
2DNMRGym: An Annotated Experimental Dataset for
Atom-Level Molecular Representation Learning in 2D

NMR via Surrogate Supervision

Anonymous Author(s)
Affiliation

Address

email

Abstract

Two-dimensional (2D) Nuclear Magnetic Resonance (NMR) spectroscopy, particu-1

larly Heteronuclear Single Quantum Coherence (HSQC) spectroscopy, plays a crit-2

ical role in elucidating molecular structures, interactions, and electronic properties.3

However, accurately interpreting 2D NMR data remains labor-intensive and error-4

prone, requiring highly trained domain experts, especially for complex molecules.5

Machine Learning (ML) holds significant potential in 2D NMR analysis by learning6

molecular representations and recognizing complex patterns from data. However,7

progress has been limited by the lack of large-scale and high-quality annotated8

datasets. In this work, we introduce 2DNMRGym, the first annotated experimental9

dataset designed for ML-based molecular representation learning in 2D NMR. It in-10

cludes over 22,000 HSQC spectra, along with the corresponding molecular graphs11

and SMILES strings. Uniquely, 2DNMRGym adopts a surrogate supervision setup:12

models are trained using algorithm-generated annotations derived from a previously13

validated method and evaluated on a held-out set of human-annotated gold-standard14

labels. This enables rigorous assessment of a model’s ability to generalize from15

imperfect supervision to expert-level interpretation. We provide benchmark results16

using a series of 2D and 3D GNN and GNN transformer models, establishing a17

strong foundation for future work. 2DNMRGym supports scalable model train-18

ing and introduces a chemically meaningful benchmark for evaluating atom-level19

molecular representations in NMR-guided structural tasks. Our data and code is20

open-source and available at: https://github.com/siriusxiao62/2DNMRGym.21

1 Introduction22

1.1 Overview23

Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful technique that uses the magnetic24

properties of atomic nuclei to provide detailed insights into the structure and dynamics of chemical25

compounds (Gunther and Gunther, 1994; Claridge, 2016; Yu et al., 2021). It can determine the26

types, quantities, and spatial arrangements of atoms within molecules and their surrounding chemical27

environments, from small molecules to material polymers and complex bio-macromolecules. In28

NMR spectrum analysis, chemists utilize prediction tools to generate chemical shifts from molecular29

structures, comparing them with experimental values to verify structural assignments. This compari-30

son aids in assessing the accuracy of proposed molecular structures and provides insights into the31

electronic and spatial environments of atoms within the molecule.32
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Among NMR techniques, Heteronuclear Single Quantum Coherence (HSQC) spectroscopy (Bo-33

denhausen and Ruben, 1980) stands out as a powerful two-dimensional (2D) Nuclear Magnetic34

Resonance (NMR) method that has become indispensable for the structural elucidation of complex35

molecules, especially when traditional one-dimensional (1D) NMR techniques are insufficient (Bross-36

Walch et al., 2005; Li and Kang, 2020). By correlating the chemical shifts of proton nuclei with37

those of heteronuclei, typically 13C or 15N , via scalar coupling interactions, HSQC enables the38

precise mapping of interatomic linkages within molecular frameworks. This method is particularly39

valuable for identifying connectivity patterns between protons and adjacent heteronuclei, thereby40

providing critical insights into chemical bonding, stereochemistry, and three-dimensional molecular41

conformation.42

Despite recent advancements in the prediction of 1D NMR spectra (Kwon et al., 2020; Yang et al.,43

2021; Han et al., 2022; Chen et al., 2024) and peak assignment (Xu et al., 2023), the application of44

machine learning techniques to 2D NMR, such as HSQC spectra prediction, remains constrained by45

the scarcity of annotated datasets for training. To the best of our knowledge, no large-scale annotated46

dataset of experimental HSQC spectra is currently available for training machine learning models.47

This is primarily due to the significant bottleneck in acquiring, processing, and annotating 2D NMR48

data. Acquiring HSQC spectra is time-consuming, requires highly sensitive instrumentation, and49

depends on the availability of pure samples at an appropriate concentration, making the process50

highly labor-intensive. Typically, a research group can only produce 10-20 high-quality spectra51

per week. Furthermore, the complexity of molecular structures leads to spectral overlap and signal52

degeneracy, complicating peak resolution. The presence of multiple chiral centers in molecules can53

further complicate annotations. Experimental conditions also play a critical role in determining the54

quality of HSQC spectra. Consequently, the requirement for expensive instruments, labor-intensive55

sample preparation, and specialized expertise in organic chemistry severely limit the availability of56

large, annotated datasets.57

To fill this gap, we introduce the 2DNMRGym dataset (illustrated in Figure 1), including 22,34858

experimental HSQC spectra. Among these, 21,869 HSQC spectra with 33,8370 cross peaks were59

annotated using a recently published algorithm (Li et al., 2025) and 479 spectra with 7,310 peaks60

were manually annotated and cross-validated by three domain experts. Each spectrum includes61

cross peaks annotated with their corresponding molecular graphs, enabling supervised training and62

systematic evaluation of models for HSQC peak prediction. What distinguishes 2DNMRGym is63

its dual-layer annotation strategy: the large-scale algorithm-generated annotations serve as silver-64

standard supervision for model training, while the expert-labeled subset provides a gold-standard65

benchmark to evaluate model robustness and generalization. This setup uses surrogate and abundant66

training labels to enable deep learning methods, and the high quality evaluation dataset to assess67

the ability of a model to learn meaningful molecular representations at the atom level. As such, the68

dataset offers a benchmark for existing and future GNN architectures in atom-level representation69

learning tasks.70

1.2 Concepts and terminology in chemistry71

SMILES. Simplified Molecular Input Line Entry System (SMILES) (Weininger et al., 1988) is a72

textual representation that employs short ASCII strings to describe chemical molecular structures.73

This notation system utilizes a series of characters, including alphanumeric symbols and punctuation74

marks, to represent the atoms, bonds, and connectivity within a molecule.75

Chemical shift. Chemical shift is a measure of the resonant frequency of a nucleus relative to a76

reference standard, expressed in parts per million (ppm), and reflects the electronic environment77

surrounding the nucleus. In NMR spectroscopy, 1H chemical shifts typically range from 0 to 12 ppm,78

while 13C chemical shifts span a broader range, from 0 to 220 ppm, due to greater variation in carbon79

bonding environments. These shifts provide critical information about molecular structure, such as80

hybridization states, functional groups, and local electron density.81

HSQC. HSQC (Bodenhausen and Ruben, 1980) is a 2D NMR spectroscopy technique used to82

elucidate the structure of molecules by correlating the chemical shifts of hydrogen atoms with those83

of directly bonded heteronuclei, typically carbon or nitrogen. This technique provides detailed insights84

into molecular connectivity and is particularly useful for studying complex organic compounds where85

traditional 1D NMR spectroscopy may not provide sufficient information. HSQC is instrumental in86

identifying atom-to-atom connections and understanding the molecular architecture of a substance.87
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Figure 1: The 2DNMRGym dataset comprises multi-modal components, including the SMILES
representation of each molecule and its conversion to a molecular graph. This graph includes both
2D topological structures and Cartesian coordinates for 3D spatial information. The ground truth
spectrum is represented as cross peak tables, where the “Carbon Index” maps to the corresponding
carbons in the molecular topology graph.

Tanimoto similarity. Tanimoto similarity is a widely used metric in cheminformatics for comparing88

molecular fingerprints, which are typically represented as binary vectors (Bajusz et al., 2015). It89

quantifies the structural similarity between two molecules based on the presence or absence of shared90

substructures.91

Scaffold. Scaffold refers to the core structural backbone of a molecule, typically consisting of the92

ring systems and the connecting linkers, with side chains and substituents removed. It represents93

the central topology that defines a molecule’s overall shape and connectivity. In cheminformatics,94

scaffolds are often used to group molecules by structural similarity and to assess model generalization;95

for example, Bemis–Murcko scaffolds (Bemis and Murcko, 1996) are commonly used to analyze96

scaffold diversity and enable tasks like scaffold splitting in molecular datasets.97

Hybridization. Hybridization refers to the combination of atomic orbitals (e.g., sp3, sp2, sp) to form98

new orbitals, which dictate the geometry of chemical bonds around an atom. This process affects both99

the electron distribution and the local chemical environment, factors that are crucial in determining100

NMR chemical shifts.101

Chirality. Chirality is a molecular property where a compound exists as non-superimposable mirror102

images, usually due to a carbon atom bonded to four different substituents. This stereochemical103

feature affects the three-dimensional arrangement of atoms, which in turn influences the NMR signals,104

particularly in chiral environments.105

2 Related work106

The landscape of NMR databases exhibits a significant disparity in development and structure between107

1D and 2D NMR spectra. For instance, the nmrshiftdb2 (Steinbeck et al., 2003) dataset provides a108

comprehensive collection of 1D data, serving as an open-access platform for the sharing of chemical109

shift information. This database is highly structured and extensively utilized across the computational110

chemistry community, making it a valuable resource for researchers. In contrast, databases that111

catalog 2D NMR spectra, such as those for HSQC, exhibit less cohesion and a greater degree of112
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specialization, often tailored to specific sub-realms or applications within the field. The Human113

Metabolome Database (HMDB) (Wishart et al., 2022), for example, is a rich resource that includes114

detailed HSQC spectra for thousands of metabolites, coupled with extensive metadata on their115

structures, biochemical properties, and roles in biological systems. This makes HMDB a vital tool for116

metabolomics research, aiding in the identification and detailed analysis of metabolites across various117

biological samples. Another dataset, CH-NMR-NP (Hayamizu et al., 2015), focuses on natural118

products and provides essential NMR spectral data, including HSQC spectra, for studying complex119

organic compounds. This dataset supports researchers in chemistry and biology by providing insights120

into the structure and potential applications of natural products, thus advancing the understanding121

of their biochemical pathways and therapeutic potentials. These specialized databases are not only122

repositories of NMR spectra but also rich sources of varied molecular dynamics and functional groups.123

Each database captures a unique slice of the chemical universe, encompassing a broad spectrum of124

molecular structures, which are represented as diverse graphs of varying sizes and complexities. This125

diversity is crucial for the development and evaluation of machine learning techniques, especially126

in the fields of computational chemistry and bioinformatics. While valuable, these databases were127

not designed with machine learning tasks in mind and lack the structured annotations necessary for128

supervised learning.129

Furthermore, most existing ML models such as GCN (Kipf and Welling, 2016), GIN (Xu et al.,130

2018), GAT (Velickovic et al., 2017), GNN Transformer (Wu et al., 2021), ComENet (Wang et al.,131

2022) and SchNet (Schütt et al., 2018) are trained at the molecule (graph-level) using coarse labels132

such as molecular properties using datasets like MolecularNet (Wu et al., 2018), QMugs (Isert et al.,133

2022), GEOM (Axelrod and Gomez-Bombarelli, 2022) etc., rather than capturing the finer atom-level134

interactions, as required in analyzing NMR spectra. Prior datasets rarely support this granularity,135

and those that do often rely on simulated data derived from quantum chemistry rather than real136

experimental spectra.137

To address this gap, we introduce 2DNMRGym, a comprehensive, unified repository for experimental138

2D NMR data. Unlike previous datasets, 2DNMRGym provides atom-level annotations, linking each139

cross peak to a specific hydrogen–heteronucleus bond within a molecular graph. The annotation140

process is labor-intensive and requires expert-level understanding of NMR and organic chemistry. To141

scale this effort, we adopt a dual-labeling strategy, combining algorithm-generated pseudo labels with142

a human-annotated subset for evaluation. This enables a unique atom-level representation learning143

task using surrogate supervision, where models are trained on imperfect algorithmic labels and144

evaluated against expert-labeled ground truth. In doing so, 2DNMRGym advances beyond traditional145

molecular fingerprinting and graph-level tasks, offering a new benchmark for fine-grained, chemically146

grounded prediction that bridges NMR spectroscopy and machine learning. This one-stop resource147

aims to streamline access and analysis of two-dimensional NMR spectra across various chemical148

contexts.149

3 Constructing the 2DNMRGym dataset150

Our 2DNMRGym dataset consists of over 22,000 HSQC spectra, where a small subset of 479151

molecules with 7,310 cross peaks were randomly sampled for expert annotation as a held-out test set152

for evaluation.153

Figure 2 summarizes key statistics of the training and test sets, which exhibit similar distributions in154

terms of total atom count, molecular weight, and Tanimoto similarity, indicating that the test set fairly155

represents the broader dataset and supports robust model evaluation. On average, molecules contain156

58 atoms and have a molecular weight of approximately 400 Daltons. Over 25% of the molecules157

exceed 75 atoms and 500 Daltons in weight. The Tanimoto similarity plot reveals that most molecule158

pairs have a similarity score below 0.1, highlighting the structural diversity of the dataset.159

To enable few-shot and zero-shot learning, we performed scaffold analysis for both the training and160

testing dataset. The test dataset contains 397 unique scaffolds, 148 of which are novel scaffolds that161

can be used for zero-shot learning. For scaffolds that appeared less than 10 times in the training set,162

they are used for few-shot learning. Figure 3 summarizes the distribution and top scaffolds in the163

data.164
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Figure 2: Data statistics by number of atoms, molecular weight, and tanimoto similarity.

Figure 3: Scaffold analysis for training and test dataset.
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3.1 Collection of HSQC spectra and SMILES165

We meticulously curated 22,157 experimental spectra, along with NMR conditions and molecular166

CAS Registry numbers, which were extracted from the Human Metabolome Database(HMDB)167

(Wishart et al., 2022) (CC-NC-4.0 licence), and CH-NMR-NP (Hayamizu et al., 2015) for each168

molecule were extracted from PubChem (Kim et al., 2023) (CC-BY-4.0 license) using their CAS169

Registry numbers. The corresponding SMILES for each molecule were extracted from PubChem170

(Kim et al., 2023) using their CAS numbers.171

3.2 Generation of molecular graphs172

Molecular graphs with stable 3D structures are derived from SMILES strings using the RDKit173

(Landrum, 2013) package, and formatted in Python Geometric format for computational processing.174

In the process of converting SMILES representations into molecular graphs, challenges arose with175

disjoint graphs, primarily due to the presence of floating ions. To ensure data quality and model176

accuracy, these anomalies are systematically identified and excluded from the dataset. Additionally,177

certain SMILES strings fail to yield energy-stable 3D structures despite multiple optimization178

attempts. These instances suggest structural inconsistencies or complexities that RDKit cannot179

resolve adequately. Such unstable entries are also eliminated to maintain the structural integrity180

and reliability of our dataset. This meticulous preprocessing ensures that our dataset only includes181

high-quality, consistent molecular graphs that are suitable for subsequent analysis and modeling.182

Furthermore, using the RDKit (Landrum, 2013) package, we enrich the molecular graphs with node183

and edge features to infuse domain-specific insights into our Chemistry-Informed ML development.184

Three features are provided for each node: atomic type, chirality, and hybridization. Also, two185

features are considered for each edge: bond type and bond direction. Bond types include Single,186

Double, Triple, and Aromatic, each reflecting a distinct configuration of electron sharing between187

atoms. Bond direction includes None, EndUpRight, and EndDownRight, primarily representing188

stereochemistry in double bonds. ML practitioners have the option to incorporate these hand-crafted,189

domain-specific features in the model training process, which not only helps in understanding how190

traditional chemical knowledge translates into computational predictions but also explores how191

machine learning techniques can uncover patterns and relationships that might elude conventional192

domain expertise. This dual approach allows our models to benefit from established chemical193

theory while potentially discovering novel insights into molecular behavior that could redefine our194

understanding of NMR shifts and molecular interactions. Such findings could provide valuable195

contributions to the field, suggesting new areas of research or improvements to existing chemical196

theories.197

3.3 Annotation process198

Silver-standard labels We use a framework proposed in (Li et al., 2025) to generate pseudo lables199

for 21,869 molecules. This model was first trained on extensive 1D NMR data, which establishes200

a robust foundation for understanding basic molecular interactions and chemical shift patterns.201

Afterwards, the model was fine-tuned on a diverse set of 2D NMR data, enhancing its ability to202

generalize across different molecular structures and solvent environments. With an accurate prediction203

of 2D NMR cross peaks, the model uses a matching algorithm to assign the predicted cross peaks to204

the most plausible observed peaks in the HSQC spectra, thus creating a direct linkage between each205

observed peak and its corresponding C–H bonds within the molecular graph. To test its annotation206

capability, we compared the annotation generated by this model to the expert annotations on our test207

dataset. Table 1 displays the result. Out of the 479 test molecules, the algorithm accurately annotates208

all peaks for 456 of the molecules (95.21%). For the remaining 23 molecules, the model was able to209

annotate 81.56% of the peaks accurately.210

Table 1: Pseudo-label Accuracy

Fully-Correct Molecule (%) Peak Accuracy (%) for Partial-Correct Molecule
95.21% 81.56%
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Golden-standard labels The test dataset, comprising 479 molecules, underwent a rigorous multi-211

step annotation and validation process involving three domain experts to ensure the accuracy and212

reliability of labels used for model evaluation. The experts all have more than 10 years of experience213

in Organic Chemistry and NMR analysis, from Harvard University, Boston College and University of214

Georgia. Initially, all molecules were annotated by Expert A. Afterwards, the dataset was split into215

two subsets, each independently annotated and cross-checked by Expert B and Expert C. In cases of216

disagreement between the initial and secondary annotations, the molecule was flagged and reviewed217

by the third expert to resolve inconsistencies. The final consensus annotation agreed upon by at least218

two experts was recorded as the ground truth.219

4 2DNMRGym benchmark220

To guide Machine Learning (ML) practitioners using 2DNMRGym, we provide benchmarks for221

cross peak prediction, an atom level representation learning task, described in Section 1 and Figure222

4. Models are evaluated on the held-out test set annotated by domain experts to ensure high-quality223

assessment. In addition to overall performance, we report results under few-shot and zero-shot224

evaluation settings to assess generalization. Specifically, a test molecule is considered few-shot if its225

scaffold appears fewer than 10 times in the training set, and zero-shot if its scaffold is not observed at226

all during training.227

Figure 4: A demonstration workflow using 2DNMRGym dataset to train GNN models. The learnt
graph representation from these benchmark models can be evaluated in the downstream HSQC cross
peak prediction task.

4.1 Baseline models228

To benchmark atom-level cross-peak prediction, we evaluate several representative GNN architectures.229

For 2D GNNs, we include GCN (Kipf and Welling, 2016), which performs neighborhood aggregation230

with normalized message passing; GIN (Xu et al., 2018), designed for maximal expressive power231

in distinguishing graph structures; and GAT (Velickovic et al., 2017), which introduces attention232

mechanisms to weight neighbor contributions adaptively. We also incorporate GNN-Transformer (Wu233

et al., 2021), a hybrid model combining GNNs with global self-attention and structural encodings to234

capture both local and long-range dependencies, which has shown strong performance on chemical235

and biological benchmarks. For 3D molecular graphs, we consider SchNet (Schütt et al., 2018),236

which leverages continuous-filter convolutions to model spatial interactions, and ComENet (Wang237

et al., 2022), which ensures full utilization of 3D geometric information within a 1-hop neighborhood.238

Together, these models provide a diverse baseline for evaluating atom-level representation learning239

on our 2DNMRGym dataset. The model details are included in Appendix C.240

4.2 Training and evaluation241

Train/validation split In our experiments, the data is randomly split into 80% for training, 20% for242

model selection, and the expert-annotated test dataset is used for model evaluation. For each model,243
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we repeat the experiments using random seeds of 0, 42 and 66 and report the mean and standard244

deviatiion of Mean Absolute Error (MAE).245

Pre-processing The value ranges of the 13C- and 1H-shifts are quite different, 0 - 200 ppm for 13C246

versus 0-12 ppm for 1H. To reduce bias and achieve better training, we normalized them to make247

their value range comparable by dividing 13C-shifts by 200 and 1H-shifts by 10.248

Error measurement As 2D NMR captures atomic interactions in two dimensions, specifically249
13C-shift and 1H-shift, the model is trained using the Mean Absolute Error (MAE) of 13C-shifts and250
1H-shifts, assigning them equal weights. The evaluation of the model’s performance for both shifts251

is conducted using the MAE values calculated from the original values of the 13C- and 1H-shifts252

without normalization. This approach ensures that the model’s predictions are assessed directly253

against the experimental chemical shift values, without any scaling or normalization, providing an254

unbiased assessment of its predictive capabilities for the two types of atomic interactions captured in255

2D NMR spectra.256

4.3 Benchmark results257

All experiments were run using one V100 GPU. The performance of the baseline models is summa-258

rized in Table 2. For each model, we adjusted its hyperparameters, including the hidden dimensions259

for GNN node representations, the hidden dimensions for edge representations (where applicable),260

the number of GNN layers, and the hidden channels of MLP layers for 13C-shifts and 1H-shifts261

predictions. Additionally for ComENet, we tune the number of layers inside the interaction module262

for node and edges during message passing. For SchNet, we also tune the number of filters in its263

filter-generating network. All models in this experiment are trained for 100 epochs with batch size264

set to 32.265

Model Type Model All-test MAE Few-shot MAE Zero-shot MAE

13C 1H 13C 1H 13C 1H

2D GNN
GCN 3.035

(0.039)
0.229
(0.002)

3.014
(0.011)

0.227
(0.001)

3.103
(0.038)

0.242
(0.002)

GIN 2.370
(0.007)

0.203
(0.003)

2.274
(0.022)

0.192
(0.002)

2.587
(0.005)

0.230
(0.003)

GAT 2.574
(0.045)

0.206
(0.004)

2.524
(0.042)

0.201
(0.003)

2.811
(0.066)

0.226
(0.003)

3D GNN
ComENet 3.143

(0.018)
0.238
(0.003)

3.178
(0.015)

0.233
(0.002)

3.348
(0.042)

0.262
(0.003)

SchNet 3.156
(0.022)

0.240
(0.001)

3.183
(0.014)

0.239
(0.001)

3.369
(0.031)

0.261
(0.001)

Transformer
GCN-Trans 2.911

(0.044)
0.221
(0.003)

2.869
(0.036)

0.215
(0.004)

3.017
(0.055)

0.241
(0.004)

GIN-Trans 2.348
(0.031)

0.198
(0.000)

2.281
(0.016)

0.188
(0.001)

2.620
(0.039)

0.228
(0.003)

GAT-Trans 2.543
(0.097)

0.206
(0.005)

2.493
(0.104)

0.200
(0.006)

2.740
(0.079)

0.228
(0.005)

Table 2: Comparison of MAE in ppm for 13C and 1H chemical shift predictions across different GNN
models. The best model parameters are documented in Appendix D.

For all GNN models, adding the transformer component in model architecture generally boosts266

performance and reduces variances. Among GNN architectures, GIN models perform the best in267

our task due to their strong discriminative power, which is essential for capturing subtle structural268
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variations that influence NMR shifts. Unlike GCN and GAT, GIN uses injective aggregation functions269

that better preserve node uniqueness within molecular graphs. Compared to GAT models, GIN is270

also architecturally simpler and tends to be more robust, especially when the dataset contains noise or271

biases introduced by silver standard labeling. This robustness makes GIN more reliable in learning272

meaningful representations from limited or noisy training data.273

HSQC spectra primarily reflect short-range correlations governed by the 2D molecular structure, such274

as connectivity, atom types, hybridization, and chirality. These features, which are directly encoded275

in our graph representations, are sufficient to capture the stereoelectronic environments that determine276

chemical shifts. In contrast, 3D models like ComENet or SchNet rely on atomic coordinates that may277

not be optimal, as a molecule can adopt many possible conformers in solution. When only a single278

RDKit-embedded conformer is used, 3D models risk learning from spurious geometrical patterns or279

overfitting to noise in the 3D structure, leading to degraded performance compared to 2D models.280

5 Discussion and conclusion281

Our curated 2DNMRGym dataset is the first experimental, centralized, annotated, and high-quality282

dataset for learning atom-level molecular representation in the 2D NMR space. Significant effort283

was invested in the database’s construction, with the cross-validation from three domain experts. Our284

dataset includes multimodal inputs such as text and graphs, and covers a wide range of molecules285

of varying sizes and scaffolds, providing valuable insights for evaluating representation learning286

models. To establish benchmark results, we tested a variety of 2D and 3D GNN models to predict287

HSQC cross peaks from molecular topologies/structures, paving the way for more advanced machine288

learning models for predicting HSQC cross peaks. The benchmarking results indicate that GIN289

stands out among the 2D and 3D GNN models that we have tried. This highlights the potential for290

developing 3D GNN models to capture spatial information such as chirality centers and hybridization,291

for atom-level tasks, which is potentially a major advance in NMR spectroscopy. There is plenty of292

room for improvements in prediction precision, aiming for an ideal MAE of less than 2 ppm for 13C293

and less than 0.1 ppm for 1H.294

Currently, the database contains only HSQC experimental data, which was generated to interrogate295

C–H interactions. Nevertheless, we expect the models trained on this HSQC data can be easily296

adapted or fine-tuned for other types of 2D NMR data. Looking ahead, the 2DNMRGym dataset297

is poised for further expansion to include a broader range of NMR techniques, such as HMBC and298

COSY, which probe different aspects of atomic interactions within molecules. Such expansions299

will enable the development of more advanced ML techniques for analyzing a wider array of NMR300

spectra, facilitating a more integrated approach to molecular characterization.301
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A Annotation challenges355

2D NMR annotation, which involves associating the chemical shifts of each atom pair with the356

observed signals from experiments, is a highly challenging task. Using the HSQC spectrum as an357

example, the signals observed in the 2D spectrum correspond to the chemical shifts of hydrogen atoms358

directly bonded to heteronuclei, typically 13C or 15N. Annotating these signals requires accurately359

mapping the observed cross-peaks to specific hydrogen-heteronucleus pairs within the molecule.360

However, this process is complicated by several factors, including spectral overlap, signal degeneracy,361

and sensitivity to experimental conditions.362

Spectral overlap occurs when multiple signals appear at similar chemical shift values, making it363

difficult to distinguish and assign them correctly. This issue is exacerbated in larger molecules with364

numerous hydrogen-heteronucleus pairs, leading to increased signal density and potential overlap.365

Additionally, signal degeneracy, where multiple atom pairs share the same chemical shift, further366

complicates the annotation process. Figure 5 shows an example of a large molecule in our dataset.367

Moreover, the observed chemical shifts are highly sensitive to the experimental conditions, such as368

temperature, solvent, pH, and sample concentration. Even slight variations in these conditions can369

cause detectable shifts in the signals, making it challenging to reliably match the experimental data370

with reference values or theoretical predictions.371

Figure 5: An annotation example. To avoid overcrowded, only a few “C-H bond – peak” associations
are shown. For a large molecule with complex structure like this, aligning the chemical bonds with
the cross peaks is extremely difficult due to signal overlap and degeneracy. The bottom-right of the
HSQC spectrum shows a 3D abstract skeleton of the molecule.

B Additional Concepts and terminology in chemistry372

Solvent A solvent, typically a liquid, is used to dissolve other substances (solutes), resulting in the373

formation of a solution. In the context of HSQC spectroscopy, solvent selection is paramount due to374

its profound influence on the chemical environment of the sample, thereby affecting the observed375

chemical shifts in NMR spectra. These shifts serve as pivotal indicators for accurately interpreting376

molecular structures as solvents can alter interactions such as hydrogen bonding, change molecular377

conformations, and affect the dynamics within a molecule. Thus, selecting an appropriate solvent and378

understanding its influence is essential for achieving precise and meaningful HSQC spectral analysis.379

HOSE codes HOSE (Bremser, 1978) codes are a method used in NMR spectroscopy for predicting380

chemical shifts. These codes function by encoding the structural environment of a nucleus in381

concentric spheres, capturing the types and positions of neighboring atoms up to several bonds away.382

Each sphere represents a distinct “shell” of neighbors, and the method relies on a database of known383

chemical shifts to predict the shift for a given atom based on its specific environment. This approach384

is empirical, utilizing accumulated historical data to make predictions.385

DFT Density Functional Theory (DFT) (Wiitala et al., 2006) is a quantum mechanical method386

used to investigate the electronic properties of molecules and solids. In the context of NMR, DFT387
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can be used to calculate chemical shifts by simulating the electronic environment around nuclei.388

This involves solving the Schrödinger equation for electrons in a molecule under the influence of389

a magnetic field, allowing for the prediction of NMR properties based on fundamental physical390

principles. DFT is known for its accuracy and ability to handle complex molecules, though it is391

computationally intensive compared to empirical methods like HOSE codes.392

Traditional tools in chemistry Two software tools are commonly used for processing, visualizing,393

simulating, and analyzing NMR spectral data, ChemDraw (Mills, 2006) and Mestrenova (Willcott,394

2009). They can serve as baselines for Machine Learning based methods.395

C Benchmark GNN models396

C.0.1 2D GNN models397

GCN Graph Convolutional Networks (GCNs) (Kipf and Welling, 2016) is designed to efficiently398

learn node representations by leveraging the graph’s structural information. The update rule for a399

GCN layer is formulated as follows:400

h(k+1)
v = σ

W (k)
∑

u∈N (v)∪{v}

1√
deg(v)deg(u)

h(k)
u

 , (1)

where h
(k)
v represents the feature vector of node v at layer k, N (v) denotes the set of neighbors of401

node v, W (k) is the weight matrix at the k-th layer, and σ is a non-linear activation function (e.g.,402

ReLU), and deg(v) and deg(u) are the degrees of nodes v and u, respectively. This approach, by403

normalizing based on node degrees, mitigates the problem of scale differences in node degrees, thus404

ensuring stable training and effective feature learning.405

GIN Graph Isomorphism Networks (GIN) (Xu et al., 2018) are introduced to enhance the ability406

of GNNs to capture the structural nuances of graphs more effectively. Traditional GNN models407

often struggle to distinguish non-isomorphic graphs due to their limited expressiveness, akin to408

the Weisfeiler-Lehman (WL) graph isomorphism test. GINs are designed to address this issue by409

achieving maximal expressiveness in distinguishing graph structures. The general update rule for a410

GIN model is defined as follows:411

h(k+1)
v = MLP(k)

(
1 + ϵ(k)

)
· h(k)

v +
∑

u∈N (v)

h(k)
u

 , (2)

where h
(k)
v is the feature vector of node v at layer k, N (v) denotes the set of neighbors of node v,412

MLP(k) represents a multi-layer perceptron used at the k-th layer, ϵ(k) is a learnable parameter or a413

fixed scalar that can be tuned to adjust the model’s sensitivity to the central node’s features.414

GAT Graph Attention Networks (GATs) (Velickovic et al., 2017) incorporates the mechanism of415

attention into the GNN by dynamically assigning importance to nodes within a local neighborhood.416

The core update rule for a GAT model is expressed as follows:417

h(k+1)
v = σ

 ∑
u∈N (v)∪{v}

α(k)
vu W

(k)h(k)
u

 , (3)

where h
(k)
v is the representation of node v at layer k, N (v) denotes the neighbors of node v, W (k)418

is a weight matrix for the k-th layer, α(k)
vu represents the attention coefficient between nodes v and419

u, and σ is a nonlinear activation function. The attention coefficients α(k)
vu are computed through a420

learnable function of the features of nodes v and u, allowing the model to focus more on relevant421

features during aggregation.422
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GNN transformer The GNNTrans (Wu et al., 2021) model introduces a hybrid architecture423

that combines the expressive power of Graph Neural Networks (GNNs) with the global attention424

mechanism of Transformers to better capture both local and long-range dependencies in graph-425

structured data. By integrating structural encodings and a novel graph token, the model effectively426

handles graph-level tasks, achieving state-of-the-art performance on multiple benchmarks. This427

approach bridges the gap between sequential attention models and relational inductive biases in428

graphs. The model also achieves promising results on biological and chemical benchmarks, making429

it a suitable benchmark for our dataset.430

C.0.2 3D GNN models431

ComENet ComENet (Wang et al., 2022) offers an efficient message passing network designed432

specifically for 3D GNNs. It incorporates a new message passing scheme that ensures complete433

utilization of 3D information by operating within a 1-hop neighborhood, achieving both global and434

local completeness.435

SchNet SchNet is another 3D GNN architecture designed for modeling atomic-scale interactions436

within molecules and materials (Schütt et al., 2018). It employs a unique continuous-filter convo-437

lutional approach to capture the complex interatomic forces and represents interatomic distances438

through a radial basis function expansion using a flexible number of Gaussian functions.439

D Model parameters440

The optimal hyperparameters for each model in Table 2 are summarized below. For each model type,441

extensive parameter tuning was conducted. The number of GNN layers tested included 3, 4, 5, 6,442

with hidden dimensions of 256, 374, 512. Prediction head configurations evaluated included [256,443

128], [128, 64], [256], [128]. Solvent embedding dimensions were selected from 16, 32. For the444

Transformer module, the hidden dimensions considered were 128, 256, the number of attention heads445

2, 3, 4, feedforward dimensions 256, 512, and the number of Transformer layers 3, 4, 5.446

Table 3: Model configurations for transformer GNN models

Batch
size

GNN
type

GNN
layer

Hid
dim

Pred
head (C)

Pred
head (H)

Solvent
emb
(C)

Solvent
emb
(H)

Trans
hid
dim

Num
of
heads

Trans
ff
dim

Trans
layer

32 gin 5 512 [128, 64] [128, 64] 16 16 128 4 512 3
32 gcn 5 512 [128, 64] [128, 64] 16 16 128 4 256 5
32 gat 5 512 [128, 64] [128, 64] 16 16 128 2 512 5

Table 4: Model configurations for GNN-only models

Batch
size

GNN
type

GNN
layer

Hidden
dim

Pred
head (C)

Pred
head (H)

Solvent
emb
(C)

Solvent
emb
(H)

Filters Gaussians

32 gat 5 512 [128, 64] [128, 64] 32 16 – –
32 gat 5 512 [128, 64] [128, 64] 32 32 – –
32 gcn 5 512 [128, 64] [128, 64] 32 32 – –
32 gin 5 512 [128, 64] [128, 64] 32 16 – –
32 gin 5 512 [128, 64] [128, 64] 32 32 – –
32 schnet 3 512 [128, 64] [128, 64] 16 16 128 50
32 comenet 6 512 [128, 64] [128, 64] 16 16 – –
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NeurIPS Paper Checklist447

1. Claims448

Question: Do the main claims made in the abstract and introduction accurately reflect the449

paper’s contributions and scope?450

Answer: [Yes]451

Justification: The claims are accurate and precise in both the abstract and introduction.452

Guidelines:453

• The answer NA means that the abstract and introduction do not include the claims454

made in the paper.455

• The abstract and/or introduction should clearly state the claims made, including the456

contributions made in the paper and important assumptions and limitations. A No or457

NA answer to this question will not be perceived well by the reviewers.458

• The claims made should match theoretical and experimental results, and reflect how459

much the results can be expected to generalize to other settings.460

• It is fine to include aspirational goals as motivation as long as it is clear that these goals461

are not attained by the paper.462

2. Limitations463

Question: Does the paper discuss the limitations of the work performed by the authors?464

Answer: [Yes]465

Justification: The limitations of our dataset is discussed in Section 5.466

Guidelines:467

• The answer NA means that the paper has no limitation while the answer No means that468

the paper has limitations, but those are not discussed in the paper.469

• The authors are encouraged to create a separate "Limitations" section in their paper.470

• The paper should point out any strong assumptions and how robust the results are to471

violations of these assumptions (e.g., independence assumptions, noiseless settings,472

model well-specification, asymptotic approximations only holding locally). The authors473

should reflect on how these assumptions might be violated in practice and what the474

implications would be.475

• The authors should reflect on the scope of the claims made, e.g., if the approach was476

only tested on a few datasets or with a few runs. In general, empirical results often477

depend on implicit assumptions, which should be articulated.478

• The authors should reflect on the factors that influence the performance of the approach.479

For example, a facial recognition algorithm may perform poorly when image resolution480

is low or images are taken in low lighting. Or a speech-to-text system might not be481

used reliably to provide closed captions for online lectures because it fails to handle482

technical jargon.483

• The authors should discuss the computational efficiency of the proposed algorithms484

and how they scale with dataset size.485

• If applicable, the authors should discuss possible limitations of their approach to486

address problems of privacy and fairness.487

• While the authors might fear that complete honesty about limitations might be used by488

reviewers as grounds for rejection, a worse outcome might be that reviewers discover489

limitations that aren’t acknowledged in the paper. The authors should use their best490

judgment and recognize that individual actions in favor of transparency play an impor-491

tant role in developing norms that preserve the integrity of the community. Reviewers492

will be specifically instructed to not penalize honesty concerning limitations.493

3. Theory assumptions and proofs494

Question: For each theoretical result, does the paper provide the full set of assumptions and495

a complete (and correct) proof?496

Answer: [NA]497
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Justification: The paper does nt include theoretical results.498

Guidelines:499

• The answer NA means that the paper does not include theoretical results.500

• All the theorems, formulas, and proofs in the paper should be numbered and cross-501

referenced.502

• All assumptions should be clearly stated or referenced in the statement of any theorems.503

• The proofs can either appear in the main paper or the supplemental material, but if504

they appear in the supplemental material, the authors are encouraged to provide a short505

proof sketch to provide intuition.506

• Inversely, any informal proof provided in the core of the paper should be complemented507

by formal proofs provided in appendix or supplemental material.508

• Theorems and Lemmas that the proof relies upon should be properly referenced.509

4. Experimental result reproducibility510

Question: Does the paper fully disclose all the information needed to reproduce the main ex-511

perimental results of the paper to the extent that it affects the main claims and/or conclusions512

of the paper (regardless of whether the code and data are provided or not)?513

Answer: [Yes]514

Justification: All model hyperparameters, random seeds and dataset are disclosed for515

reproducibility.516

Guidelines:517

• The answer NA means that the paper does not include experiments.518

• If the paper includes experiments, a No answer to this question will not be perceived519

well by the reviewers: Making the paper reproducible is important, regardless of520

whether the code and data are provided or not.521

• If the contribution is a dataset and/or model, the authors should describe the steps taken522

to make their results reproducible or verifiable.523

• Depending on the contribution, reproducibility can be accomplished in various ways.524

For example, if the contribution is a novel architecture, describing the architecture fully525

might suffice, or if the contribution is a specific model and empirical evaluation, it may526

be necessary to either make it possible for others to replicate the model with the same527

dataset, or provide access to the model. In general. releasing code and data is often528

one good way to accomplish this, but reproducibility can also be provided via detailed529

instructions for how to replicate the results, access to a hosted model (e.g., in the case530

of a large language model), releasing of a model checkpoint, or other means that are531

appropriate to the research performed.532

• While NeurIPS does not require releasing code, the conference does require all submis-533

sions to provide some reasonable avenue for reproducibility, which may depend on the534

nature of the contribution. For example535

(a) If the contribution is primarily a new algorithm, the paper should make it clear how536

to reproduce that algorithm.537

(b) If the contribution is primarily a new model architecture, the paper should describe538

the architecture clearly and fully.539

(c) If the contribution is a new model (e.g., a large language model), then there should540

either be a way to access this model for reproducing the results or a way to reproduce541

the model (e.g., with an open-source dataset or instructions for how to construct542

the dataset).543

(d) We recognize that reproducibility may be tricky in some cases, in which case544

authors are welcome to describe the particular way they provide for reproducibility.545

In the case of closed-source models, it may be that access to the model is limited in546

some way (e.g., to registered users), but it should be possible for other researchers547

to have some path to reproducing or verifying the results.548

5. Open access to data and code549

Question: Does the paper provide open access to the data and code, with sufficient instruc-550

tions to faithfully reproduce the main experimental results, as described in supplemental551

material?552

16



Answer: [Yes]553

Justification: All code and data is released.554

Guidelines:555

• The answer NA means that paper does not include experiments requiring code.556

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/557

public/guides/CodeSubmissionPolicy) for more details.558

• While we encourage the release of code and data, we understand that this might not be559

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not560

including code, unless this is central to the contribution (e.g., for a new open-source561

benchmark).562

• The instructions should contain the exact command and environment needed to run to563

reproduce the results. See the NeurIPS code and data submission guidelines (https:564

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.565

• The authors should provide instructions on data access and preparation, including how566

to access the raw data, preprocessed data, intermediate data, and generated data, etc.567

• The authors should provide scripts to reproduce all experimental results for the new568

proposed method and baselines. If only a subset of experiments are reproducible, they569

should state which ones are omitted from the script and why.570

• At submission time, to preserve anonymity, the authors should release anonymized571

versions (if applicable).572

• Providing as much information as possible in supplemental material (appended to the573

paper) is recommended, but including URLs to data and code is permitted.574

6. Experimental setting/details575

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-576

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the577

results?578

Answer: [Yes]579

Justification: All training and testing details are provided in Section 4.3 and appendix.580

Guidelines:581

• The answer NA means that the paper does not include experiments.582

• The experimental setting should be presented in the core of the paper to a level of detail583

that is necessary to appreciate the results and make sense of them.584

• The full details can be provided either with the code, in appendix, or as supplemental585

material.586

7. Experiment statistical significance587

Question: Does the paper report error bars suitably and correctly defined or other appropriate588

information about the statistical significance of the experiments?589

Answer: [Yes]590

Justification: The error measures are discussed in Section 4.2 and results provided in Section591

4.3.592

Guidelines:593

• The answer NA means that the paper does not include experiments.594

• The authors should answer "Yes" if the results are accompanied by error bars, confi-595

dence intervals, or statistical significance tests, at least for the experiments that support596

the main claims of the paper.597

• The factors of variability that the error bars are capturing should be clearly stated (for598

example, train/test split, initialization, random drawing of some parameter, or overall599

run with given experimental conditions).600

• The method for calculating the error bars should be explained (closed form formula,601

call to a library function, bootstrap, etc.)602

• The assumptions made should be given (e.g., Normally distributed errors).603
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• It should be clear whether the error bar is the standard deviation or the standard error604

of the mean.605

• It is OK to report 1-sigma error bars, but one should state it. The authors should606

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis607

of Normality of errors is not verified.608

• For asymmetric distributions, the authors should be careful not to show in tables or609

figures symmetric error bars that would yield results that are out of range (e.g. negative610

error rates).611

• If error bars are reported in tables or plots, The authors should explain in the text how612

they were calculated and reference the corresponding figures or tables in the text.613

8. Experiments compute resources614

Question: For each experiment, does the paper provide sufficient information on the com-615

puter resources (type of compute workers, memory, time of execution) needed to reproduce616

the experiments?617

Answer: [Yes]618

Justification: The computing resources are discussed in Section 4.2.619

Guidelines:620

• The answer NA means that the paper does not include experiments.621

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,622

or cloud provider, including relevant memory and storage.623

• The paper should provide the amount of compute required for each of the individual624

experimental runs as well as estimate the total compute.625

• The paper should disclose whether the full research project required more compute626

than the experiments reported in the paper (e.g., preliminary or failed experiments that627

didn’t make it into the paper).628

9. Code of ethics629

Question: Does the research conducted in the paper conform, in every respect, with the630

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?631

Answer: [Yes]632

Justification: All previous work is properly cited.633

Guidelines:634

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.635

• If the authors answer No, they should explain the special circumstances that require a636

deviation from the Code of Ethics.637

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-638

eration due to laws or regulations in their jurisdiction).639

10. Broader impacts640

Question: Does the paper discuss both potential positive societal impacts and negative641

societal impacts of the work performed?642

Answer: [NA]643

Justification: There is no perceivable negative social impacts of our work.644

Guidelines:645

• The answer NA means that there is no societal impact of the work performed.646

• If the authors answer NA or No, they should explain why their work has no societal647

impact or why the paper does not address societal impact.648

• Examples of negative societal impacts include potential malicious or unintended uses649

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations650

(e.g., deployment of technologies that could make decisions that unfairly impact specific651

groups), privacy considerations, and security considerations.652
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• The conference expects that many papers will be foundational research and not tied653

to particular applications, let alone deployments. However, if there is a direct path to654

any negative applications, the authors should point it out. For example, it is legitimate655

to point out that an improvement in the quality of generative models could be used to656

generate deepfakes for disinformation. On the other hand, it is not needed to point out657

that a generic algorithm for optimizing neural networks could enable people to train658

models that generate Deepfakes faster.659

• The authors should consider possible harms that could arise when the technology is660

being used as intended and functioning correctly, harms that could arise when the661

technology is being used as intended but gives incorrect results, and harms following662

from (intentional or unintentional) misuse of the technology.663

• If there are negative societal impacts, the authors could also discuss possible mitigation664

strategies (e.g., gated release of models, providing defenses in addition to attacks,665

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from666

feedback over time, improving the efficiency and accessibility of ML).667

11. Safeguards668

Question: Does the paper describe safeguards that have been put in place for responsible669

release of data or models that have a high risk for misuse (e.g., pretrained language models,670

image generators, or scraped datasets)?671

Answer: [NA]672

Justification: Our data and model do not have perceivable high risk of misuse.673

Guidelines:674

• The answer NA means that the paper poses no such risks.675

• Released models that have a high risk for misuse or dual-use should be released with676

necessary safeguards to allow for controlled use of the model, for example by requiring677

that users adhere to usage guidelines or restrictions to access the model or implementing678

safety filters.679

• Datasets that have been scraped from the Internet could pose safety risks. The authors680

should describe how they avoided releasing unsafe images.681

• We recognize that providing effective safeguards is challenging, and many papers do682

not require this, but we encourage authors to take this into account and make a best683

faith effort.684

12. Licenses for existing assets685

Question: Are the creators or original owners of assets (e.g., code, data, models), used in686

the paper, properly credited and are the license and terms of use explicitly mentioned and687

properly respected?688

Answer: [Yes]689

Justification: All benchmark models and relative dataset is properly cited.690

Guidelines:691

• The answer NA means that the paper does not use existing assets.692

• The authors should cite the original paper that produced the code package or dataset.693

• The authors should state which version of the asset is used and, if possible, include a694

URL.695

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.696

• For scraped data from a particular source (e.g., website), the copyright and terms of697

service of that source should be provided.698

• If assets are released, the license, copyright information, and terms of use in the699

package should be provided. For popular datasets, paperswithcode.com/datasets700

has curated licenses for some datasets. Their licensing guide can help determine the701

license of a dataset.702

• For existing datasets that are re-packaged, both the original license and the license of703

the derived asset (if it has changed) should be provided.704
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• If this information is not available online, the authors are encouraged to reach out to705

the asset’s creators.706

13. New assets707

Question: Are new assets introduced in the paper well documented and is the documentation708

provided alongside the assets?709

Answer: [Yes]710

Justification: All related dataset an code is submitted.711

Guidelines:712

• The answer NA means that the paper does not release new assets.713

• Researchers should communicate the details of the dataset/code/model as part of their714

submissions via structured templates. This includes details about training, license,715

limitations, etc.716

• The paper should discuss whether and how consent was obtained from people whose717

asset is used.718

• At submission time, remember to anonymize your assets (if applicable). You can either719

create an anonymized URL or include an anonymized zip file.720

14. Crowdsourcing and research with human subjects721

Question: For crowdsourcing experiments and research with human subjects, does the paper722

include the full text of instructions given to participants and screenshots, if applicable, as723

well as details about compensation (if any)?724

Answer: [NA]725

Justification: This paper does not involve crowdsourcing nor research with human subjects.726

Guidelines:727

• The answer NA means that the paper does not involve crowdsourcing nor research with728

human subjects.729

• Including this information in the supplemental material is fine, but if the main contribu-730

tion of the paper involves human subjects, then as much detail as possible should be731

included in the main paper.732

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,733

or other labor should be paid at least the minimum wage in the country of the data734

collector.735

15. Institutional review board (IRB) approvals or equivalent for research with human736

subjects737

Question: Does the paper describe potential risks incurred by study participants, whether738

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)739

approvals (or an equivalent approval/review based on the requirements of your country or740

institution) were obtained?741

Answer: [NA]742

Justification: This paper does not involve crowdsourcing nor research with human subjects.743

Guidelines:744

• The answer NA means that the paper does not involve crowdsourcing nor research with745

human subjects.746

• Depending on the country in which research is conducted, IRB approval (or equivalent)747

may be required for any human subjects research. If you obtained IRB approval, you748

should clearly state this in the paper.749

• We recognize that the procedures for this may vary significantly between institutions750

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the751

guidelines for their institution.752

• For initial submissions, do not include any information that would break anonymity (if753

applicable), such as the institution conducting the review.754

16. Declaration of LLM usage755
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Question: Does the paper describe the usage of LLMs if it is an important, original, or756

non-standard component of the core methods in this research? Note that if the LLM is used757

only for writing, editing, or formatting purposes and does not impact the core methodology,758

scientific rigorousness, or originality of the research, declaration is not required.759

Answer: [NA]760

Justification: The core method development in this research does not involve LLMs as any761

important, original, or non-standard components.762

Guidelines:763

• The answer NA means that the core method development in this research does not764

involve LLMs as any important, original, or non-standard components.765

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)766

for what should or should not be described.767
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