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Bansal, and Huaxiu Yao. Analyzing and mitigating object hallucination in large vision-language
models. arXiv preprint arXiv:2310.00754, 2023b.

A LIMITATIONS AND DISCUSSIONS

In this work, we observe intriguing findings regarding LLVMs under various experimental settings.
To provide a clear and well-defined scope for our conclusions, we further discuss the limitations of
the experimental setup for our findings (or claims), explore the most plausible application directions
based on our findings, and offer meaningful insights for future research directions for each finding.

A.1 LIMITATIONS

Overall, our experiments have several limitations regarding model- and dataset-side generalizability,
which are important for a more rigorous analysis. For instance, we primarily evaluate LLVMs on
VQA-style tasks, including free-form and multiple-choice question types, and focus exclusively on
the LLaVA family. To improve the generalizability of our findings, future work should explore
experiments on other LLVMs, such as Qwen2-VL Wang et al. (2024), and extend evaluations to
additional datasets (e.g., image captioning datasets). Furthermore, demonstrating the impact of
model scaling would provide stronger support for our conclusions. Below, we present the specific
limitations for each section.

Limitations: Section 3.3. In Figure 1, obtaining the results required running computations for the
full number of visual patch tokens, which is highly resource-intensive. This is especially challenging
given the large number of visual patch tokens required by recent LLVMs—for example, 576 for
LLaVA-1.5 and more than 1,000 for Qwen2-VL Wang et al. (2024).

Limitations: Section 3.4. Synthesized images were generated using LLaVA-OneVision-7B Li
et al. (2024b) with the prompt template: “Please generate a caption of this image.” and
SDXL-Lightning Lin et al. (2024). To improve robustness, future experiments should explore
captions with varying levels of detail, from concise to highly detailed, by using alternative prompt
templates, specialized captioning models (e.g., ShareCaptioner 4 Chen et al. (2023a)), or more
advanced text-to-image generation models that outperform SDXL-Lightning. Incorporating these
variations would enhance the reliability of our conclusions.

Limitations: Section 3.5. During patch-dropping, we employed the dino-small Caron et al.
(2021) model for both Salient PatchDrop and Non-Salient PatchDrop. The impact of patch
dropping is likely to vary depending on the size and type of self-supervised vision model used (e.g.,
large-scale DINO), potentially leading to differing patterns of performance degradation.

Limitations: Section 3.6. While we evaluated visual perception capabilities across various image
datasets, many domain-specific image datasets exist in the real world. To draw more generaliz-
able conclusions, it would be beneficial to evaluate additional datasets, such as the VTAB bench-
mark Zhai et al. (2019). Additionally, we investigated catastrophic forgetting by following existing
experimental setups from the prior study Zhai et al. (2024). However, comparing LLVMs with
contrastive approaches (e.g., CLIP) may be unfair due to multiple factors influencing LLVM perfor-
mance, such as prompt variations and methods for calculating accuracy from the generated text. To
enable a more rigorous analysis, future work should explore different prompt methods and fine-tune
LLVMs on zero-shot image classification datasets (e.g., CIFAR-100) to assess whether perception
capabilities improve. Regarding the LLM-dominance problem during visual instruction tuning, con-
firming this phenomenon is challenging. To test it effectively, LLVMs should be trained with identi-
cal datasets but varying LLM sizes and vision encoder scales. Alternatively, other types of LLVMs
that incorporate external computer-vision models (e.g., segmentation models) such as MoAI Lee
et al. (2024e) could be evaluated. Using visually enhanced LLVMs would strengthen this argument.
In addition, for Figure 7, evaluating cross-modal alignment on a broader variety of datasets, such

4https://huggingface.co/Lin-Chen/ShareCaptioner
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as CC12M Changpinyo et al. (2021), WIT Srinivasan et al. (2021), and RedCaps12M Desai et al.
(2021), would provide a better understanding of the findings. Expanding this evaluation to various
LLVMs, such as LLaVA-OneVision and Qwen2-VL, would also yield more comprehensive insights.

Limitations: Section 3.7. In Figures 8 and 9, obtaining the importance scores is computationally
expensive. For a single run, we calculate the importance scores for each group-wise position (e.g.,
36 positions for LLaVA-1.5), and we repeat the experiment K times (with K = 10). This results in
a total of 360 experiments per benchmark. Similarly, the computation for layer importance is also
resource-intensive.

A.2 DISCUSSIONS

Here, we present several discussions based on our findings.

Findings: Permutation Invariance. We suggest that future work focuses on two key directions.
First, it is essential to develop more challenging benchmarks that better explore LLVMs’ capabilities.
Such benchmarks should prioritize free-form question types and avoid including “blind” samples Fu
et al. (2024); Li et al. (2024a) that models can solve using commonsense reasoning without actually
perceiving the image. Building multi-turn interactive conversation benchmarks, like MMDU Liu
et al. (2024d), could be particularly useful in this context. Second, since LLVMs generally exhibit
permutation invariance, visual patch tokens can be treated as independent elements, allowing images
to be represented as unordered sets of points. Applying paradigms like “Context Clusters,” Ma
et al. (2023) which rely on clustering algorithms rather than convolutions or attention mechanisms,
could improve interpretability and training efficiency. Furthermore, this approach could facilitate
generalization to other data domains, such as point clouds Ma et al. (2022), RGB-D data, or sensory
images Yu et al. (2024), broadening the applicability of LLVMs.

Findings: Sensitivity to Spatial Structures. One future direction is to develop more robust
LLVMs that can handle spatial disruptions. Real-world images often lack perfect clarity—details
may be missing, images may be flipped, or other disruptions may occur. To address this, we pro-
pose incorporating randomly shuffled images into the training process. By framing this as a jigsaw
puzzle Chen et al. (2023b) task, models can be trained to reconstruct the original positions of im-
age patches. This approach could enhance their robustness to spatial variations, making them more
applicable to real-world scenarios.

Findings: Catastrophic Forgetting. Balancing perception and cognitive reasoning capabilities is
critical. The “catastrophic forgetting” problem Kirkpatrick et al. (2017) has been a long-standing
issue in machine learning. A standard approach is to train models on mixed datasets Ke et al. (2020);
Gururangan et al. (2020) with a carefully designed balance (a “golden ratio”) between perception-
and reasoning-related data. Continuously training LLVMs on perception-focused datasets following
rehearsal methods Rebuffi et al. (2017) can minimize catastrophic forgetting by retaining knowledge
of prior tasks while learning new ones. Knowledge distillation Jin et al. (2021) from large-scale
LLVMs (e.g., 72B parameters) to smaller-scale models (e.g., 7B parameters) could help preserve
perception capabilities while maintaining reasoning strength. Alternatively, fine-tuning adapters
(e.g., p-tuning Liu et al. (2021), LoRA Hu et al. (2021), Q-LoRA Dettmers et al. (2024)) on task-
specific datasets offers a lightweight solution to improve performance on new tasks without sacri-
ficing existing capabilities.

Findings: Cross-modal Alignment in the Platonic Representation Hypothesis. Maintaining
the original cross-modal alignment is critically important. Continual learning methods (presented
above) could be applied to mitigate the loss of alignment during visual instruction tuning. Enhanc-
ing the visual perception capability of the projector during training could also help. For instance,
employing models such as HoneyBee Cha et al. (2024), which incorporate convolution layer-based
projectors, could improve localized understanding. Convolution layers are well-known for their
strong inductive bias toward localized feature extraction, making them better suited for capturing
fine-grained details in images. Even with the inclusion of complex instruction datasets (e.g., charts,
math), a carefully designed projector that excels at extracting detailed and localized information
from images could naturally improve both perception and reasoning capabilities. We hypothesize
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that enhancing localized perception would inherently lead to improvements in reasoning, aligning
the two capabilities more effectively.

Findings: Importance of Central Visual Tokens. Based on our observations, reducing redun-
dant visual tokens in the projector could enhance training and inference efficiency, aligning with
findings from prior studies Alayrac et al. (2022); Cha et al. (2024); Xue et al. (2024). Typically, the
large number of visual tokens poses a computational burden. This is particularly relevant for real-
world scenarios where interleaved format-style conversations Li et al. (2024c); Lee et al. (2024h)
are predominant. High visual token counts can make it challenging to train more effective LLVMs
for such interleaved conversational formats. Our findings provide a practical direction for reduc-
ing visual token counts while maintaining performance. By doing so, we can enable the training
of interleaved-format LLVM models more efficiently, similar to approaches highlighted in previous
research Xue et al. (2024).

Findings: Importance of Lower Layer. Based on our observations, we emphasize the importance
of the traversing layers (TroL) approach Lee et al. (2024b), in improving generalization. In this
approach, models are trained to revisit and leverage layer-specific information during the training
process. The paper demonstrates that lower layers are more actively engaged, which aligns with our
findings. These results suggest that the lower layers of LLVMs play a critical role in establishing a
foundational understanding of the world. To enhance this capability, increasing the signal for world
understanding in the lower layers during training could be a promising direction. One potential
method is injecting noise information into the lower layers during training, as suggested in a prior
study Jain et al. (2023). This technique could improve the robustness of LLVMs, further solidifying
their foundational perception and reasoning capabilities.

Findings: Relative Importance of Modalities. While the textual modality appears more influen-
tial in higher layers, improving the visual perception capability in lower layers is crucial. This is
because LLVMs rely heavily on understanding the given image during the initial processing stages.
As suggested in prior works Cha et al. (2024); McKinzie et al. (2024), using a larger number of visual
tokens, adopting high-resolution image processing Li et al. (2024c), or employing dynamic image
processing methods Wang et al. (2024); Li et al. (2024b) is essential for enhancing performance.
Furthermore, strengthening the projector’s capability for localized visual understanding Cha et al.
(2024) could be beneficial. For instance, after the initial image-caption alignment step (commonly
the first step in LLVM training), an additional training phase called “empowering localized under-
standing” could be introduced before visual instruction tuning. This phase would involve adding an
extra layer, referred to as the “AL” (Augmented Layer), on top of the simple linear layer. The AL
would be trained using a masked autoencoder (MAE) approach He et al. (2022), where the model
learns to predict masked image patches. This process would enhance localized visual understanding,
ultimately improving the balance between visual and textual modalities and boosting overall model
performance.

B ADDITIONAL EXPLANATION OF PLATONIC REPRESENTATION
HYPOTHESIS

In Section 3.6, we investigate how effectively a trained projector preserves cross-modal alignment,
drawing on the Platonic Representation Hypothesis Huh et al. (2024). In this section, we provide
a detailed explanation of (1) the definition of the Platonic Representation Hypothesis, (2) the align-
ment metric, and (3) the methodology used to measure alignment in our experiment.

B.1 DEFINITION OF THE PLATONIC REPRESENTATION HYPOTHESIS

Traditionally, different types of AI models represent the world in fundamentally different ways.
For instance, when presented with the same reality (e.g., an image, as illustrated in Figure 10),
self-supervised vision models might focus on shapes, colors, and optical effects — features critical
to visual understanding — while LLMs might emphasize semantic meanings and syntactic struc-
tures. Recently, researchers have developed LLVMs by jointly training vision models and LLMs,
encouraging them to interpret and represent the world in a more unified manner. The Platonic Rep-
resentation Hypothesis posits that neural networks, trained with distinct objectives on different data
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Figure 10: Images (X) and text (Y ) are projections of a common underlying reality (Z). We con-
jecture that representation learning algorithms will converge on a shared representation of Z, and
scaling model size, as well as data and task diversity, drives this convergence. For clarity, this figure
and its caption have been taken exactly as they appear in the original paper Huh et al. (2024).

modalities, converge toward a shared statistical model of reality in their representation spaces. In
the original paper introducing this hypothesis, the authors demonstrated a strong level of alignment
between the representations of models trained on disparate modalities (e.g., Figure 3 in the original
paper). Based on these findings, we argue that the alignment between models trained on different
modalities should not only be preserved but potentially strengthened.

B.2 ALIGNMENT MEASUREMENT.

To evaluate the alignment between representations from two models, we employ the Mutual k-
Nearest Neighbor (MNN) Metric. This metric focuses on local similarity by computing the inter-
section of the k-nearest neighbor sets for each sample from the two models’ representation spaces.
The alignment is then measured based on the size of these intersections, as detailed below.

Mutual k-Nearest Neighbor Metric. Let f and g denote the representation functions of two mod-
els, and let X represent the data distribution (e.g., an image-caption dataset).

1. The representations for a mini-batch of samples {xi, yi}bi=1 are defined as:

ϕi = f(xi), ψi = g(yi), i = 1, . . . , b,

where Φ = {ϕ1, . . . , ϕb} and Ψ = {ψ1, . . . , ψb} represent the feature sets produced by
models f and g, respectively.

2. For each feature ϕi and ψi, the k-nearest neighbor sets are computed as:

S(ϕi) = {k nearest neighbors of ϕi}, S(ψi) = {k nearest neighbors of ψi}.

3. The alignment for a given pair of features (ϕi, ψi) is defined as the normalized size of the
intersection of their k-nearest neighbor sets:

mNN(ϕi, ψi) =
1

k
|S(ϕi) ∩ S(ψi)|,

where |·| represents the size of the intersection.
4. The overall alignment for the mini-batch is computed as the average alignment across all

samples:

MNN =
1

b

b∑
i=1

mNN(ϕi, ψi).
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B.3 HOW TO MEASURE IN OUR EXPERIMENT

To assess the alignment between a suite of large language models (LLMs) and vision models, we
utilize the image-caption pair dataset DOCCI Onoe et al. (2024). Specifically, in DOCCI, the dataset
consists of image-caption pairs

D = {(xi, yi)}|D|
i=1,

where xi denotes the image and yi denotes the corresponding caption text.

For our experiment, we prepare three models: an LLM (fL), a vision encoder from a vision-language
model without visual instruction tuning (fV ), and a vision encoder with a projector, representing a
vision-language model with visual instruction tuning (fV P ). The vision encoder in fV P is kept
identical to fV . For example, CLIP-L/336px is used as the vision encoder for both fV and fV P

when paired with LLaVA-1.5.

In our experiment, we explore the degree of alignment lost after visual instruction tuning, guided
by the Platonic representation hypothesis. We assume that in a successful LLVM, the projector
should effectively represent the visual world and enable the LLM to understand and interpret the
given image accurately. We calculate two alignment scores: one between fL and fV , and another
between fL and fV P . The discrepancy between these scores reflects the extent to which alignment
performance deteriorates.

To compute the alignment scores, we follow these steps:

1. Extract features from fL by providing the input text yi. We then apply average pooling to
all the extracted hidden states.

2. Extract features from fV by providing the image xi, using only the feature corresponding
to the [CLS] token.

3. Extract features from fV P by providing the image xi, applying average pooling to all visual
patch tokens (e.g., 576 tokens in LLaVA-1.5) produced by the projector.

Finally, we calculate the alignment scores using these extracted features via the mutual nearest-
neighbor alignment metric.

B.4 MOTIVATION BEHIND SELECTING THE DOCCI DATASET

We posit that the ability to perceive and reason based on complex images (e.g., charts, mathematical
representations, code snippets, and diagrams) is crucial for creating a helpful assistant. However,
we believe that an LLVM must first excel at understanding more natural scenes to become a broadly
applicable personal AI assistant, such as one integrated into smart glasses (e.g., Meta AI’s glasses5)
or real-time cameras (e.g., Project Astra 6). To achieve effective alignment between the language
and vision modalities, we require paired datasets where the captions provide detailed descriptions
of the corresponding images. These descriptions must include essential visual features such as
attributes, spatial relationships, object counts, objects, text rendering, viewpoints, optical effects,
and world knowledge. Based on this criterion, we sought an image-caption pair dataset emphasizing
(1) natural scenes and (2) highly descriptive captions. The DOCCI dataset meets these requirements
effectively. Of course, other datasets could also be considered as candidates, such as Localized
Narratives Pont-Tuset et al. (2020), CC12M Changpinyo et al. (2021), COCO-Caption Lin et al.
(2014), WIT Srinivasan et al. (2021), or RedCaps12M Desai et al. (2021). In future work, we plan
to conduct additional experiments to enhance the generalizability of our observations.

C ADDITIONAL EXPLANATION OF IMPORTANCE SCORE

In Section 3.7, we investigate the model’s behavior to assess the importance of either a specific layer
or a visual token when performing downstream tasks. We hypothesize that introducing arbitrary
noise to a specific component — either a layer block or a visual token — will significantly drop
the model’s performance if that component is crucial to the reasoning process. To quantify this,

5https://www.meta.com/smart-glasses/
6https://www.youtube.com/watch?v=nXVvvRhiGjI
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we define an importance score (I), inspired by the concept of “sharpness of minima.” This section
provides a detailed explanation of how the importance score is computed.

How is Arbitrary Noise Introduced into Target Layers or Visual Tokens? Based on Equation
(2), we prepare the constraint candidate set Ct, defined as a squared boundary:

−ϵ+ |xt| ≤ zt ≤ ϵ+ |xt|, (4)

where ϵ ∼ Uniform(−1, 1). At each iteration, we randomly sample a noise vector zt and apply it to
the target component. Below, we detail how this is done for visual tokens, layers, and modalities.

1. Visual Token Importance: When evaluating the importance of a visual patch token (Fig-
ure 8), the noise vector is injected into the group-wise visual patch token embeddings at the
target position. For instance, Figure 8 illustrates 36 positions. To measure the importance
of position 0, we add the noise vector to the corresponding visual patch token embeddings
at position 0, while leaving all other patch token embeddings unchanged. These modified
embeddings are then input into the LLM for further processing.

2. Layer-Wise Importance: To explore layer-wise importance, the noise vector is injected
into the target layer before it is processed by the LLM. Specifically, the noise is applied
directly to the layer’s input embeddings before passing the target layer, ensuring that the
perturbation affects only the selected layer.

3. Modality Importance: To calculate the importance of the textual modality (IT ), the noise
vector is injected only into the positions corresponding to text inputs within the target layer,
while leaving the positions associated with visual patch tokens unchanged. Conversely, for
visual modality importance (II ), the noise vector is injected into the positions correspond-
ing to visual patch tokens within the target layer. The relative importance score for each
modality is then computed as II

IT
.

To enable better interpretation across layers, all importance scores (both layer-wise and modality-
specific) are normalized using min-max normalization.

D ADDITIONAL EXPLANATION OF EXPERIMENTAL SETUP

In this section, we provide a more detailed explanation of the experimental setup used to obtain our
findings, including the required models, preparation of corrupted images, and other specifics. All
experiments were conducted using eight A100 GPUs (40GB).

Experimental Setup: Section 3.3. We prepared ViT-variant vision encoder-equipped LVLMs
that incorporate visual patch tokens. The experiments focus on visual patch tokens processed after
the projector. Before conducting the ”permutation invariance” experiments, we first demonstrated
whether each visual patch token contains localized information. For the experiment on ”sensitivity
to spatial structure,” shuffled images were used, as shown in Figure 2, following the methodology
of a prior study Naseer et al. (2021).

Experimental Setup: Section 3.4. To generate synthesized images, we utilized an image cap-
tioner (llava-hf/llava-onevision-qwen2-7b-ov-hf) combined with a text-to-image genera-
tive model (sdxl lightning 8step unet.safetensors). Additionally, a prompt template was
carefully designed for this purpose.

Experimental Setup: Section 3.5. We prepared occluded images using three masking methods
as described in prior work Naseer et al. (2021): Random PatchDrop, Salient PatchDrop, and
Non-Salient PatchDrop. To implement Salient PatchDrop and Non-Salient PatchDrop,
we employed the dino-small model Caron et al. (2021). Furthermore, to evaluate the robustness
of LVLMs to occlusion, we first verified whether ViT-variant encoders exhibit genuine robustness to
occlusion by comparing them with CNN-based counterparts, such as ResNet.
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LLVMs MMVP Q-Bench MME MMStar MM-Vet LLaVAW MathVista SQAI ChartQA AI2D Avg. ∆

LLaVA-1.5 34.67 59.73 1850.07 34.20 31.50 67.50 24.70 65.59 16.92 53.34

+ Perm.
36.00

(▲ 1.33)

59.60
(▼ 0.13)

1874.60
(▲ 24.53)

33.33
(▼ 0.87)

30.40
(▼ 1.10)

66.20
(▼ 1.30)

21.20
(▼ 3.50)

65.44
(▼ 0.15)

14.08
(▼ 2.84)

52.69
(▼ 0.65)

▼ 0.59

LLaVA-NeXT 36.67 63.55 1874.42 37.80 43.50 75.50 32.00 62.12 66.06 64.02

+ Perm.
37.33

(▲ 0.67)

62.54
(▼ 1.00)

1890.19
(▲ 15.78)

36.87
(▼ 0.93)

43.40
(▼ 0.10)

75.80
(▲ 0.30)

21.70
(▼ 10.30)

62.12
(▼ 0.00)

34.55
(▼ 31.51)

64.02
(▼ 0.00)

▼ 2.71

LLaVA-OneVision 60.67 77.26 1982.5 59.87 57.80 87.40 61.80 94.00 93.52 81.25

+ Perm.
59.33

(▼ 1.33)

76.99
(▼ 0.27)

1964.3
(▼ 18.2)

54.93
(▼ 4.93)

47.60
(▼ 10.20)

82.30
(▼ 5.10)

53.50
(▼ 8.30)

89.24
(▼ 4.76)

58.26
(▼ 35.26)

75.58
(▼ 5.67)

▼ 9.40

QwenVL-2 50.67 77.06 2356.70 55.27 62.60 94.10 59.80 0.00 94.83 80.21

+ Perm.
48.67

(▼ 2.00)

77.19
(▲ 0.13)

2266.96
(▼ 89.74)

53.47
(▼ 1.80)

62.20
(▼ 0.40)

93.20
(▼ 0.90)

53.10
(▼ 6.70)

0.00
(▼ 0.00)

83.59
(▼ 11.25)

77.43
(▼ 2.78)

▼ 12.82

Fuyu-8B 30.00 40.33 0.00 19.67 16.30 0.00 0.00 0.00 15.81 0.00

+ Perm.
28.67

(▼ 1.33)

38.80
(▼ 1.54)

0.00
(▼ 0.00)

18.93
(▼ 0.73)

10.90
(▼ 5.40)

0.00
(▼ 44.00)

0.00
(▼ 0.00)

0.00
(▼ 0.00)

7.50
(▼ 8.31)

0.00
(▼ 0.00)

▼ 6.92

Table 4: Results of drop ratio (∆) when random permutation is applied. We run five experiments.

Experimental Setup: Section 3.6. We curated image classification datasets containing realistic
and natural images across various domains. To explore the platonic representation hypothesis Huh
et al. (2024), we first thoroughly examined its definition, as detailed in Appendix B. This process
involved preparing a diverse set of LLMs, vision encoders, and vision encoders equipped with pro-
jectors in LVLMs. We also selected datasets for verifying cross-modal alignment, ensuring that they
included natural and realistic images.

Experimental Setup: Section 3.7. We first clarified the definition of “importance score” and
determined how to introduce noise into the visual patch tokens. This procedure is described in
Appendix C.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 PERMUTATION INVARIANCE.

As shown in Table 4, we investigate the extent to which other LVLMs exhibit permutation invari-
ance under the same experimental settings described in Table 1. Overall, the Qwen2-VL-7B Wang
et al. (2024) and Fuyu-8B models Bavishi et al. (2023) demonstrate permutation invariance on av-
erage, displaying patterns similar to those observed in the LLaVA-family models. A more detailed
analysis across benchmarks reveals interesting patterns. In perception-focused benchmarks, such as
MMVP, Q-Bench, MME, and MMStar (the latter two being integrated capability benchmarks that
include perception-related tasks), the performance drop due to permutation is negligible. However,
in text-rich benchmarks like MathVista and ChartQA, the performance drops significantly. These
benchmarks require an understanding of detailed numerical information and highly structured geo-
metric graphs, where maintaining the spatial structure of visual patch tokens is critical.

Difficulty of Benchmark. Interestingly, in the SQAI benchmark, which includes science-related
datasets, and the AI2D benchmark, which consists of diagram images, the relatively small perfor-
mance gap is noteworthy, even though these images are rich in detail. We speculate that this phe-
nomenon might be influenced by the difficulty of the benchmark, particularly the “question type.”
Benchmarks typically include two question formats: (1) free-form and (2) multiple-choice questions
(MCQ). We hypothesize that:

1. LLMs can often solve questions using their extensive commonsense reasoning, even with-
out image perception. Li et al. (2024a); Fu et al. (2024)

2. MCQ formats may be easier for models compared to free-form questions due to the pres-
ence of preferred answer patterns or inherent biases in selection.

To investigate further, we conduct additional experiments comparing the difficulty of MathVista,
ChartQA, SQAI , and AI2D. We randomly select 500 samples from each dataset and, for MCQ
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Datasets Question Type Accuracy (%) Don’t Know (%)

MathVista
Free-Form 0.3 82.1

MCQ 36.8 0
Overall 13.6 52.2

ChartQA Free-Form 0 90

SQAI MCQ 64.2 0

AI2D MCQ 53.2 1.6

Table 5: Accuracy results of ChatGPT on four benchmarks for two different question types.

samples, include only those with four options. We then prompt ChatGPT (i.e., gpt-3.5-turbo) to
answer these questions using the following templates:

Prompt Template for MCQ

Question: {question}
Choices:
{choices}
E: I don’t know.

Please MUST generate only one option (A, B, C, D, E). Do not generate any expla-
nation.
Answer:

Prompt Template for Free-Form

Question: {question}

Please provide your answer. If it is difficult to provide an answer, respond with “I
don’t know.”

We added the “I don’t know” option to prevent the model from guessing randomly. Table 5 show
that ChatGPT performs better on MCQ-type benchmarks compared to free-form types. Moreover,
ChatGPT achieves higher accuracy on AI2D and SQAI compared to MathVista and ChartQA. This
supports the observation that LLVMs exhibit less permutation invariance in these text-rich bench-
marks, possibly due to the nature of the datasets and their question formats. For free-form ques-
tions, the “don’t know” response rate is significantly higher, indicating that these benchmarks are
more challenging. This highlights the need to minimize “blind” samples — questions solvable by
LLMs without image perception — in benchmark design. Benchmarks should prioritize free-form
questions to reduce potential selection bias Zheng et al. (2023a), as argued by recent studies Li et al.
(2024a).

E.2 SENSITIVITY TO SPATIAL STRUCTURES

As shown in Figure 11, we randomly shuffle image patches to evaluate their impact on model per-
formance and observe that Qwen2-VL exhibits a similar tendency to LLaVA-family models. Specif-
ically, we found that Qwen2-VL and LLaVA-OneVision are highly sensitive to spatial structures in
text-rich benchmarks (e.g., MathVista, AI2D), which contain detailed numerical information. No-
tably, the performance of the Qwen2-VL model dropped significantly when the grid size was 2. To
understand why Qwen2-VL is particularly sensitive, we hypothesize that this behavior is linked to its
use of enhanced multi-modal rotary position embeddings (M-ROPE) Wang et al. (2024). This em-
bedding mechanism likely contributes to the performance degradation observed when image patches
are shuffled. Conversely, the model is relatively insensitive to spatial structures in perception-centric
benchmarks (e.g., MMVP).
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Figure 11: We present the performance across different grid sizes (2, 4, 8, 14) on the
MMVP, MM-Vet, MathVista, and AI2D datasets, using four models: LLaVA-1.5, LLaVA-NeXT,
LLaVA-OneVision, and Qwen2-VL.
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Figure 12: We present robustness performance under occlusion conditions.
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Figure 13: An illustration of group-wise patching.

E.3 OCCLUSIONS

In Figure 12, we observe that the Qwen2-VL model exhibits a similar tendency to the LLaVA fam-
ily models. Notably, the performance trend slope of the Qwen2-VL model closely resembles that
of LLaVA-OneVision, suggesting that both models — currently high-performing LVLMs — share
similar patterns. This alignment supports the generalizability of our observations. Specifically,
LVLMs demonstrate relatively strong performance under occlusion. For instance, in the AI2D
dataset, even when 50–70% of image patches are missing, the models can still provide correct an-
swers to some extent. Moreover, in these scenarios, the Qwen2-VL and LLaVA-OneVision models
outperform LLaVA-1.5 and LLaVA-NeXT, even when no patches are missing. These results indi-
cate that state-of-the-art LVLMs possess strong visual understanding capabilities. This suggests that
improving visual understanding during training contributes significantly to high performance and
robustness against occlusion.

E.4 VARYING GRID SIZE FOR GROUPING STRATEGY

Figure 14: We demonstrate the extent to
which group-wise visual tokens capture
region-specific information (PIL) for
LLaVA-1.5-7B on the MMStar (Chen
et al., 2024a) and MME (Fu et al., 2023)
when a 3 × 3 gird of patches. Darker
regions indicate areas where the model
retains more localized information for
those specific groups.

In Figure 1 and Figure 8, we group the nearest patches.
For clarification, we visualize how the patches are
grouped, as shown in Figure 13. Similar to the opera-
tion of a convolution layer, we group neighboring patches
into a single group (indicated by the same color) and feed
these groups into the model. Here, we vary the grid size,
which corresponds to changing the number of elements
in each group, and investigate whether the pattern ob-
served in Figure 1 changes. We conduct additional ex-
periments using a 3 × 3 grid of patches in Figure 14. We
observe that increasing the number of grid patches leads
to more precise observations. Compared to a 6 × 6 grid
of patches, a 3 × 3 grid yields less precise observations.
While conducting experiments on all visual patch tokens
(576 for LLaVA-1.5) would provide the most precise in-
terpretations, this approach is computationally intensive,
as mentioned in Section 3.3. Therefore, we believe our chosen grid size strikes a reasonable balance
for obtaining meaningful interpretations.

E.5 DETAILED ANALYSIS OF NUMERICAL INFORMATION

As shown in the above Table 6, in overall, the Org. ratio of LLVM generating “1” in free-form
question types is reduced compared to the Syn. cases. This results suggest that LLVMs can effec-
tively interpret and understand the detailed numerical information in the given image, thereby, the
phenomenon that LLVM tend to use their commonsense reasoning is reduced. However, considering
the ratio of LLaVA-1.5 (44%), this ratio is not negligible. Therefore, in the future, we need to build
more challenging benchmark that do not rely on the commonsense reasoning.

Additionally, we observe that most LVLMs prefer to answer “no” for yes/no question types in
multiple-choice question (MCQ) formats. This suggests that, when presented with synthesized im-
ages, LVLMs struggle to solve the given questions effectively. Instead of attempting to provide an
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Syn. Orig.

Model Freq. of 1 No (%) Precision Recall Freq. of 1 Precision Recall

LLaVA-1.5 81.0 64.0 49.2 36.8 44.4 59.4 43.7
LLaVA-NeXT 50.0 54.4 50.0 47.1 13.8 54.0 39.1
Meteor 9.5 82.8 55.2 18.4 7.5 78.0 36.8
LLaVA-OneVision 12.0 70.5 54.9 32.2 8.3 72.4 72.4

Table 6: Detailed analysis of the Syn. and Orig. versions of MathVista Lu et al. (2023). Precision
and recall are reported for the yes/no question type.
Datasets Prompt Template for CLIP Prompt Template for LLVM

Caltech101 a photo of a {c}. What is the object in the image? Please answer only a single object in {class labels}.
CIFAR-100 a photo of a {c}. What is the object in the image? Please answer only a single object in {class labels}.
Food101 a photo of {c}, a type of food What is the type of food in the image? Please answer only a single type of food in {class labels}.
Pets a photo of a {c}, a type of pet. What is the type of pet in the image? Please answer only a single type of pet in {class labels}.
Country211 a photo showing the country of {c}. What is the country in the image? Please answer only a single country in {class labels}.
EuroSAT a centered satellite photo of {c}. What is the type of centered satellite in the image? Please answer only a single type of centered satellite in {class labels}.
AirCraft a photo of a {c}, a type of aircraft. What is the type of aircraft in the image? Please answer only a single type of aircraft in {class labels}.

Table 7: Prompt templates used for evaluating CLIP and LLMs on zero-shot image classification
tasks. The c represents a single class label, while class labels refers to all class labels provided
by each dataset.

answer based on the limited or unclear information available in the synthesized images, LVLMs
tend to decline by answering “no,” leading to an increased frequency of “no” responses compared
to “yes.” Furthermore, across all models, the Org. dataset consistently yields better performance in
both precision and recall. This indicates that LVLMs face significant challenges in solving questions
based on synthesized information. In the Syn. case, precision is consistently higher than recall, re-
flecting the tendency of LVLMs to output “no” answers more frequently than “yes” answers. This
behavior underscores the challenges LVLMs face in effectively using synthesized visual information
to provide accurate answers to yes/no questions.

E.6 ADDITIONAL RESULTS OF CROSS-MODAL ALIGNMENT

How to evaluate the zero-shot image classification task? To evaluate CLIP models on the zero-
shot classification task, we use the prompt templates provided by CLIP-Benchmark 7. All the prompt
templates we used are presented in Table 7. For evaluating LLVMs on the zero-shot image classi-
fication task, we design prompt templates inspired by those used for the CLIP model. Using these
templates, the LLVM predicts a single class label. Based on the LLVM’s generated answer, we then
use ChatGPT to verify the prediction. Specifically, we utilize the following prompt: Please only
answer the question in yes or no. Is the ”Prediction” correctly predicting the right ‘Label”? Label:
label; Prediction: outputs. This evaluation method strictly follows the approach used in an existing
study Zhai et al. (2024).

E.7 ADDITIONAL RESULTS ON IMAGE CAPTIONING TASK

The evaluation benchmarks used in our experiments primarily consist of VQA tasks, which focus
on binary, multiple-choice, and free-form question types. To address whether our claim regarding
“permutation invariance” generalizes to other datasets, we conduct additional experiments using
image captioning tasks. These tasks inherently require “visual processing capabilities,” such as
understanding attributes, viewpoints, scenes, and objects. For this investigation, we evaluate three
standard datasets: COCO-Captions Lin et al. (2014) (Karpathy test set), NoCaps Agrawal et al.
(2019) (validation set), and TextCaps Sidorov et al. (2020) (validation set). To generate captions, we
followe the default prompting setup from LMMs-Eval 8, which uses the prompt: “Please carefully
observe the image and come up with a caption for the image.” We employ standard evaluation
metrics — ROUGE-L Lin (2004) and CIDEr Vedantam et al. (2015) — to assess performance.

7https://huggingface.co/clip-benchmark
8https://huggingface.co/lmms-lab
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COCO-Captions NoCaps TextCaps

LLVMs ROUGE-L CIDEr ROUGE-L CIDEr ROUGE-L CIDEr

LLaVA-1.5 22.01 0.97 25.34 1.52 22.46 6.09
+ Perm. 22.62 1.26 26.05 2.89 22.94 7.28
Avg. ∆ ▲ 0.62 ▲ 0.29 ▲ 0.71 ▲ 1.37 ▲ 0.48 ▲ 1.19

LLaVA-NeXT 21.63 8.12 22.78 6.26 21.49 15.94
+ Perm. 21.86 7.64 22.68 5.81 20.19 12.30
Avg. ∆ ▲ 0.24 ▼ 0.48 ▼ 0.10 ▼ 0.44 ▼ 1.29 ▼ 3.65

LLaVA-OneVision 57.23 116.25 56.09 86.60 44.58 72.69
+ Perm. 56.70 116.17 56.36 85.94 44.19 68.18
Avg. ∆ ▼ 0.53 ▼ 0.08 ▲ 0.26 ▼ 0.66 ▼ 0.39 ▼ 4.52

Qwen2-VL 39.98 44.61 44.01 39.37 35.80 46.86
+ Perm. 37.19 39.29 42.70 38.35 35.31 44.64
Avg. ∆ ▼ 2.79 ▼ 5.33 ▼ 1.31 ▼ 1.02 ▼ 0.49 ▼ 2.22

Table 8: Results of drop ratio (∆) when random permutation is applied. We run five experiments.
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Figure 15: We present the results of (left) layer-wise importance and (right) modality importance
within the layers on MME Fu et al. (2023) dataset.

As shown in Table 8, we observe similar trends across image captioning datasets: most LLMs
exhibit permutation invariance. Interestingly, on the TextCaps dataset, the performance drop
is more pronounced compared to other datasets, suggesting relatively greater permutation variance.
TextCaps contains more complex images (e.g., those with detailed numerical information) compared
to the other datasets, which may explain this phenomenon. When comparing these findings to those
in Table 1, we note that in perception-related tasks (e.g., involving natural scenes), LLVMs generally
exhibit permutation invariance. However, in reasoning-related tasks (e.g., MathVista) involving
images with complex structures (e.g., charts or diagrams), LLMs demonstrate greater permutation
variance. This suggests that maintaining the geometric or positional structure of plots and charts is
crucial.

E.8 ADDITIONAL RESULTS ON LAYER & MODALITY IMPORTANCE

Figure 15 (left) shows that the lower layers (< 10) play a crucial role in handling integrated ca-
pabilities. Meanwhile, Figure 15 (right) demonstrates that in the lower layers (< 12), the image
modality is more important than the text modality. Overall, the tendencies observed on the MME
dataset are similar to those on the MMStar dataset, as shown in Figure 9. However, a key difference
lies in the layer index at which the modality importance shifts; for the MME dataset, this transition
occurs at a higher layer index. Based on these results, we hypothesize that LLVMs allocate more
effort to understanding the given images on the MME dataset compared to the MMStar dataset. One
of the possible reason is that the images in the MME dataset are more challenging for the model
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to comprehend, but we can not guarantee this reason is correct, therefore, Further investigation is
required to validate this assumption in future studies.

F ADDITIONAL RELATED WORKS

Model-Stitching. The model-stitching (Lenc & Vedaldi, 2015; Bansal et al., 2021) is a technique
first introduced to study the internal representations of neural networks by measuring the representa-
tional similarity between two given models. Consider two models defined as f = fm ◦ · · · ◦ f1 and
g = gn◦· · ·◦g1. Specifically, the stitched model is formalized as F = gn◦· · ·◦gk+1◦s◦fk◦· · ·◦f1,
where s is a simple stitching layer (e.g., a linear layer or a 1× 1 convolution). Therefore, even if the
two models f and g differ in training methodology (e.g., supervised vs. self-supervised) or modal-
ities (e.g., text vs. image), if F exhibits good performance, then f and g have strongly correlated
and compatible internal representations at layer k, apart from the stitching layer s. Merullo et al.
(2022) have the similar concept of model-stitching to verify their strong hypothesis that the con-
ceptual representations from a frozen LLM and a visual encoder are sufficiently similar such that a
simple linear mapping layer can align them.

G ADDITIONAL EXAMPLES OF SYNTHESIZED IMAGES

We provide additional examples of synthesized images in Figure 16.

H ADDITIONAL EXAMPLES OF SHUFFLED IMAGES

We provide additional examples of shuffled images in Figure 17.

I ADDITIONAL EXAMPLES OF OCCLUDED IMAGES

We provide additional examples of occluded images in Figure 18.

J DESCRIPTION OF EVALUATION BENCHMARKS

• MM-Vet (Yu et al., 2023) dataset is a benchmark designed to evaluate large vision-language
models (LVLMs) across six core vision-language (VL) capabilities: recognition, knowl-
edge, optical character recognition (OCR), spatial awareness, language generation, and
mathematical reasoning. The dataset includes open-ended, real-world questions based on
image-text pairs, requiring models to integrate multiple capabilities to solve complex tasks.
MM-Vet benchmark consists of 200 images paired with 218 open-ended questions.

• Q-Bench (Wu et al., 2023) evaluates the capabilities of large vision-language models in
three main areas related to low-level vision tasks. These tasks focus on evaluating how
well LVLMs can perform basic low-level perception tasks that are traditionally associated
with human visual perception. In the Q-Bench dataset, the questions are of three types:
Yes-or-No, What, and How.

– Low-Level Visual Perception: Assesses how accurately LVLMs can answer ques-
tions about low-level image attributes (e.g., clarity, color, distortion). LLVisionQA
dataset includes 2,990 images, each with a corresponding question about low-level
features.

– Low-Level Visual Description: Evaluates the ability of LVLMs to describe images.
LLDescribe dataset has 499 images with expert-labeled descriptions averaging 58
words each. LVLMs are compared against these to assess completeness, preciseness,
and relevance.

– Visual Quality Assessment: Evaluates LVLMs’ ability to predict quantifiable quality
scores for images by assessing how well they align with human-rated mean opinion
scores (MOS) on low-level visual appearances, using 81,284 samples.
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Original Image Synthesize Image Original Image Synthesize Image Original Image Synthesize Image

Figure 16: Examples of synthesized images from MathVista Lu et al. (2023).
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Original Image 2 X 2 4 X 4 8 X 8 14 X 14

Figure 17: Examples of synthesized images from MM-Vet Yu et al. (2023).
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Figure 18: Examples of occluded images from MME Fu et al. (2023).

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

• SQA-IMG (Lu et al., 2022a) is a portion of the Science Question Answering (SQA) dataset
that contains questions from a wide range of scientific domains, each paired with corre-
sponding image contexts. The dataset includes 10,332 examples of multimodal multiple-
choice questions, along with lectures and explanations that detail the reasoning behind the
correct answers.

• ChartQA (Masry et al., 2022) dataset is a benchmark designed to test AI models on their
ability to perform question-answering tasks over various types of charts. It focuses specif-
ically on questions requiring complex reasoning, such as visual and logical interpretation,
going beyond simpler template-based datasets. ChartQA includes 9,608 human-authored
open-ended questions as well as 23,111 questions that are automatically generated from
chart summaries.

• SEED-IMG (Li et al., 2023), a subset of SEED-Bench, focuses on evaluating spatial com-
prehension of images by testing models on various dimensions like scene understanding,
object identification, and spatial relationships. In terms of scale, the dataset includes 19,000
multiple-choice questions that evaluate both image and video comprehension, covering 12
evaluation dimensions such as scene understanding, instance identity, spatial relations, and
action recognition.

• MME (Fu et al., 2023) evaluates both perception and cognition abilities of LVLMs. It
features 14 subtasks, including recognition tasks (such as object existence, count, position,
color) and reasoning tasks (such as commonsense reasoning, numerical calculation, text
translation, and code reasoning). MME uses manually created instruction-answer pairs,
ensuring no overlap with public datasets. MME uses ”yes/no” responses for quantitative
evaluations.

• MathVista (Lu et al., 2023) is a benchmark designed to evaluate the mathematical rea-
soning capabilities of foundation models in visual contexts. It integrates challenges from
diverse mathematical and visual tasks, with a focus on fine-grained, deep visual under-
standing and compositional reasoning. MathVista consists of 6,141 examples including
3,392 multiple-choice questions and 2,749 free-form questions derived from 28 existing
multimodal datasets and 3 newly created datasets: IQTest, FunctionQA, and PaperQA.

• LLaVA-W (Liu et al., 2024c) is a challenging evaluation benchmark created to assess the
generalization and instruction-following capabilities LVLMs in complex, real-world sit-
uations. It consists of 24 images and 60 questions, including diverse scenes like indoor
environments, outdoor settings, memes, paintings, and sketches. Each image is associated
with a highly detailed and manually curated description, and the questions focus on extract-
ing intricate details and reasoning about the visual content. LLaVA-W involves a variety of
tasks, including detailed descriptions, conversational answers, and complex reasoning.

• MMStar (Chen et al., 2024a) is a vision-dependent multimodal benchmark designed to
evaluate the multimodal capabilities of LVLMs. It addresses two main issues identified
in previous benchmarks: the reliance on textual information without visual input and data
leakage during training. MMStar is composed of 1,500 samples carefully selected to en-
sure that visual content is necessary for solving each problem. MMStar evaluates six core
capabilities across 18 detailed axes, which include tasks like image perception and logical
reasoning. MMStar uses multiple-choice as the primary answer type.

• MMVP (Tong et al., 2024) evaluates the visual grounding capabilities of large vision-
language models by identifying scenarios where they fail to distinguish simple visual pat-
terns in images. These patterns include aspects like orientation, counting, viewpoint, and
relational context. The benchmark is constructed using 150 pairs of images, resulting in
300 multiple-choice questions.

K DESCRIPTION OF EVALUATION LVLMS

• LLaVA-1.5 (Liu et al., 2024a) incorporates academic task-oriented datasets to enhance
performance in VQA tasks and features an MLP vision-language connector, which im-
proves upon the original linear layer utilized in LLaVA (Liu et al., 2024c). It uses CLIP
ViT-L/14 (Radford et al., 2021) with a 336px resolution as its vision encoder, resulting in
a total of (336/14)2 = 576 visual tokens. LLaVA-1.5 is built on Vicuna with either 7B or
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13B parameters. The training dataset includes 558K samples for pre-training and 665K for
fine-tuning, totaling 1.2M image-text pairs from publicly available datasets

• LLaVA-NeXT (Liu et al., 2024b) (also known as LLaVA-1.6) enhances visual reasoning,
OCR, and world knowledge, offering four times higher image resolution (up to 1344x336)
and improved performance in visual conversations. Its architecture includes a CLIP ViT-
L/14 as a vision encoder, paired with Vicuna models ranging from 7B to 34B as a back-
bone language model. It utilizes 1.3M visual instruction tuning data samples for training,
maintaining efficiency with approximately one day of training on 32 A100 GPUs. The ar-
chitecture’s high resolution and dynamic grid scheme improve detailed image processing
capabilities.

• LLaVA-OneVision (Li et al., 2024c) is a LVLM designed for task transfer across single-
image, multi-image, and video scenarios, with strong capabilities in video understand-
ing through image-to-video task transfer. Its architecture consists of a Qwen2 language
model (Yang et al., 2024) with 8B to 72B parameters, and the SigLIP vision encoder (Zhai
et al., 2023), which processes images at a base resolution of 384x384, producing 729 visual
tokens. The model employs a 2-layer MLP projector. The training utilized 3.2M single-
image data samples and 1.6M multi-modal data samples, focusing on high-quality visual
instruction tuning data to enhance its multimodal capabilities.

• Meteor (Lee et al., 2024c) is a large vision-language model that uniquely embeds multi-
faceted rationales using a Mamba-based architecture (Gu & Dao, 2023), enabling efficient
processing of lengthy rationales to enhance its vision-language understanding. This ap-
proach allows Meteor to achieve superior performance without scaling up model size or
employing additional vision encoders. Its architecture includes a CLIP-L/14 vision en-
coder with an image resolution of 490x490, comprising 428M parameters, and InternLM2-
7B (Cai et al., 2024) as a foundational LLM. Meteor was trained on 2.1M question-answer
pairs, with 1.1M curated triples.

• TroL (Lee et al., 2024b) uses a unique characteristic called layer traversing, which reuses
layers in a token-wise manner, allowing it to simulate retracing the answering process with-
out physically adding more layers, making it efficient despite smaller model sizes. TroL
uses CLIP-L and InternViT as vision encoders, containing 428M and 300M parameters,
respectively, and supports 24 layers. The image resolution is adjusted using MLPs in the
vision projector. For its foundational LLM, TroL utilizes Phi-3-mini with 3.8B parameters
and InternLM2 with 1.8B and 7B parameters. The training dataset comprises 2.3M visual
instruction tuning samples.
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