
Supplement for Counterexample Guided RL Policy
Refinement Using Bayesian Optimization

Briti Gangopadhyay∗
Department of Computer Science

Indian Institute of Technology Kharagpur
briti_gangopadhyay@iitkgp.ac.in

Pallab Dasgupta
Department of Computer Science

Indian Institute of Technology Kharagpur
pallab@cse.iitkgp.ac.in

1 Appendix

1.1 Implementation Details

We use the following Feed Forward Neural Network architectures to train the original RL policies
and the sub policies on different environments. The details of the actor network is as follows:
(layer1): Linear(in_features=observation_space, out_features=64, bias=True) activation : ReLU
(layer2): Linear(in_features=64, out_features=64, bias=True) activation : ReLU
(layer3): Linear(in_features=64, out_features=action_space, bias=True)
If the action space is discrete then a softmax activation is applied on layer 3. The details of the critic
network is as follows:
(layer1): Linear(in_features=observation_space, out_features=64, bias=True) activation : ReLU
(layer2): Linear(in_features=64, out_features=64, bias=True) activation : ReLU
(layer3): Linear(in_features=64, out_features=1, bias=True)
Hyper-parameters are reported in Table 1. The Hyper parameters for training the original policy are
chosen as per RL ppo baselines which are available in 2. Reducing the learning rate during sub-policy
training shows faster convergence over less number of trajectories. Open AI gym environments used
for our experiments has MIT Licence which permits unrestricted use. Figure 4 shows the weight
distribution of the original policy and the updated policy for different gym environments.

Hyper-parameter Value

Horizon (T) 2048

Adam step-size (Policy) (1,2.5,3)e-4

Adam step-size (Sub-Policy) (1,2.5,3)e-3

Num. epochs 10

Minibatch size 64

clip 0.2

Discount (γ) 0.99

GAE (λ) 0.95

Importance of objective function value (β) 10
Table 1: PPO hyper-parameters used for training the policies and sub-policies for RL agents in open AI gym
environments.

∗Code is available online at https://github.com/britig/policy-refinement-bo
2https://github.com/araffin/rl-baselines-zoo/blob/master/hyperparams/ppo2.yml

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/britig/policy-refinement-bo
https://github.com/araffin/rl-baselines-zoo/blob/master/hyperparams/ppo2.yml


Figure 1: Reward plot for policies trained on MuJoCo environments showing training steps and the reward
obtained by the sub-policy and the original policy

Table 2: Description of assertions tested on PPO policy learnt for MuJoCo environments along with the
parameters considered as domain of uncertainty. We also report the number of failure trajectories corrected for
each policy and the variation distance between the updated policy and the original policy. In our experiments
n=1000

Environment Assertions Parameter Bounds Failure
Trajecto-
ries

Distance

Hopper-v2
1. Number of steps
the hopper can take
being vertical > 500

Position : [(-0.05, 0.05)] * 6
Velocity : [(-0.05, 0.05)] * 6

22.6
±
3.97

5.937
±
1.053

HalfCheetah-
v2

1. Reward > 500 Position : [(-0.1, 0.1)] * 9
16.6
±
2.70

5.356
±
1.224

Walker2d-v2
1. Number of steps
the walker can take
being vertical > 300

Position : [(-0.05, 0.05)] * 9
36.4
±
8.73

5.818
±
1.475

1.2 Experiments on MuJoCo Environment

We run additional experiments on MuJoCo Environments available in OpenAI Gym. MuJoCo is
a fast physics based simulator for continuous control tasks. MuJoCo simulator has a Roboti LLC
licence. We take three control tasks as mentioned in Table 2. The tasks primarily deal with teaching
different types of robots to walk. We test the policies against similar assertions which states that robot
should not fall before a particular amount of iteration. The domains of uncertainty is taken to be the
position or velocity of the robot or both. The number of failure trajectories is reported in Table 2.
The reward plots of the original policy and sub-policy are shown in Figure 1.

1.3 Additional Details on Bayesian Optimization

Finding multiple counterexamples: Multiple counterexamples can be obtained by eliminating the
counterexample (minima) already explored from the search space. The counterexamples are (by
definition) of negative sign (µk < 0) where µk ∈ ϕ. Therefore, if we square the function being
optimized, µk, then all its minima (negative function valuations) become positive and rise above
zero. The points originally at zero remain at zero. These zero points serve as minima for the
squared function. We find the nearest zeros surrounding the counterexample in each parametric
direction and eliminate the intermediate points (namely, the valley containing the counterexample).
For example, In a function having 2 variables let us assume the minimum point has been found at
(xm, ym). The nearest zero points for x dimension are (xzl, xzr) and y dimension are (yzl, yzr) then
the region for search is illustrated in Fig 2a. The hyper-rectangular abstraction over the minima valley
that is removed from the search space is shown in Figure 2b. This elimination is only carried out
when the environment seed is fixed. When the environment is randomly changed as per seed same
parameters could cause failure in a different environment hence we do not eliminate the already
explored parameter. We wish to point out that the proposed principle of counter-example guided
policy refinement using gradient updates remains the same regardless of the source of the counter-
examples, that is, whether they are discovered using random sampling or using Bayesian optimization.

2



(a) (b)

Figure 2: a) New search region construction for two dimensions. Four new regions are constructed with 2 for x
dimension and 2 for y dimension b) Rectangular abstraction around a minima valley considering nearest zero
points of a function

We present table 3 on comparing random search and grid search with Bayesian Optimization on
different environments. We executed these methods for 20 iterations each having 200 testing samples.
We report the mean and standard deviation of the number of counterexamples discovered.

Table 3: Comparison of Bayesian Optimization for finding counterexamples with other search methods. Each
method is executed for 20 iterations each having 200 testing samples

Environment Random Search Grid Search Bayesian Optimization

Pendulum-v0 2 ± 2.41 11 80.1 ± 1.85

Bipedal-Walker-v3 35.6 ± 6.58 39 40.6 ± 4.08

LunarLander-Continuous-v2 1.7 ± 2.67 3 40.85 ± 5.14

Cart-pole-v0 123.7 ± 5.33 159 174.4 ± 0.51

For the pendulum, lunar-lander environments the number of counterexamples discovered is very low
as random search and grid search do not target their search towards samples that had already violated
the optimization function. In contrast to random search, Bayesian Optimization samples the next
parameter value in an informed way to spend more time evaluating promising values. Grid search is
computationally expensive being an exhaustive method and heavily dependent on the step the size
chosen for the grid construction. In conclusion, Bayesian Optimization leads to fewer evaluations
of the objective function and the generation of more counterexamples compared to random or grid
search. It may be possible that biasing the random sampling in some way improves the effectiveness
of random sampling for these experiments, but that is not the focus of this paper.

1.4 Additional Details

Example 3.1 A simple neural network with 3 layers and the following architecture
(0): Linear(in_features=2, out_features=4, bias=True) (1): LeakyReLU(negative_slope=0.01)
(2): Linear(in_features=4, out_features=4, bias=True) (3): LeakyReLU(negative_slope=0.01)
(4): Linear(in_features=4, out_features=2, bias=True) (5): Softmax(dim=-1)
is trained using policy gradients to learn the policy for example 3.1. The input to the network is the
observed state and output is the probability of taking an action. The weights of layer 1 of the network
before (with violation of the safety specification) and after update are as follows:0.43851388 −0.55869913

0.5483277 0.48225728
0.5648445 −0.5123989
−0.5019785 0.3065937


0.43711564 −0.5587921

0.606144 0.48241794
0.6240289 −0.5121144
−0.4448014 0.306742


Where the first weight matrix corresponds to the original policy and the second weight matrix
correspond to the updated policy. The weight matrix for layer 2 of the neural network for example

3



Figure 3: Failure trajectories on Cartpole, Lunar Lander, Pendulum and Bipedal Walker environments

3.1 is as follows: −0.45758674 0.18934196 0.18558824 0.10932109
0.51084197 0.12021314 −0.41461787 0.39017412
0.19967748 −0.26843205 −0.429302 0.25509173
0.44522664 −0.37972566 −0.00260387 0.20933793


−0.4576021 0.18934736 0.24492319 0.10932587

0.5109593 0.12012553 −0.4133912 0.39011863
0.19976875 −0.26851338 −0.48902166 0.25499403
0.44514257 −0.3796423 0.05719553 0.20934303


And layer 3 is as follows:[

−0.48531273 −0.04153176 0.2852086 0.27305838
0.49918333 −0.40918258 −0.05026673 0.45694318

]
[
−0.4856912 −0.0415807 0.32630202 0.27319628
0.4995618 −0.40913367 −0.09136011 0.45680526

]
This example shows that the learnt weights of a policy can be minimally modified using counterex-
ample trajectories to correct the trajectories causing failure while retaining the good behaviour learnt
from optimizing the reward function.

4



Figure 4: Weight distribution over multiple iterations of gradient update of the original policy and the updated
policy for Cart-pole, Pendulum, Bipedal-Walker and Lunar Lander environment

5



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See section 6
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See section

7
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A] The paper
does not contain any theoretical results

(b) Did you include complete proofs of all theoretical results? [N/A]
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See Github link
in main paper

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See supplement materials

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Table 1

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 5

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] See supplement materials
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] The resource is publicly available for use and modification.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

6


	Appendix
	Implementation Details
	Experiments on MuJoCo Environment
	Additional Details on Bayesian Optimization
	Additional Details


