Reviewer Response

Summary:

During the NeurIPS 2025 review period, our submission was evaluated by five reviewers, with
final scores of 5, 4, 4, 4, 4. The main themes of their feedback are summarized below; point-by-
point responses to each reviewer follow.

1. Include complementary metrics such as R%and RMSE, in addition to MAE to more fully assess
baseline performance.

2. Add visualizations that reveal error patterns and failure cases.
3. Clarify what makes 2DNMRGym unique and motivate its relevance to the ML community.

4. Add additional citation and use more detailed reference formatting.

In response to these comments, we have revised the manuscript as follows:

1. We have added the R-Squard table as Table 3, and added the RMSE table in the appendix E.

Model Type Model All-test R? Few-shot R? Zero-shot R?
13C 1 H 13 C 1 H 13 C 1 H
GCN 0.9784 0.9680 0.9889 0.9781 0.9591 0.9453
2D GNN (0.0002) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001)
GIN 0.9822 0.9713 0.9926 0.9827 0.9626 0.9472
(0.0002) (0.0002) (0.0001) (0.0003) (0.0005) (0.0001)
GAT 0.9811 0.9709 0.9916 0.9813 0.9615 0.9479

(0.0004) (0.0003) (0.0003) (0.0005) (0.0005) (0.0001)

ComENet 09589 09411 09681 09456 09335 09147
3D GNN (0.0004) (0.0009) (0.0004) (0.0011) (0.0008) (0.0007)

SchNet 09602 09349 09697 09328  0.9364 09132
(0.0003)  (0.0004) (0.0004) (0.0009) (0.0005) (0.0004)

GCN-Trans 09794  0.9679 09902 09792 09602  0.9440
Transformer (0.0004) (0.0006) (0.0003) (0.0006) (0.0006) ~(0.0009)

GIN-Trans 09823  0.9708 09929  0.9825 09626  0.9473
(0.0000) (0.0005) (0.0000) (0.0004) (0.0002) (0.0010)

GATLTrans 09812 09704 09919 09818 09620  0.9469
(0.0007) (0.0006) (0.0004) (0.0008) (0.0006) (0.0008)

Table 3: Comparison of R? for '3C and 'H chemical shift predictions across different GNN and
Transformer models. The best results in each column are highlighted in bold.



47 E  Model Comparison (RMSE)

448 Besides the MAE and R-squared tables (Table[2] and Table 3]in the main text), we also compared the
449 model performance in RMSE.

All-test Few-shot Zero-shot
Model — Model RMSE RMSE RMSE
Type
13C lH 13C ]H 13C 1H
GCN 5.9709 0.4009 4.1757 0.3195 7.9259 0.5028
2D GNN 0.0217)  (0.0011)  (0.0144)  (0.0004)  (0.0126)  (0.0005)
GIN 5.4207 0.3798 3.3935 0.2837 7.5856 0.4941
(0.0335) (0.0012) (0.0243) (0.0021) (0.0490) (0.0006)
GAT 5.5895 0.3821 3.6252 0.2947 7.6914 0.4905

(0.0601)  (0.0022)  (0.0604)  (0.0037)  (0.0538)  (0.0004)

3D GN ComENet  6.2520 0.4448 5.0769 0.4032 8.1323 0.5292
D GNN (0.0398) (0.0042) (0.0137) (0.0049) (0.0597) (0.0026)
SchNet 6.1147 0.4275 4.8947 0.4593 7.9078 0.5348
(0.0280) (0.0017) (0.0406) (0.0036) (0.0365) (0.0014)

GCN- 58389 04016 39218 03110  7.8195  0.5085
Transformer Trans 0.0617)  (0.0035)  (0.0616)  (0.0045)  (0.0603)  (0.0039)
GIN- 54041 03828 33318 02852  7.5851  0.4932
Trans (0.0343)  (0.0036)  (0.0087)  (0.0030)  (0.0177)  (0.0048)
GAT- 55714 03857 35712 02912 7.6412 04953
Trans 0.0972)  (0.0038)  (0.0876)  (0.0061)  (0.0593)  (0.0038)

Table 6: Comparison of RMSE in ppm for *C and *H chemical shift predictions across different
GNN and Transformer models. Best results in each column are highlighted in bold.

2. We have added more visualization to show model performance on challenges cases in
Appendix F.

3. We have added more clarification of the dataset and domain challenges in the "Introduction"
section and "Related work" section.

4. We have added more citation and made the citation formatting more comprehensive.

Below are our original point-by-point response and communication with each reviewer.



Reviewer 1 (Rating 4. Confidence 4):

1. The Mean Absolute Error (MAE) is used as the primary metric, but additional metrics
(e.g., R?, RMSE) or visualizations (e.g., scatter plots of predicted vs. actual shifts) could
provide a more comprehensive evaluation.

Response:

We have added the RMSE and R-squared results to the appendix, as well as below. We will

also add more visualizations in the revised manuscript as suggested.

1. The RMSE table

Model Type Model All-test RMSE (C) All-test RMSE (H) Few-shot RMSE (C) Few-shot RMSE (H) Zero-shot RMSE (C) Zero-shot RMSE (H)

2D GNN GCN 5.9709 (0.0217)  0.4009 (0.0011)  4.1757(0.0144) 0.3195 (0.0004) 7.9259 (0.0126) 0.5028 (0.0005)
2D GNN GIN 5.4207 (0.0335)  0.3798 (0.0012)  3.3935(0.0243) 0.2837 (0.0021) 7.5856 (0.0490) 0.4941 (0.0006)
2D GNN GAT 5.5895(0.0601)  0.3821(0.0022)  3.6252 (0.0604) 0.2947 (0.0037) 7.6914 (0.0538) 0.4905 (0.0004)
3D GNN ComENet 6.2520(0.0398)  0.4448 (0.0042) 5.0769 (0.0137) 0.4032 (0.0049) 8.1323 (0.0597) 0.5292 (0.0026)
3D GNN SchNet 6.1147 (0.0280) 0.4725(0.0017)  4.8947 (0.0406) 0.4593 (0.0036) 7.9078 (0.0365) 0.5348 (0.0014)

Transformer GCN-Trans 5.8389 (0.0617)

Transformer GIN-Trans 5.4041 (0.0034)

Transformer GAT-Trans 5.5714(0.0972)

0.4016 (0.0035)
0.3828 (0.0036)
0.3857 (0.0038)

3.9218 (0.0616)
3.3318(0.0087)
3.5712(0.0876)

0.3110(0.0045)
0.2852 (0.0030)
0.2912(0.0061)

7.8195 (0.0603)
7.5851(0.0177)
7.6412 (0.0593)

0.5085 (0.0039)
0.4932 (0.0048)
0.4953 (0.0038)

2. The R-Squared table

Model Type Model All-test R?(C) All-test R?(H) Few-shot R?(C) Few-shot R? (H) Zero-shot R?(C) Zero-shot R? (H)

2D GNN GCN 0.9784 (0.0002) 0.9680 (0.0002) 0.9889 (0.0001) 0.9781 (0.0001) 0.9591 (0.0001) 0.9453 (0.0001)
2D GNN GIN 0.9822 (0.0002) 0.9713(0.0002) 0.9926 (0.0001) 0.9827 (0.0003) 0.9626 (0.0005) 0.9472 (0.0001)
2D GNN GAT 0.9811 (0.0004) 0.9709 (0.0003) 0.9916 (0.0003) 0.9813 (0.0005) 0.9615(0.0005) 0.9479 (0.0001)
3D GNN ComENet 0.9589 (0.0004) 0.9411 (0.0009) 0.9681 (0.0001) 0.9456 (0.0011) 0.9335(0.0008) 0.9147 (0.0007)
3D GNN SchNet 0.9602 (0.0003) 0.9349 (0.0004) 0.9697 (0.0004) 0.9328 (0.0009) 0.9364 (0.0005) 0.9132(0.0004)
Transformer GCN-Trans 0.9794 (0.0004) 0.9679 (0.0006) 0.9902 (0.0003) 0.9792 (0.0006) 0.9602 (0.0006) 0.9440 (0.0009)
Transformer GIN-Trans 0.9823(0.0000) 0.9708 (0.0005) 0.9929 (0.0000) 0.9825 (0.0004) 0.9626 (0.0002) 0.9473 (0.0010)
Transformer GAT-Trans 0.9812 (0.0007) 0.9704 (0.0006) 0.9919 (0.0004) 0.9818 (0.0008) 0.9620 (0.0006) 0.9469 (0.0008)

2. The paper briefly mentions the dataset's current limitation to HSQC spectra. A deeper
discussion on the challenges of extending this work to other NMR techniques (e.g.,
HMBC, COSY) would be valuable. Beyond HMBC and COSY, are there plans to include
other NMR techniques or multi-modal data (e.g., combining NMR with mass
spectrometry)?

Response:

Our current dataset focuses on HSQC spectra, which are widely used in NMR due to their
relatively fast acquisition and clear 'H-'*C correlation signals. Extending the dataset to more



advanced NMR techniques such as HMBC, COSY, or TOCSY presents notable challenges,
as these experiments often require significantly longer acquisition times and more complex
setups. As a result, it is difficult to obtain large-scale, annotated datasets for these modalities.
While small numbers of such spectra are available in databases like HMDB
(https://www.hmdb.ca/) and NPMRD (https://np-mrd.org/), data scarcity remains a key
barrier. Our team is actively exploring ways to collect and curate these datasets to support the
broader research community. As you suggested, we also recognize the potential of
incorporating multi-modal data, such as combining NMR with mass spectrometry (MS),
especially tandem MS (MS/MS), to enhance molecular structure elucidation. However, a
major challenge in this space is the frequent absence of one or more modalities in
experimental datasets. For instance, many compounds may have NMR spectra but lack
corresponding MS data. This raises an exciting Al challenge: how can we design robust
multi-modal models that perform well despite missing modalities? Tackling this will require
developing approaches that handle incomplete data effectively, such as modality dropout,
data imputation, or weak supervision. We view this as a promising and impactful direction
for future research.

3. Include an analysis of cases where models perform poorly. For example, are errors
concentrated in specific molecular scaffolds or regions of the chemical shift range? For
the 23 molecules where the algorithmic annotations were partially correct, what were the
common sources of error? Were they related to specific structural features or spectral
artifacts?

Response:

To investigate the sources of model error, we grouped the 23 molecules with partially correct
annotations based on their molecular scaffolds. While the errors did not cluster around a
specific scaffold type or chemical shift range, we observed that structurally complex
molecules, such as those containing flexible ring systems and multiple chiral centers, tended
to exhibit higher annotation errors. Additionally, some atoms are pseudo-chemically
symmetric, existing in nearly identical chemical and electronic environments, which may
further complicate accurate peak assignment. We appreciate the reviewer’s suggestion and
will highlight this finding, together with some visualizations of the annotation errors, in the
revised manuscript.

4. Add more visual examples of HSQC spectra with annotations, especially for cases with
spectral overlap or degeneracy, to illustrate the annotation challenges.

Response:

We will include additional visual examples of HSQC spectra with annotations in the revised
manuscript. Specifically, we will highlight cases with spectral overlap and chemical shift
degeneracy to better illustrate the inherent challenges in annotation. These examples will help
clarify the complexity of atom-level assignments and demonstrate the value of our
benchmark.


https://www.hmdb.ca/
https://np-mrd.org/

Reviewer 2 (Score 4, Confidence 3):

1. Limited Novelty in Dataset Source and Preparation

One concern lies in the contribution related to dataset construction. If I understand correctly, the
2DNMRGym dataset is derived by combining two existing sources—HMDB and CH-NMR-NP,
as described around lines 115—118. As such, it’s difficult to fully appreciate the novelty or effort
in data collection itself. The main contributions then appear to be the post-processing steps:
generating pseudo-labels and gold-standard labels, and computing additional metadata (e.g., via
RDK:it). While I do not doubt the effort involved, I believe the authors should more clearly
highlight what makes this dataset distinct from previous work—particularly emphasizing the
surrogate labeling strategy. This clarification is especially important for readers to better
appreciate the contributions of this work like myself, who lack a strong chemistry background,
and for the broader machine learning audience at this venue. Making the unique value
proposition of the dataset more explicit would strengthen the work considerably.

Response:

While our dataset builds on HMDB and CH-NMR-NP, these sources provide only raw,
unannotated HSQC spectra, which are not directly usable for machine learning. Curating a fully
experimental HSQC dataset requires substantial domain expertise (typically at the Ph.D. level) to
interpret 'H-'2C correlations, resolve overlapping signals, and perform extensive annotation and
validation. This process is complex, labor-intensive, and central to our contribution. Importantly,
by framing HSQC analysis as a fine-grained atom-level prediction task grounded in real
experimental data, our benchmark creates opportunities for evaluating and developing models
that go beyond traditional graph-level property prediction. This can help drive advances in
molecular representation learning, transfer learning, and semi-supervised modeling. We believe
this resource will be valuable for the ML community interested in learning from rich, structured
scientific data.

Our work introduces:

(1) Atom-level annotations and high-quality surrogate/gold-standard labels, which are not
available in the source datasets;

(2) A fine-grained atom-level prediction task, which goes beyond standard graph-level
benchmarks and promotes richer molecular representation learning;

(3) A fully experimental benchmark based on HSQC spectra, which is unique in scope and scale,
and to our knowledge, not previously available in the literature.

For comparison, a recent NeurIPS dataset paper (“A Multimodal Spectroscopic Dataset for
Chemistry”) relies primarily on simulated HSQC data with minimal experimental validation and
does not include real HSQC measurements.[1] This highlights the challenge of obtaining real



HSQC data at scale, and we believe our dataset fills an important gap. We will clarify these
contributions more explicitly for the broader ML audience in the revised manuscript.

[1] Marvin Alberts, Oliver Schilter, Federico Zipoli, Nina Hartrampf, and Teodoro Laino.
Unraveling Molecular Structure: A Multimodal Spectroscopic Dataset for Chemistry. In
Proceedings of the Neural Information Processing Systems (NeurIPS) Datasets and Benchmarks
Track, 2024.

2. Lack of Motivation for Deep Learning in This Context

I think the topic of this work that uses ML or DL-based approaches for molecule prediction and
the corresponding atom-level representation learning is a bit lack of motivations. For example, a
natural question that arises in my mind why is deep learning necessary here? Is the task
inherently difficult for traditional methods, or is the goal to achieve better performance? While I
assume the latter, this is never clearly stated or justified in the paper. A brief discussion of the
practical limitations of non-ML or classical methods, and how ML models improve upon them,
would help contextualize the contribution and clarify the problem setting.

Response:

The task addressed in this work is inherently challenging: HSQC spectra contain complex
information about atom—atom couplings, especially in larger or more flexible molecules.
Acquiring experimental data is already resource-intensive, but annotating that data (assigning
each cross-peak to a specific atom pair) is even more time-consuming. This process currently
relies heavily on expert interpretation and domain knowledge, often requiring trained chemists
with advanced degrees (eg. PhD) and years of experience.

Unlike 1D NMR, which is more amenable to rule-based analysis, 2D spectra such as HSQC
encode higher-order structural relationships that are difficult to model algorithmically. The
interpretation of 2D NMR spectra such as HSQC has traditionally required expert reasoning and
manual inspection to resolve signal overlap, deduce connectivities, and assign atoms, particularly
in structurally complex compounds.[2] Classical (non-ML) computational methods for HSQC
analysis are limited, and no widely adopted, automated solutions exist that provide both accurate
peak prediction and atom-level annotation. Therefore, deep learning methods are well-suited for
this task, as it can capture complex molecular patterns and interactions from data. The goal is
twofold: (1) to overcome the practical limitations of expert-only interpretation by automating
annotation, and (2) to improve the accuracy and scalability of spectral prediction, which can
significantly accelerate molecular analysis pipelines.

We will include this discussion in the updated manuscript to better contextualize the problem and
highlight the potential impact of ML-based approaches in this space.



[2] Bross-Walch, Nadja, et al. "Strategies and tools for structure determination of natural
products using modern methods of NMR spectroscopy." Chemistry & biodiversity 2.2 (2005):
147-177.

3. Missing Comparison to the Pseudo-Labeling Method

Since the pseudo-labels used in the dataset are generated via an existing method (which also
appears to be ML-based), I find it puzzling that the benchmark results in Table 2 do not include a
direct comparison to this original labeling method. Such a comparison would be crucial for
understanding how well the GNN baselines perform relative to the model used to generate the
training labels. Without this, it is difficult to interpret the MAE values in Table 2. After all, this
setup closely resembles a teacher-student or data distillation paradigm, where we wouldn’t
expect student models to outperform the teacher—especially if the pseudo-labels are noisy.
Without an “apples-to-apples” comparison, the benchmarking results feel incomplete and their
implications unclear.

Response:

The silver-standard labels are used only for training to enable scalability, while all evaluations
are performed on gold-standard, expert-annotated labels. This setup ensures that model
performance is assessed independently of any potential bias introduced during pseudo-labeling.
To ensure “apples-to-apples” comparison, we have included the performance of the original
labeling method to Table 2. The comparison of this method and the best benchmark results are
shown below. As expected, the benchmark results fall short compared to the original method,
suggesting many possible ML directions for further improvements.

Model 13C MAE (ppm) 1H MAE (ppm)
TransPeakNet (Original) 2.025 (0.129) 0.167 (0.006)

GIN-Trans (Benchmark) 2.348 (0.031) 0.198 (0.000)

4. Inconsistent Evaluation Metrics Between Tables

A more minor but still confusing issue is the use of different evaluation metrics across Table 1
and Table 2. Table 1 reports accuracy (suggesting a classification setup), while Table 2 reports
MAE (suggesting regression). This discrepancy makes it hard to understand the nature of the
underlying prediction tasks. Line 204 mentions that a matching algorithm is used to assign C-H
bonds within the molecular graph, which may partially explain the metric switch—but for
readers unfamiliar with chemistry (like myself), the rationale for these choices is unclear. A brief
explanation of why different tasks and metrics are used—and what each is measuring—would
significantly improve readability and interpretability.

Response:



The use of accuracy in Table 1 is to illustrate the validation of pseudo-label quality. Specifically,
it assesses how well the automatically generated labels match known assignments in a subset of
data. In contrast, the main task of this work is atom-level peak prediction, which is formulated as
a regression problem and evaluated using mean absolute error (MAE), as shown in Table 2. We
will further clarify this distinction in the manuscript.



Reviewer 3 (Score 5, Confidence 3):

1. The benchmark task is limited to cross-peak shift prediction. While this is a meaningful task,
the work could be strengthened by demonstrating additional downstream applications such as
peak assignment, structure elucidation, or molecule retrieval.

Response:

We appreciate the suggestion and agree that these downstream tasks are important directions.
The current dataset is indeed applicable to tasks such as peak assignment, structure elucidation,
and molecule retrieval by appropriately framing spectral data as input and structural outputs or
matches as targets. In fact, the original method used to create the pseudo-labels used an
automated annotation approach, which is a promising approach to address the annotation
bottleneck in NMR analysis. However, such annotation fundamentally depends on accurate
spectra prediction, which is precisely the challenge our dataset aims to address.

While these downstream applications are compelling, they remain long-standing open problems
in the chemistry and cheminformatics communities, and there is currently a lack of robust Al
models capable of solving them reliably. Conducting benchmarks using simple models may not
yield meaningful insights at this stage. That said, we will explicitly mention the potential
applicability of our dataset to these tasks and encourage future work in these directions.

2. While overall annotation accuracy is reported there is limited discussion of failure cases.
Understanding these failure modes would provide useful guidance for users of the dataset.

Response:

We agree that analyzing failure cases is important for understanding the limitations of both the
dataset and models trained on it. In the revised manuscript, we will include a discussion of cases
where the annotations were partially accurate, potentially due to mismatches in crowded spectral
regions, symmetric atoms, and molecules with rare functional groups. By highlighting these
failure cases, we aim to provide users with clearer expectations of where current models struggle
and to guide future improvements in model design and dataset usage.



Reviewer 4 (Score 4, Confidence 4):

1. Limited novelty beyond dataset construction: The core methodological contributions
are minimal, with the paper mainly describing dataset curation rather than introducing
new models or insights.

Response:

This is a submission to the Datasets and Benchmarks Track. The main contribution is a large-
scale, fully experimental HSQC dataset—rare, hard to curate, and highly valuable. In
addition, we provide comprehensive baseline models to support future method development.

Respectfully, your comment on the “limited novelty” of our work does not capture its
contributions. Our innovation lies in the careful curation of the dataset and the adoption of a
surrogate learning approach to enable large-scale machine learning. Additionally, we employ
the gold standard as a universal benchmark for evaluating all models, ensuring unbiased
performance comparisons.

2. Shallow benchmarks: The baseline experiments rely on standard GNN architectures
with routine hyperparameter tuning, and do not deeply analyze failure modes or structural
patterns specific to 2D NMR.

Response:

We respectfully disagree with this assessment. Our manuscript includes comprehensive
benchmarking across major model families, including 2D GNNs, 3D GNNs, and
transformer-based architectures, with detailed analysis provided in Lines 266—280. It is
unclear what is specifically meant by "failure modes or structural patterns specific to 2D
NMR." If more specific suggestions had been provided instead of general comments, we
would have been glad to address them directly.

3. Lack of chemical interpretability: There is insufficient discussion about whether the
learned representations capture chemically meaningful patterns, beyond reporting
numerical MAE metrics.

Response:

This comment suggests some misunderstanding of the task and its evaluation standards,
possibly due to limited background in chemistry. Our atom-level chemical shift prediction
task uses MAE, which is the standard and chemically meaningful metric: small deviations
directly correlate with accurate structural and electronic interpretations by chemists. Strong
model performance inherently reflects the learning of chemically relevant patterns.



Furthermore, the ability to generalize across diverse molecular contexts such as zero-shot and
few-shot learning further supports the chemical relevance of the learned representations.

4. Potential annotation biases: The “silver-standard” pseudo labels depend on a prior
model trained on related data, potentially introducing systematic biases. The paper does
not rigorously analyze this.

Response:

It is unclear what specific bias is being referred to. The silver-standard labels are used only
for training to enable scalability, while all evaluations are performed on gold-standard,
expert-annotated labels. This setup ensures that model performance is assessed independently
of any potential bias introduced during pseudo-labeling.

5. Related work coverage is insufficient: The paper fails to discuss Unraveling Molecular
Structure: A Multimodal Spectroscopic Dataset for Chemistry (NeurIPS 2024), which
introduced a significantly larger dataset of 79,000 HSQC spectra and more diverse
benchmarks. Ignoring this prior work weakens the novelty claims and gives an
incomplete perspective.

Response:

We are aware of this work and have added the citation in the revised manuscript. We did not
include it initially because it is based entirely on simulated HSQC spectra and contains no
experimental HSQC data. To evaluate similarity with real spectra, the authors collected
experimental data for only 251 molecules—excluding HSQC. This highlights the substantial
effort required to obtain and annotate experimental 2D NMR data, particularly HSQC. Our
dataset, constructed entirely from fully experimental HSQC spectra, directly fills this gap.

This distinction is clearly stated in both our manuscript and the NeurIPS 2024 paper itself,
and appears to have been overlooked in the review.

6. Reference formatting: The bibliography is incomplete and lacks proper paper titles,
making it hard to verify the cited works and reducing the clarity of the literature
discussion.

Response:
According to the NeurIPS 2025 format guidelines, “any choice of citation style is acceptable

as long as you are consistent.” That said, we will include paper titles in the revised
manuscript.



Additional Communications with Reviewer 4:

Reviewer:

Thank you to the authors for your detailed rebuttal.

Regarding shallow benchmarks and chemical interpretability: I apologize for not expressing
my comments clearly in my previous review. What [ meant was that the analysis of the
benchmark experimental results in the paper could be made more in-depth, rather than
questioning the completeness of the evaluated model architectures. Specifically, MAE is a
relatively coarse, molecule-level metric. If the paper could further point out for which types of
atoms these models make more accurate predictions, for which types they are less accurate, and
discuss the underlying reasons, such deeper analysis could provide more valuable insights for
future research. I agree with the authors that submissions to the benchmark track are not
evaluated solely on technical novelty, but whether they can provide valuable insights to the field
is important.

Considering that my other concerns have been partially addressed, I will accordingly raise my
score.

Response:
Thank you for the clarification and for taking the time to revisit our submission.

Regarding your comment on "which types of atoms these models make more accurate
predictions," we hope to get some clarification. Since our model only predicts the chemical shifts
of carbon and hydrogen atoms, are you referring to the types of local molecular environments
(e.g., scaffolds, chiral centers, functional groups, etc.)? If so, we have conducted additional
analysis during the rebuttal stage. While the errors did not cluster around specific scaffolds or
fall into distinct chemical shift ranges, we observed that structurally complex molecules (for
example, those with flexible ring systems or multiple chiral centers) tended to have higher
annotation errors. Moreover, atoms that are pseudo-chemically symmetric and exist in nearly
identical environments (e.g., single-bonded methylene groups in similar positions) also presented
challenges and led to higher prediction errors. We will include this discussion in the main text
and add visualizations of these examples in the appendix of our modified manuscript.

If there are any remaining concerns that you feel have only been partially addressed, we would
be grateful if you could point them out. We are happy to provide further clarification or
additional details as needed. The discussion period is still ongoing, and we will do our best to
address any remaining questions or feedback.

We sincerely appreciate your thoughtful feedback and your decision to raise the score. Thank
you again.



Reviewer 5 (Score 4, Confidence 4):

1. Lack of recent graph transformer baselines such as GraphGPS[1] or GPS++[2].

[1] Rampasek L, Galkin M, Dwivedi VP, Luu AT, Wolf G, Beaini D. Recipe for a general,
powerful, scalable graph transformer. Advances in Neural Information Processing Systems. 2022
Dec 6;35:14501-15. [2] Masters D, Dean J, Klaeser K, Li Z, Maddrell-Mander S, Sanders A,
Helal H, Beker D, Fitzgibbon AW, Huang S, Rampasek L. GPS++: Reviving the Art of Message
Passing for Molecular Property Prediction. Transactions on Machine Learning Research.

Response:

These two papers provide a universal framework for transformer based GNNss, as well as
promising results on Chemistry datasets. We have added these two papers in our references.
During the rebuttal period, we made active efforts to integrate the GraphGPS pipeline into our
framework, as the GPS++ is a specific configuration from the general recipe proposed by the
GraphGPS framework. However, several technical challenges (detailed below) limited our
ability to fully adapt and tune the model for optimal performance, within the given timeframe.
Nonetheless, we were able to test the GraphGPS + RWSE setup (same as the ZINC benchmark,
with modifications for node-level regression task), with which we obtained the following
preliminary results:

Evaluation Data C MAE (ppm) H MAE (ppm)

All-test MAE 4.4681 0.2465
Few-shot MAE 4.3720 0.2350
Zero-shot MAE 4.7240 0.2741

We acknowledge that with more extensive parameter tuning and task-specific adaptations,
GraphGPS performance could likely improve. As such, these results should not be interpreted as
a fair comparison to our other benchmarks. We plan to include a better-optimized configuration
in the camera-ready version by running more experiments.

Several technical mismatches limited full integration.

1. Task misalignment: GraphGPS is primarily designed for graph-level or node-level
classification tasks, whereas our objective involves fine-grained, atom-pair-level
regression between carbon and hydrogen atoms, which is beyond the default task
formulations supported by the GraphGPS pipeline.

2. Non-uniform output structure: Our benchmark models generate outputs only for specific
node pairs (e.g., C—H pairs), and incorporates pairwise relationships, requiring a custom
loss and evaluation routine that the uniform-output paradigm of GraphGPS does not
readily accommodate.

3. Solvent-aware modeling: Our benchmark architectures dynamically inject solvent-class
embeddings into node features during prediction. This conditioning is critical for



chemical shift accuracy but requires per-node customization. This is currently not
implemented in the GraphGPS pipeline, which could also impact model performance.

We view the variety of GraphGPS configurations as a valuable addition to the
GNN+Transformer architecture we have already benchmarked. Due to the implementation
challenges outlined above, we aim to produce a more competitive configuration in our camera-
ready version.

2. the paper only includes atom-level task while graph level and link level also exist for
molecular property prediction. More diverse task types might also be considered.

Response:

We appreciate the suggestion and agree that more diverse task types are important directions.
Our benchmark focuses on atom-level prediction, which is well aligned with HSQC spectra, as
they provide atom-resolved 'H-'3C correlation signals. The dataset is also applicable to graph-
level tasks, such as structure elucidation and molecule retrieval, by framing spectral data as input
and structural outputs as targets. However, these tasks remain long-standing challenges in the
chemistry community, and current AI models are not yet robust enough to solve them reliably.
Benchmarking with simple models may not yield meaningful insights at this stage. That said, we
will explicitly mention the potential of our dataset to support such tasks and encourage future
work in this direction. Regarding link-level prediction, we note that this is not meaningful in the
context of HSQC, as these spectra do not directly encode bond-level information between
heteroatoms, such information typically requires HMQC or HMBC experiments.

3. What is the performance benefit of using GNN architectures over the algorithm used for
silver-standard labels? It already achieves 95.21% on the test set, do we expect the ML models to
perform better or more efficientt? How long does it take to generate pseudo labels for 21,869
molecules?

Response:

Thank you for the question. The reported 95.21% accuracy reflects annotation accuracy, which is
used to validate the quality of the silver-standard labels. However, the primary goal for the
2DNMRGym is to improve chemical shift prediction, which is treated as a regression task and
evaluated using mean absolute error (MAE). Using the 2DNMRGym, ML communities now
have a large-scale dataset with atom-level labeling, which enables many directions in graph
representation learning, structural elucidation and molecule retrieval tasks. The possible
directions include:

1. Improved prediction accuracy by leveraging richer representations of molecular structure
and dynamics.



2. Develop architectures for semi-supervised learning, where models can be trained on
partially labeled data and evaluated using gold-standard labels.

3. Greater generalizability across molecular scaffolds and experimental conditions. With the
right model architectures and training strategies, it is possible to achieve significantly
lower MAEs, thereby enabling more accurate downstream applications such as peak
assignment and structure elucidation.

Regarding efficiency, generating pseudo-labels for 21,869 molecules is computationally fast. On
average, it takes approximately 0.2 seconds per small molecule (<500 Da) and 0.3 seconds per
large molecule (>500 Da). While we used a single V100 GPU, inference remains fast even on
CPU.



