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InstructPix2Pix + VidRD

“A car is driving on the flooded road.”

“A wooden car is driving on the road.”

“A car is driving on the road, van Gogh style.”

“A rabbit is jumping on the floor.”

“A black rabbit is jumping on the grass.”

“A rabbit is jumping on the grass, cartoon style.”

“A car is driving on the road.”

ControlNet + VidRD

“A rabbit is jumping on the grass.”

Figure 1: FLDM can serve as a versatile plugin that can be applied to off-the-shelf image diffusionmodels (e.g., InstructPix2Pix [3]
and ControlNet [50]) and video diffusion models (e.g., VidRD [12]).

ABSTRACT
Latent Diffusion Models (LDMs) are renowned for their powerful
capabilities in image and video synthesis. Yet, compared to text-to-
image (T2I) editing, text-to-video (T2V) editing suffers from a lack
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© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

of decent temporal consistency and structure, due to insufficient pre-
training data, limited model editability, or extensive tuning costs. To
address this gap, we propose FLDM (Fused Latent Diffusion Model),
a training-free framework that achieves high-quality T2V editing by
integrating various T2I and T2V LDMs. Specifically, FLDM utilizes a
hyper-parameter with an update schedule to effectively fuse image
and video latents during the denoising process. This paper is the
first to reveal that T2I and T2V LDMs can complement each other in
terms of structure and temporal consistency, ultimately generating
high-quality videos. It is worth noting that FLDM can serve as a
versatile plugin, applicable to off-the-shelf image and video LDMs,
to significantly enhance the quality of video editing. Extensive
quantitative and qualitative experiments on popular T2I and T2V

1
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LDMs demonstrate FLDM’s superior editing quality than state-
of-the-art T2V editing methods. Our project page is available at
https://anonymous121381.github.io/FLDM/.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
Video editing, latent diffusion models, training-free framework

1 INTRODUCTION
Recently, diffusionmodels [16, 42] have achieved significant success
in image generation [7, 10, 20, 22, 29, 37, 38, 40], image-to-image
translation [39], text-to-image editing [3, 14, 18, 29] and image
inpainting [21, 25, 36]. The development of text-to-image (T2I)
generation and editing models has inspired text-to-video (T2V)
editing. A straightforward way of T2V editing is to utilize T2I
models, considering temporal consistency modeling with motion
conditions [4, 6], temporal propagation [5, 11, 17, 30] and temporal
modules [13, 32, 46]. Although T2I models have the advantage of
video editing with high-quality structure and appearance, the direct
adaptation from T2I models to T2V editing still has limitations in
temporal consistency if the edited target has significant changes in
shape [32] or motion [30]. Besides, the one-shot tuning strategy [1,
28, 46] suffers from low editability and training efficiency.

Therefore, another option is to develop video generation diffu-
sion models [2, 9, 15, 44] for video editing that can achieve decent
temporal consistency. Compared to the images generated by T2I
models, the videos generated by T2V generation models, despite
having good temporal consistency, still lack structural integrity
(e.g., textures, low resolution). The main reason is that obtaining
high-quality video data is more challenging compared to image
data, resulting in a smaller amount of video data available for train-
ing T2V generation models [44, 45]. Additionally, to achieve high-
quality video generation, T2V models require the incorporation of
numerous conditional controls during training, such as depth and
optical flow [9, 44], which increases the training cost compared to
T2I generation models.

To this end, to achieve high-quality video editing, typically eval-
uated with temporal consistency, text alignment, and aesthetics,
the question arises: Given T2I and T2V diffusion models, how can
we maximize their potential for superior T2V editing with min-
imal operations? In this paper, for the first time, we investigate
how to ensemble T2I and T2V diffusion models for video editing.
We introduce the FLDM (Fused Latent Diffusion Model) by fusing
multi-source LDMs, including T2I and T2V latent diffusion models.
Drawing inspiration from Prompt2Prompt [14], certain video edit-
ing methods such as FateZero [32] facilitate local editing through
attention map manipulation, which can achieve fine-grained edit-
ing results. However, this way cannot guarantee robust temporal
coherence and suffers from low editability. FLDM replaces attention
injection with latent fusion, which realizes an overall and global
editing.

Concretely, we extract latents from both T2V and T2I LDMs.
At every denoising timestep, we apply latent fusion with a hyper-
parameter to control the proportion of image to video latents. The

underlying intuition is that this allows us to balance temporal con-
sistency against structural integrity. The fused latents, enriched
with both temporal and semantic information from the respective
models, will undergo individual denoising by each model in the
subsequent timestep. This suggests that both models can leverage
supplemental information—namely, temporal modeling from T2V
LDMs and superior generation quality from T2I LDMs. However,
the excessive guidance from T2I LDMs may introduce image arti-
facts during the latent fusion process. To mitigate such side effects,
we adjust the fusion ratio for FLDMs during the denoising process
with an update schedule. Through extensive experiments with a
range of T2I and T2V LDMs, we’ve found that while T2V LDMs
struggle to maintain the structural integerity of the source video,
they are greatly enhanced by the complementary strengths of T2I
LDMs. Conversely, T2V LDMs excel in ensuring robust temporal
consistency in the edited videos, thereby elevating the overall qual-
ity of edits performed by T2I LDMs. Figure 1 displays several video
editing results using FLDM with InstructPix2Pix [3] and Control-
Net [50].

To sum up, we make the following contributions.

• We propose multi-source latent fusion, a straightforward
yet effective inference strategy that can seamlessly inte-
grate off-the-shelf T2I diffusion models with T2V diffusion
models.

• To the best of our knowledge, this work is the first to reveal
that T2I and T2V diffusion models can complement each
other effectively. Specifically, T2I models are essential for
providing structural integrity, while T2V models are crucial
for ensuring temporal consistency.

• Without any tuning process, our method achieves better
performance than other counterparts on both qualitative
and quantitative evaluations.

2 RELATEDWORK
2.1 Text-to-Image Generation
Before the advent of diffusionmodels, prominent text-to-image (T2I)
and text-to-video (T2V) generation works predominantly adopted
GAN [35, 49] or auto-regressive architectures [8, 34, 48]. Dhariwal
et al. [7] were among the first to present comparisons between
GANs and Diffusion Models in the context of image synthesis.
Their findings suggested that diffusion models outperformed GANs
in terms of diversity, stability of training objectives, and scalability.
Subsequently, a series of text-to-image generation models based
on the diffusion approach emerged [3, 18, 27, 29, 37, 38, 40, 50],
achieving high-fidelity generation.

While T2I diffusion models have achieved remarkable perfor-
mance in T2I generation, directly adapting these models for T2V
editing proves insufficient due to the absence of temporal consis-
tency modeling. Our method combines latents from both T2I and
T2V models to enhance temporal consistency without compromis-
ing the editing capability of the T2I model. With no additional
training or tuning required, the introduced latent fusion strategy is
adaptable to any off-the-shelf T2I or T2V diffusion model, enhanc-
ing editing quality with minimal adjustments.

2
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Figure 2: Denoising process of T2I and T2V LDMs (+ Van
Gogh style). First column: Without FLDM, T2I LDMs have
good structure preservation but lack temporal consistency,
T2V LDMs lack structure preservation but achieve good tem-
poral consistency. Last column: Both the structure and tem-
poral consistency of the edited videos are enhanced with
multi-source latent fusion (FLDM). Best viewed from project
homepage.

2.2 Diffusion Models for Video Editing
A prevalent approach to video editing using diffusion models in-
volves adapting T2I models to T2V models [41, 46]. This adaptation
often incorporates temporal modules to guarantee temporal consis-
tency. Tune-A-Video [46] integrates temporal attention layers into
UNet and conducts one-shot tuning. Meanwhile, Make-A-Video [41]
augments the network to encompass temporal information by ex-
tending it with spatial-temporal modules. However, fine-tuning
target videos can lead to over-fitting source prompts, potentially
diminishing the model’s editing capabilities. To address this, sev-
eral studies employ T2V diffusion models for video editing and
demonstrate promising results. [28] introduces a mixed fine-tuning
strategy for the Imagen Video model [15] that enhances motion
editing. [9] presents a video diffusion model trained with depth
information to govern video structure and content. Although these
methods have yielded remarkable results in video editing, training
T2V diffusion models poses a challenge due to the inherent diffi-
culty in collecting high-quality video data for training. Furthermore,
their primary focus is on enhancing T2V editing through mixed
video-image fine-tuning and joint video-image training, neglect-
ing the potential benefits of leveraging existing high-quality T2I
models.

Another avenue of research is inspired by Prompt2Prompt [14]
and Plug-and-Play [43], both ofwhich facilitate local editing through
attention map manipulation. [32] suggests blending self-attention
maps with masks produced by cross-attention maps to support

Algorithm 1 FLDM for T2V Editing
Input: Latent features from DDIM inversion by T2V and T2I

model: z𝑉
𝑇
, z𝐼

𝑇
, target prompts 𝑃 , fusion timestep 𝜏 , fusion ratio 𝛼𝜏 .

Output: Denoised latent z0∗

1: for 𝑡 = 𝑇,𝑇 − 1, ..., 1 do
2: z𝐼

𝑡−1 ← DDIMT2I (z𝐼𝑡 , 𝑃, 𝑡);
3: z𝑉

𝑡−1 ← DDIMT2V (z𝑉𝑡 , 𝑃, 𝑡);
4: if 𝑡 ≤ (𝑇 − 𝜏) then
5: z∗

𝑡−1 = 𝛼𝑡 ∗ z𝑉𝑡−1 + (1 − 𝛼𝑡 ) ∗ z
𝐼
𝑡−1;

6: 𝛼𝑡−1 = 𝛼𝑡 + (1 − 𝛼𝜏 )/(𝑇 − 𝜏);
7: z𝐼

𝑡−1 ← z∗
𝑡−1;

8: z𝑉
𝑡−1 ← z∗

𝑡−1;
9: end if
10: end for
11: return z∗0

zero-shot video editing. Meanwhile, [24] introduces a decoupled-
guidance attention control, adapting P2P to Video-P2P. However,
these methods require extensive manual adjustment of the param-
eters in the attention map, making them challenging to apply in
practical scenarios.

In this paper, we introduce a simple-yet-effective latent fusion
strategy that harnesses the strengths of both T2I and T2V diffusion
models for T2V editing without requiring any tuning. For the first
time, this study demonstrates that T2I and T2V diffusion models
complement each other.

3 METHOD
Our objective is to maximize the advantages of the existing text-
to-image (T2I) and text-to-video (T2V) diffusion models in terms
of structure integrity and temporal consistency, aiming to achieve
high-quality T2V editing. Given a video V containing𝑚 frames,
denoted as V = {x𝑖 | 𝑖 ∈ [1,𝑚]}, T2V editing aims to generate
a new video conditioned on an editing text prompt 𝑃 . In this sec-
tion, we first introduce the preliminaries of the diffusion model in
Section 3.1, including latent diffusion models [37] and DDIM inver-
sion [42]. Then the detail design of FLDM (Fused Latent Diffusion
Model) will be introduced in Section 3.2 and Section 3.3.

3.1 Preliminaries
Latent Diffusion Models (LDMs). LDMs denoise noisy latents in
the latent space. First, an image x undergoes compression via an
encoder E, producing a latent representation z = E(x), which is
reconstructed back into an image through a decoder D. A U-Net
𝑈𝜃 is applied as the denoising model to predict the noise, which is
optimized by minimizing the following objective

min
𝜃

𝐸𝝐∼N(0,I),𝑡∼U(1,𝑇 ) ∥𝝐 −𝑈𝜃 (z𝑡 , 𝑡, 𝑃)∥22 , (1)

where z𝑡 is the noisy latent at timestep 𝑡 and 𝑃 is the conditional
text embedding.
DDIM Inversion. Deterministic DDIM sampling inverts the noisy
latent z𝑇 to a clean latent z0, the sampling process is expressed as

z𝑡−1 =
√
𝛼𝑡−1

z𝑡 −
√

1 − 𝛼𝑡 �̂�√
𝛼𝑡

+
√

1 − 𝛼𝑡−1�̂� (2)
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Figure 3: FLDM framework for T2V editing. During the inference stage, the input video is encoded via VAE Encoder to be a
clean latent 𝑧0 ∈ R𝑓 ×𝑐×ℎ×𝑤 and then inverted to be a noisy latent 𝑧𝑇 ∈ R𝑓 ×𝑐×ℎ×𝑤 through DDIM inversion. During the first 𝜏
timesteps, the T2V LDM and T2I LDM predict noise for noisy latent respectively. In the next 𝑇 − 𝜏 timesteps, a multi-source
latent fusion module is applied to fuse denoised latents from T2V and T2I LDMs.

where �̂� is the predicted noise and 𝛼𝑡 is the multiplication of vari-
ances at timestep 𝑡 . DDIM inversion is the reverse process of DDIM
sampling, it converts a clean latent z0 to a noised latent ẑ𝑇 which
can preserve the structure information in real images.

ẑ𝑡 =
√
𝛼𝑡

ẑ𝑡−1 −
√

1 − 𝛼𝑡−1�̂�√
𝛼𝑡−1

+
√

1 − 𝛼𝑡 �̂� (3)

3.2 Multi-source Latent Fusion
As depicted in Figure 2, video editing conducted separately by T2I
and T2V LDMs, without the integration of FLDM, reveals distinct
drawbacks. T2I LDMs, although adept in frame-wise editing, tend to
cause flickering issues, e.g., the tree in the background has obvious
shape changes across frames. Similarly, T2V LDMs, despite their
ability to maintain temporal consistency, often compromise on
structural quality, e.g., the car shape is different from the original
car (see the first row in Figure 1). FLDM addresses these issues by
strategically fusing the latents of both T2I and T2V LDMs during
the denoising process. As the denoising timesteps progress, there
is an improvement in both the structural integrity and temporal
consistency of the video edits.

Figure 3 shows the FLDM pipeline of video editing with multi-
source latent fusion. Given the source video Vsrc and a target
prompt 𝑃 , the VAE Encoder compresses the input video into a clean
latent z0 ∈ R𝑓 ×𝑐×ℎ×𝑤 , where 𝑓 represents the number of frames in
the source video. Then we apply DDIM inversion with T2V and T2I
LDMs, which makes use of the source prompt, to invert the clean
latent into noisy latents z𝑉

𝑇
∈ R𝑓 ×𝑐×ℎ×𝑤 and z𝐼

𝑇
∈ R𝑓 ×𝑐×ℎ×𝑤 .

Afterward, T2V and T2I LDMs are applied to predict noise. Note
that the T2I LDMs predict noise frame-by-frame and the denoised
T2I latents are concatenated at the temporal dimension. Then we
apply latent fusion by combining the denoised latents from T2V
and T2I LDMs. As a result, a mixed noisy latent z∗𝑡 is generated for
the next denoising timestep

z∗𝑡 = 𝛼𝑡 z𝑉𝑡 + (1 − 𝛼𝑡 )z𝐼𝑡 (4)

where the hyper-parameter 𝛼 controls the ratio of T2V and T2I
latents. A larger 𝛼 ensures better temporal consistency but does

harm to structure and text alignment, while if 𝛼 is too small, it
would degrade to frame-wise editing with T2I LDMs.

Notice that, our method is a versatile plugin that can work for
latent diffusion models within the same latent space. We need to
ensure that two LDMs share the same VAE Encoder and Decoder.
Most LDMs are trained on the basis of Stable Diffusion [37], where
the weights of VAE are frozen and remain unchanged. As we utilize
off-the-shelf T2I LDMs and T2V LDMs for joint denoising, the edit-
ing results depend on the fused models. Specifically, the temporal
modeling capability of T2V LDMs affects the temporal consistency
of edited video frames, while the spatial structure of the videos is
related to T2I LDMs.

3.3 Fusion Ratio Update Schedule
In practice, we notice that fusing multiple latents at the early dif-
fusion steps results in noisy output, since latent fusion may break
the structure of videos. As a result, we let T2V and T2I LDMs infer
separately in early 𝜏 steps and perform latents fusion at afterward
steps. Although 𝛼 balances the ratio of temporal consistency and
structure modeling, a fixed 𝛼 may bring too much guidance from
T2I LDMs at the end of the denoising process, thus causing tempo-
ral inconsistency in generated videos. Since T2V LDMs are able to
generate temporal coherent videos, we increase the ratio of T2V
latents at the end of the denoising process. We propose an update
schedule for the fusion ratio, wherein the ratio is incrementally
increased after each latent fusion step as following:

𝛼𝑡−1 = 𝛼𝑡 + (1 − 𝛼𝜏 )/(𝑇 − 𝜏) (5)

where 𝑇 is the total number of denoising steps, 𝛼𝑡 is the fusion
ratio at timestep 𝑡 . In practice, we start to increase 𝛼𝑡 at timestep
𝜏 . The initial fusion ratio 𝛼𝜏 ranges between [0, 1]. Formally, the
algorithm is shown in Algorithm 1.

FLDM aims to augment the capability of T2V models through
T2I models, ensuring that T2V models retain a prominent position.
So T2V latents should be allocated a larger propotion. The T2V

4
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Figure 4: Qualitative comparison with SOTA approaches. FLDM has the best textual alignment, temporal consistency, and
fidelity.

signals and T2I signals in fused latents can be calculated as:

S𝑉 =

∫ 𝑇

𝜏

𝛼𝑡𝑑𝑡 (6)

S𝐼 =
∫ 𝑇

𝜏

(1 − 𝛼𝑡 )𝑑𝑡 (7)

As 𝛼𝑡 changes in a linear manner, we can calculate the difference
between the T2V and T2I contributions:

𝛿 = S𝑉 − S𝐼 = 2𝛼𝜏 (𝑇 − 𝜏) > 0 (8)

which means T2V signals take a dominant role. On the other hand,
a linear update schedule ensures a smoother denoising process than
a polynomial way.

4 EXPERIMENTS
4.1 Experiment Settings
Implementation Details. We attempt to apply FLDM to various
T2I and T2V diffusion models to validate the effectiveness. For the
diffusion model gallery, we consider popular T2I diffusion models
including ControlNet [50] and InstructPix2Pix [3] loaded with pre-
trained weights from Stable Diffusion v1.5 [37]. Although there
are some high-quality video diffusion models [9, 15, 45], unfortu-
nately, they can not be accessed. Therefore, we take the publicly
available VidRD [12] and ZeroScope [26] with released pre-trained
weights. We then sample 8 frames uniformly from input videos
with a resolution of 256p for all models. For T2V models fused with

ControlNet, we use ControlNet with canny edge condition and set
the total timestep𝑇 = 50 for DDIM schedule. For T2V models fused
with InstructPix2Pix, we set the total timestep 𝑇 = 100 and the
classifier-free guidance scale of text to 12.5 and of image to 1.5. We
select 16 videos from DAVIS dataset [31] for evaluation, which are
part of the TGVE benchmark [47]. For each video, there are three
types of text prompts for video editing including style, object, and
background.
Evaluation Metrics. Following previous text-to-video editing
works [9, 32, 46], we conduct both quantitative and qualitative eval-
uations for FLDM. For quantitative evaluation, we utilize automatic
metrics including frame consistency (‘Tem-Con’), text alignment
(‘Text-Align’), user preference (‘User-Pre’) with CLIPScore [33]
and PickScore [19]. For user study, three metrics (denoted as ‘Edit’,
‘Image’, and ‘Temp’) are conducted to evaluate editing quality,
frame fidelity, and temporal consistency of edited video. Following
[23], we recruit 20 evaluators to pair-wisely compare our method
with baselines, and present the preference percentage with “𝑝1/𝑝2”
where 𝑝1 denotes the preference percentage of baseline, 𝑝2 denotes
the preference percentage of our method.

4.2 Main Results
Baselines. We test two T2I models ControlNet (CN) and Instruct-
Pix2Pix (IP2P), and two T2V models VidRD and ZeroScope (ZS)
under the individual testing setting (T2I or T2V) and FLDMs testing
setting (T2I + T2V). In addition, we compare ourmethod against two
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Figure 5: Object, background, and style editing results of FLDM. In comparison with T2I models only, FLDM with VidRD
generates more consistent frames. Compared to videos edited by VidRD only, FLDM is superior in structure and fidelity.
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Table 1: Automatic evaluation of FLDMs and other baseline
methods. FLDMs achieve the best textual alignment, user
preference, and comparable temporal consistency.

Method CLIP Mertics PickScore
Inversion & Editing Tem-Con Text-Align User-Pre

Framewise IP2P [3] 86.76 25.11 20.33
Framewise CN & DDIM [50] 80.02 25.41 20.12
Tune-A-Video & DDIM [46] 90.45 27.13 20.42
FateZero [32] 92.92 23.81 20.22

VidRD & DDIM [12] 92.03 27.18 20.58
ZS & DDIM [26] 90.24 27.49 20.58

FLDMs
VidRD + IP2P 89.28 26.71 20.66
VidRD + CN 90.14 27.43 20.64
ZS + IP2P 90.12 27.50 20.68
ZS + CN 88.24 27.70 20.60

Table 2: User preference of FLDMs and other baseline meth-
ods. FLDMs achieve the highest human preference over all
evaluation metrics and outperform all baselines by a clear
margin.

Method User Study
Inversion & Editing Edit Image Temp

Framewise IP2P [3] 31.60 / 68.40 47.90 / 52.10 5.25 / 94.75
Framewise CN & DDIM [50] 21.10 / 78.90 10.50/ 89.50 10.50 / 89.50
Tune-A-Video & DDIM [46] 33.32 / 66.68 20.18 / 79.82 18.43 / 81.57
FateZero [32] 35.10 / 64.90 39.63 / 60.37 35.10 / 64.90
VidRD & DDIM [12] 32.65 / 67.35 5.25 / 94.75 35.80 / 64.20
ZS & DDIM 34.75 / 65.25 39.50 / 60.50 40.25 / 59.75

state-of-the-art video editing methods including Tune-A-Video [46]
and FateZero [32].
Applications. We show three example applications including 1)
Object editing: Our method has a significant use case in altering
objects by manipulating text prompts. This enables effortless re-
placement, addition, or removal of objects. For example, we can
replace “goldfish" with “koi fish" or “sharks" (see Figure 5). When
using our method with InstructPix2Pix, the instruction can be “re-
place the goldfish with koi fish" or just “turn them sharks". 2) Back-
ground change: Another application of our method is to change
the background of video. When altering the location of the object,
our method maintains the coherence of the object’s motion. For
example, we can modify the background of the rabbit in Figure 1
to be “on the floor", and add shadow of the rabbit that doesn’t exist
in the origin video. Figure 5 shows the results of editing “tank”
to be “snowy-covered tank”. 3) Style transfer : Through taking the
knowledge from T2I models in open domains, FLDM can facilitate
transforming videos into diverse styles that are challenging to ac-
quire solely from video data. For example, we transform real-world
videos into cartoon style (Figure 1), or Van Gogh style (Figure 5),
by adding style descriptors to the prompt.
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Figure 7: Temporal consistency and text alignment result
with various fusion ratios 𝛼 . Temporal consistency can be
improvedwith larger 𝛼 , and T2V and T2Imodels complement
each other in textual alignment.

Qualitative Results. We showcase visual comparisons of our
method against other baselines from Figure 4 to Figure 6. In Fig-
ure 5 and Figure 6, we present the effects of fusing T2I models
with VidRD and ZeroScope separately. In the case of goldfish, In-
structPix2Pix has superior capabilities of frame-wise editing, while
lacking consistency between frames (e.g., the appearance of koi
fishes exhibits significant variations). In contrast, videos gener-
ated by VidRD individually have decent temporal consistency but
lack original structure (e.g., background details). When applying
FLDM to VidRD and InstructPix2Pix, both temporal consistency
and structural integrity can be improved. In Figure 6, we observed
that ZeroScope (ZS) achieves satisfactory video editing results with
DDIM inversion. However, FLDM can further enhance the visual
aesthetics and fidelity of the generated videos (e.g., the cartoon
rabbit generated by FLDM is more similar to the original rabbit). In
Figure 4, we compare FLDMs with two state-of-art video editing
methods. We find Tune-A-Video struggles to keep the fidelity of the
original video (e.g., the car is different from the one in the original
video) since it lacks regional control. Besides, videos generated
by FateZero fail to align with target prompts well (e.g., Vermeer
painting style) without carefully tuning on word strength hyper-
parameters. It is worth noting that FLDM is more efficient than
SOTAs since it does not require any model tuning [46] or heavy
handcrafted hyper-parameter tuning [32].
Quantitative Results.We use automatic metrics to quantify our
method against baselines in Table 1. Results indicate that com-
pared to editing with T2V models only, FLDM achieves higher
user preference and better textual alignment at the cost of a slight
loss of temporal consistency. FateZero demonstrates good frame
consistency but struggles to achieve accurate text-guided editing.
Tune-A-video excels in both temporal consistency and textual align-
ment. In comparison, our method outperforms these two methods
in textual alignment and achieves comparable temporal consistency.
The user study results are shown in Table 2, which indicates our
method is preferred by users across all metrics.
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Figure 8: Ablation of Initial Fusion Ratio 𝛼 . The editing
prompts are “a jeep car is moving on the road, cartoon style."
and “a jeep car is moving on the beach.".

4.3 Ablation Study
For all the ablation experiments, we take VidRD as the T2V model,
which is fused with T2I models (ControlNet and InstructPix2Pix)
through FLDM if not other mentioned.
Ablation of Initial Fusion Ratio 𝛼 .We conduct extensive experi-
ments with various fusion ratios 𝛼 as shown in Figure 7 and have
the following observations: 1) For temporal consistency, the larger
𝛼 makes T2V latents have larger weight in fused latents which
advances temporal consistency for generated videos. 2) For text
alignment, there is one optimal value between [0, 1] which indicates
that T2V and T2I models are complementary for text alignment,
probably because the T2V model is trained with large-scale video
datasets that have rich action concepts in complementary with T2I
text prompts [45]. Figure 8 shows some samples generated with
two T2I architectures fused with the T2V model. As we can see, the
frame-wise editing (only T2I) performs worst since it ignores the
temporal relation among frames. While with a T2V model and a
suitable fusion ratio 𝛼 , the temporal consistency can be improved
clearly. Since training a T2V diffusion model is expensive in col-
lecting datasets and computational cost, we can make the most
use of existing T2I models to enhance T2V editing with FLDM.
Considering the trade-off between temporal consistency and text
alignment, we fuse a smaller proportion of T2I latents compared to
T2V latents in practice.
Ablation of 𝜏 . Table 3 shows the quantitative results of differ-
ent 𝜏 . Figure 9 illustrates the effectiveness of hyper-parameter 𝜏
which decides from which denoising timestep we start to perform
FLDM. When FLDM starts at an early timestep (e.g., 𝜏 <= 30 for
InstructPix2Pix), it may destroy the edited video structure since
T2V latents are incorporated into the denoising process too early. If
FLDM starts too late (e.g., 𝜏 >= 45 for ControlNet), the T2I latents
would take too much proportion throughout the denoising process,
as a result, destroy temporal consistency for the edited video. As
shown in Figure 9, the car in the bottom row exhibits artifacts.
Ablation of 𝛼 Update Schedule As we can see from Figure 10,
the 𝛼 update schedule can improve temporal consistency, e.g., the

ControlNet + VidRD (T=50)InstructPix2Pix + VidRD (T=100)

𝜏
=
30

𝜏
=
50

𝜏
=
70

𝜏
=
45

𝜏
=
25

𝜏
=
5

Figure 9: Effects of 𝜏 , the timestep that FLDM starts to fuse
T2V latents with T2I latents during the denoising process.

Table 3: Ablation study of different 𝜏 .

Method timestep(𝜏 ) CLIP Mertics PickScore
Tem-Con Text-Align User-Pre

VidRD + IP2P
30 88.73 24.89 20.42
50 89.09 24.95 20.49
70 88.11 24.79 20.43

VidRD + CN
5 86.59 27.55 20.60
25 90.14 27.43 20.64
45 82.60 25.41 20.14
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Figure 10: Effectiveness of update schedule for fusion ratio
𝛼 , examples show it can improve temporal consistency while
reducing image artifacts.

appearance of the car (Left: InstructPix2Pix + VidRD) and the beach
(Right: ControlNet + VidRD) can be better preserved among video
frames with the update schedule. This illustrates that, with decayed
T2I latent proportion at the last𝑇 −𝜏 timesteps, the update schedule
further reduces T2I latents’ negative effect on temporal consistency.

5 CONCLUSION
In this paper, we propose FLDM (Fused Latent Diffusion Model), a
simple-yet-effective strategy that achieves high video editing qual-
ity without any tuning cost. For each denoising timestep, we apply
a hyper-parameter to adjust the latent ratio of T2V and T2I diffusion
models, with an update schedule to alleviate image artifacts. For the
first time, we reveal that T2V and T2I diffusion models are comple-
mentary to each other in temporal consistency and structure. Our
method can serve as a versatile plugin for various off-the-shelf T2I
and T2V models, which we believe will be valuable for real-world
practice.
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