1.8 84.6
SagNets (37) 87.4±1.0 80.7±0.6 97.1±0.1 80.0±0.4 86.3
ARM (28) 86.8±0.6 76.8±0.5 97.4±0.3 79.3±1.2 85.1
VREx (33) 86.0±1.6 79.1±0.6 96.9±0.5 77.7±1.7 84.9
RSC (38) 85.4±0.8 79.7±1.8 97.6±0.3 78.2±1.2 85.2
mDSDI (Ours) 87.7±0.4 80.4±0.7 98.1±0.3 78.4±1.2 86.2

PACS. Table 7 compares our model with other methods on PACS dataset. It shows that if the target
domain is either photo or art, which include more informative backgrounds such as dogs in the yard
or guitars lying on a table, mDSDI achieved 98.1% and 87.7% respectively. It is higher than MLDG,
which also uses the meta-training technique, but for all representations including domain-invariant.
This reveals that although meta-training is essential in DG, it is only for domain-specific features
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which need to be adapted to new domains. Moreover, when comparing with other domain-specific
based techniques such as GroupDRO, MTL, and ARM, the results showed that domain-specific
features from our model are more helpful than theirs.
Meanwhile, due to still considering disentangled domain-invariant features, in two remaining domains
of cartoon and sketch, which have a white background, our model still achieves 80.4% and 78.4%.
It shows competitive results with other baselines that are based on domain-invariant learning such
as DANN, C-DANN, CORAL, MMD, IRM, and VREx. It can be explained by the fact that we
only consider meta-training on the domain-specific features, and so still retain informative domain-
invariant. As a result, our mDSDI achieved a competitive accuracy with 86.2% on average across test
domains on PACS.

Table 8: Classification accuracy (%) on Office-Home.

Method A C P R Average
ERM (25) 61.3±0.7 52.4±0.3 75.8±0.1 76.6±0.3 66.5
IRM (18) 58.9±2.3 52.2±1.6 72.1±2.9 74.0±2.5 64.3
GroupDRO (26) 60.4±0.7 52.7±1.0 75.0±0.7 76.0±0.7 66.0
Mixup (34; 35; 36) 62.4±0.8 54.8±0.6 76.9±0.3 78.3±0.2 68.1
MLDG (11) 61.5±0.9 53.2±0.6 75.0±1.2 77.5±0.4 66.8
CORAL (29) 65.3±0.4 54.4±0.5 76.5±0.1 78.4±0.5 68.7
MMD (30) 60.4±0.2 53.3±0.3 74.3±0.1 77.4±0.6 66.3
DANN (31) 59.9±1.3 53.0±0.3 73.6±0.7 76.9±0.5 65.9
CDANN (32) 61.5±1.4 50.4±2.4 74.4±0.9 76.6±0.8 65.8
MTL (1; 27) 61.5±0.7 52.4±0.6 74.9±0.4 76.8±0.4 66.4
SagNets (37) 63.4±0.2 54.8±0.4 75.8±0.4 78.3±0.3 68.1
ARM (28) 58.9±0.8 51.0±0.5 74.1±0.1 75.2±0.3 64.8
VREx (33) 60.7±0.9 53.0±0.9 75.3±0.1 76.6±0.5 66.4
RSC (38) 60.7±1.4 51.4±0.3 74.8±1.1 75.1±1.3 65.5
mDSDI (Ours) 68.1±0.3 52.1±0.4 76.0±0.2 80.4±0.2 69.2

Office-Home. We have the same observation on the Office-Home dataset results in Table 8. Our
mDSDI model outperforms other methods, achieving 69.2% on average. Particularly, in the Art and
Real-world domain, which contains more information in the background than other domains such as
a bed in the room or bike parked on the street, our model reached 68.1% and 80.4% correspondingly,
significantly higher than other methods. This means that our domain-invariant features not only
support generalization better but also our domain-specific ones cover helpful information in special
scenarios such as backgrounds and colors related to objects in the classification task.

Table 9: Classification accuracy (%) on Terra Incognita.

Method L100 L38 L43 L46 Average
ERM (25) 49.8±4.4 42.1±1.4 56.9±1.8 35.7±3.9 46.1
IRM (18) 54.6±1.3 39.8±1.9 56.2±1.8 39.6±0.8 47.6
GroupDRO (26) 41.2±0.7 38.6±2.1 56.7±0.9 36.4±2.1 43.2
Mixup (34; 35; 36) 59.6±2.0 42.2±1.4 55.9±0.8 33.9±1.4 47.9
MLDG (11) 54.2±3.0 44.3±1.1 55.6±0.3 36.9±2.2 47.7
CORAL (29) 51.6±2.4 42.2±1.0 57.0±1.0 39.8±2.9 47.6
MMD (30) 41.9±3.0 34.8±1.0 57.0±1.9 35.2±1.8 42.2
DANN (31) 51.1±3.5 40.6±0.6 57.4±0.5 37.7±1.8 46.7
CDANN (32) 47.0±1.9 41.3±4.8 54.9±1.7 39.8±2.3 45.8
MTL (1; 27) 49.3±1.2 39.6±6.3 55.6±1.1 37.8±0.8 45.6
SagNets (37) 53.0±2.9 43.0±2.5 57.9±0.6 40.4±1.3 48.6
ARM (28) 49.3±0.7 38.3±2.4 55.8±0.8 38.7±1.3 45.5
VREx (33) 48.2±4.3 41.7±1.3 56.8±0.8 38.7±3.1 46.4
RSC (38) 50.2±2.2 39.2±1.4 56.3±1.4 40.8±0.6 46.6
mDSDI (Ours) 53.2±3.0 43.3±1.0 56.7±0.5 39.2±1.3 48.1

Terra Incognita. Table 9 compares the classification accuracy of our mDSDI with other baselines
on Terra Incognita dataset. It shows that our method provides the second-best result on the average
accuracy with 48.1%, only lost to SagNet which achieves 48.6&. It is worth noticing that this
dataset lacks domain-specific features to fully exploit the advantages of our algorithm. It contains
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photographs of wild animals taken by camera traps; camera trap locations are different across domains.
Since these cameras are static, different animals still have the same background, or in other words,
there is no correlation between background and animal label in this dataset. Hence, it may lack
domain-specific features, making our model rely mainly on domain-invariant features of the object
animal.

Table 10: Classification accuracy (%) on DomainNet.
Method C I P Q R S Average
ERM (25) 58.1±0.3 18.8±0.3 46.7±0.3 12.2±0.4 59.6±0.1 49.8±0.4 40.9
IRM (18) 48.5±2.8 15.0±1.5 38.3±4.3 10.9±0.5 48.2±5.2 42.3±3.1 33.9
GroupDRO (26) 47.2±0.5 17.5±0.4 33.8±0.5 9.3±0.3 51.6±0.4 40.1±0.6 33.3
Mixup (34; 35; 36) 55.7±0.3 18.5±0.5 44.3±0.5 12.5±0.4 55.8±0.3 48.2±0.5 39.2
MLDG (11) 59.1±0.2 19.1±0.3 45.8±0.7 13.4±0.3 59.6±0.2 50.2±0.4 41.2
CORAL (29) 59.2±0.1 19.7±0.2 46.6±0.3 13.4±0.4 59.8±0.2 50.1±0.6 41.5
MMD (30) 32.1±13.3 11.0±4.6 26.8±11.3 8.7±2.1 32.7±13.8 28.9±11.9 23.4
DANN (31) 53.1±0.2 18.3±0.1 44.2±0.7 11.8±0.1 55.5±0.4 46.8±0.6 38.3
CDANN (32) 54.6±0.4 17.3±0.1 43.7±0.9 12.1±0.7 56.2±0.4 45.9±0.5 38.3
MTL (1; 27) 57.9±0.5 18.5±0.4 46.0±0.1 12.5±0.1 59.5±0.3 49.2±0.1 40.6
SagNets (37) 57.7±0.3 19.0±0.2 45.3±0.3 12.7±0.5 58.1±0.5 48.8±0.2 40.3
ARM (28) 49.7±0.3 16.3±0.5 40.9±1.1 9.4±0.1 53.4±0.4 43.5±0.4 35.5
VREx (33) 47.3±3.5 16.0±1.5 35.8±4.6 10.9±0.3 49.6±4.9 42.0±3.0 33.6
RSC (38) 55.0±1.2 18.3±0.5 44.4±0.6 12.2±0.2 55.7±0.7 47.8±0.9 38.9
mDSDI (Ours) 62.1±0.3 19.1±0.4 49.4±0.4 12.8±0.7 62.9±0.3 50.4±0.4 42.8

DomainNet. Finally, we experiment on DomainNet, a known large-scale dataset. In Table 10, we
observe that our mDSDI not only has the highest average number with 42.8% but also dominates other
methods in 4 domain tests. This implies that when the number of dataset increases, our method can
extract more relevant information for complex tasks, such as classifying 345 classes in DomainNet.
These results also mean that our model has a balance between informative domain-invariant and
domain-specific features to adapt better to different environments than others, therefore showing the
highest average in all settings. For instance, the "infograph" is a domain containing hundreds of
words in the background (domain-specific relevant) to describe the object, even though mDSDI can
not outperform the evaluation, it is still better than the many different methods. More importantly, in
a sketch domain, which does not have a background link to the object, our model always achieves
significantly better performance than other methods, and so implies that our domain-invariant is much
better.

C.5 Changing of Loss Functions

This appendix shows the behavior of mDSDI’s losses functions during the training time. Figure 6
visualizes the changing of objective functions and their classification accuracy during training time.

We observe that the classification accuracy of domain-invariant with respect to LZI
loss decreases

after a few interactions, then remains stable around 30% during the training time. This means that the
domain-invariant extractor Q fools the domain-invariant discriminator DI successfully. Regarding
domain-specific features, domain-specific extractor R have extracted specific features by reducing
LZS

loss from domain-specific classifier DS . Meanwhile, the disentangle loss LD decreases to zero,
showing that the features extracted from Q and R are disentangled. Finally, the classifier loss LT is
minimized close to zero in training samples, meaning that it preserves sufficient representation for
domain-invariant and domain-specific in the classification task.

C.6 Ablation study: Important of mDSDI on the benchmark dataset

For further analysis in ablation study with PACS (2), a standard benchmark dataset in DG. This
appendix studies the performance efficiency of domain-specific and domain-invariant features per
each target domain under different settings mentioned in the main paper.

Table 11 shows that if the target domain is either photo, art, or cartoon, which has colors, the settings
related to domain-specific features provide better performance than domain-invariant. For instance,
meta-training on domain-specific (DS-Meta) reaches 87.1%, 79.2% for the art and cartoon domain,
respectively. In contrast, if the target domain is the sketch, which is without the color information,
the settings related to domain-invariant outperform domain-specific features, such as 75.1% for
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Domain-specific loss (       ) Task classification loss (      )
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Domain-specific classification accuracy

Figure 6: Losses visualization with tensorboard. Settings: PACS with ResNet-50, source domains include art,
cartoon, sketch while target domain is photo.

Table 11: Classification accuracy (%) on the benchmark dataset PACS. Ablation study shows impact of
domain-invariant when combined with meta-training on domain-specific in our method.

Method A C P S Average
DI 84.5±0.6 77.4±0.8 98.0±0.3 74.7±1.2 83.7
DI-Meta 84.4±0.5 77.3±0.7 97.5±0.4 75.1±1.4 83.6
DS 85.2±0.5 77.9±0.9 98.0±0.3 72.5±1.3 83.4
DS-Meta 87.1±0.4 79.2±0.7 98.2±0.3 74.1±1.2 84.7
DSDI-Without LD 86.4±0.5 78.9±0.8 98.0±0.3 72.4±2.4 83.9
DSDI-Without Meta 84.4±0.6 79.2±0.8 98.3±0.3 75.7±1.4 84.4
DSDI-Meta 86.5±0.3 78.4±0.7 98.3±0.3 77.5±1.2 85.2
DSDI-Meta DI 84.5±0.4 77.8±0.8 97.9±0.3 76.6±1.1 84.2
mDSDI-Meta DS (Ours) 87.7±0.4 80.4±0.7 98.1±0.3 78.4±1.2 86.2

meta-training domain-invariant (DI-Meta). This is reasonable and confirms our assumptions that the
domain-specific is color and background information while domain-invariant is the object’s sketch.

Besides confirming the hypothesis of domain-specific and domain-invariant, we also observe that
if we can learn both these features in the right strategy, the performance is even better. Specifically,
when comparing between DSDI-Meta DI, which uses meta-training on domain-invariant, and mDSDI-
Meta DS, which uses meta-training on domain-specific, mDSDI-Meta DS always achieves better
performance in all target domain settings. As a result, achieved the highest on average with 86.2%
accuracy. It confirms the argument that, if we assume domain-invariant is stable across domains, the
model should not optimize on these features. Instead, it should be used for domain-specific, which
needs to be adapted on unseen domains. Meta-training on domain-invariant might lead to the model
forgetting about the common because that procedure attempts to discover other independent contexts.

Finally, it is also worth noticing that without the disentanglement loss LD, the average classification
accuracy on target domains only achieves 83.9%, lower than around 2.5% when compared with
the highest one mDSDI-Meta DS which minimizing LD. This shows that the disentangle method
based on minimizing the covariance matrix in our framework work well and is essential to make
domain-invariant and domain-specific independence, leading to an effective end-to-end framework to
boost the generalization ability.
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