
Appendix420

A Missing Proofs of Section 4421

Lemma 2 (F). Let (G, c) be a delegation graph and let (F , Ey, y) be the output of Algorithm 1.422

Then:423

(i) For every (G, c), the output of the algorithm is unique, i.e., it does not depend on the choice424

of the strongly connected component in line 3.425

(ii) F is laminar, i.e., for any X,Y 2 F it holds that either X ✓ Y , Y ✓ X , or X \ Y = ;.426

(iii) Branching B in (G, c) is min-cost iff (a) B ✓ Ey, and (b) |B \ �+(X)| = 1 for all427

X 2 F , X ✓ N .428

(iv) For every X 2 F , an in-tree T in G[X] = (X,E[X]), where E[X] = {(u, v) 2 E | u, v 2429

X}, is min-cost iff (a) T ✓ Ey , and (b) |T \ �+(Y)| = 1 for all Y 2 F such that Y ⇢ X .430

Proof. Let (G, c) be a delegation graph and let (F , Ey, y) be the output of Algorithm 1.431

We start by proving statement (ii). The sets in F correspond exactly to those sets with positive432

y-value. Assume for contradiction that there exist two sets X,Y 2 F with X \ Y 6= ; and none of433

the subsets is a subset of the other. Assume without loss of generality that X was selected before Y434

by the algorithm and let y1 and y2 be the status of the function y in each of the two situation. Then, by435

construction of the algorithm it holds that G1 = (N [S,Ey1) is a subgraph of G2 = (N [S,Ey2).436

This is because once an edge is added to the set of tight edges (denoted by Ey) it remains in this437

set. Since Y is a strongly connected component in G2 without outgoing edge, it holds that for every438

z 2 X \ Y and z0 2 X \ Y , the node z0 does not reach z in G2. However, this is a contradiction to439

the fact that X is a strongly connected component in the graph G1, which concludes the proof of440

statement (ii).441

We now turn to prove statement (i) and already assume that F is laminar. We fix an order of the442

selected strongly connected components in line 3 of the algorithm. Then, suppose that for some other443

choices in line 3, the algorithm returns some other output (F̂ , Eŷ, ŷ). Note that F̂ 6= F or Eŷ 6= Ey444

implies that ŷ 6= y. Thus, it suffices to assume for contradiction that ŷ 6= y. Then there must be a445

smallest set X , that has y(X) 6= ŷ(X) (without loss of generality we assume y(X) > ŷ(X)). Let446

X = 2X \ {X} be the set of all strict subsets of X . Since we defined X to be of minimal cardinality,447

we have y[X] = ŷ[X], where y[X], and ŷ[X] denote the restriction of y and ŷ to X , respectively.448

Because y(X) > 0, all children of X are strongly connected by tight edges with respect to y[X]449

and have no tight edges pointing outside of X . Now, consider the iteration of the alternative run of450

the Algorithm 2, in which the algorithm added the last set in X [{X}. Since ŷ(X) < y(X), for451

every further iteration of the algorithm, a chosen set X 0
6= X cannot contain any node in X (because452

otherwise X 0 cannot form a strongly connected component without outgoing edge). However, since453

the nodes in X cannot reach a sink via tight edges, this is a contradiction to the termination of the454

algorithm.455

We now prove statement (iii). The plan of attack is the following: First we define a linear program456

that captures the min-cost branchings in a delegation graph. Second, we dualize the linear program457

and show that y (more precisely a minor variant of y) is an optimal solution to the dual LP, and458

third, utilize complementary slackness to prove the claim. For a given delegation graph (G, c) with459

V (G) = N [S we define the following linear program, also denoted by (LP):460

min
X

e2E

c(e)xe

X

e2�+(X)

xe � 1 8 X ✓ N

xe � 0 8e 2 E

12

We claim that every branching B in G induces a feasible solution to (LP). More precisely, given a461

branching B, let462

xe =

⇢
1 if e 2 B
0 if e /2 B.

The last constraint is trivially satisfied. Now, assume for contradiction that there exists X ✓ N such463

that the corresponding constraint in (LP) is violated. In this case the nodes in X have no path towards464

some sink node in B, a contradiction to the fact that B is a (maximum cardinality) branching. In465

particular, this implies that the objective value of (LP) is at most the minimum cost of any branching466

in G (in fact the two values are equal, but we do not need to prove this at this point). We continue by467

deriving the dual of (LP), to which we refer to as (DLP):468

max
X

X✓N

yX

X

X✓N |e2�+(X)

yX  c(e) 8 e 2 E

yX � 0 8X ✓ N

Now, let y be the function returned by Algorithm 1. We define ŷ, which is intuitively y restricted to469

all subsets on N , more precisely, ŷ(X) = y(X) for all X ✓ N . We claim that ŷ is a feasible solution470

to (DLP). This can be easily shown by induction. More precisely, we fix any e 2 E and show that471

the corresponding constraint in (DLP) is satisfied throughout the execution of the algorithm. At the472

beginning of the algorithm y (and hence ŷ) is clearly feasible for (DLP). Now, consider any step473

in the algorithm and let X be the selected strongly connected component. If e 2 �+(X), then we474

know that the constraint corresponding to e is not tight (since X has no tight edge in its outgoing475

cut). Moreover, y is only increased up to the point that some edge in �+(X) becomes tight (and not476

higher than that). Hence, after this round, the constraint for e is still satisfied. If, on the other hand,477

e /2 �+(X), then the left-hand-side of e’s constraint remains equal when y(X) is increased. Hence,478

the constraint of e is still satisfied.479

Next, we claim that there exists a branching B in G, such that for the resulting primal solution x,480

it holds that
P

e2E c(e)xe =
P

X✓N ŷ(X). The branching B will be constructed in a top-down481

fashion by moving along the laminar hierarchy of F . To this end let GX be the contracted graph as482

defined in Algorithm 2. We start by setting X = N [S. Since every node in N can reach some sink483

via tight edges, we also know that every node in GX can reach some sink. Hence, a branching in GX484

has exactly one edge per node in VX that is not a sink. Let’s pick such a branching BX . We know that485

for every edge in BX = (Y, Z) there exists some edge in the original graph G that is also tight, i.e.,486

u 2 Y and v 2 Z such that (u, v) 2 Ey. For every edge in BX pick an arbitrary such edge and add487

it to B. Now, pick an arbitrary node Y 2 V (GX). By construction, we know that exactly one edge488

from B is included in �+(Y), call this edge (u, v). Then, within the graph GY , there exists exactly489

one node Z 2 V (GY), that contains u. We are going to search for a Z-tree within GY . We know that490

such a tree exists since GY is strongly connected by construction. We follow the pattern from before,491

i.e., finding a Z-tree, mapping the edges back to the original graph (arbitrarily), and then continuing492

recursively. For proving our claim, it remains to show that
P

e2E c(e)xe =
P

X✓N ŷ(X). The493

crucial observation is that, by construction, every set in F̂ = F \ {{s} | s 2 S} is left by exactly one494

edge in B. Hence, we can partition the set F̂ into sets
S

e2B F̂e, where F̂e = {X 2 F̂ | e 2 �+(X)}.495

Moreover, observe that every edge in B is tight. As a result we get that496

X

e2B

c(e)xe =
X

e2B

X

X2F̂e

ŷ(X) =
X

X✓N

ŷ(X),

proving the claim.497

As a result, note that we found a primal solution B (precisely, the x induced by B), and a dual498

solution ŷ having the same objective value. By weak duality, we can conclude that both solutions are499

in particular optimal. It only remains to apply complementary slackness to conclude the claim. To this500

end, let B be a min-cost branching and x be the induced primal solution. By the argument above we501

know that x is optimal. Now, for any X ✓ N for which ŷ(X) > 0 (hence X 2 F), complementary502

slackness prescribes that the corresponding primal constraint is tight, i.e.,
P

e2�+(X) xe = 1. Hence,503

the branching corresponding to x leaves the set X exactly once, and part (b) of statement (iii) is504

13

satisfied. For statement (a) we apply complementary slackness in the other direction. That is, when505

xe > 0, this implies that the corresponding dual constraint is tight, implying that e has to be tight506

with respect to ŷ and therefore also with respect to y (recall that y and ŷ only differ with respect to507

the sink nodes).508

We now turn to proving statement (iv). This is done almost analogously to statement (iii). Fix509

X 2 F . In the following we argue about the min-cost in-trees in G[X] and how to characterize510

these via a linear program. To this end, we add a dummy sink node r to the graph G[X] and call the511

resulting graph Ĝ. More precisely, Ĝ = (X [{r}, E[X] [{(u, r) | u 2 X}). The cost of any edge512

(u, r), u 2 X is set to c⇤ := maxe2E(G) c(e) + 1, where it is only important that this value is larger513

than any other cost in the graph. We define the following LP:514

min
X

e2E(Ĝ)

c(e)xe

X

e2�+
Ĝ
(Z)

xe � 1 8 Z ✓ X

xe � 0 8e 2 E(Ĝ)

For every min-cost in-tree T in G[X] we obtain a feasible solution to (LP). To this end, let u 2 X be515

the sink node of T and define T̂ = T [{(u, r)}. Then, translate T̂ to its incidence vector x. Given516

this observation, we again derive the dual of (LP), to which we refer to as (DLP):517

max
X

Z✓X

yZ

X

Z✓X|e2�+
Ĝ
(Z)

yZ  c(e) 8 e 2 E(Ĝ)

yZ � 0 8Z ✓ X

Now, let y be the output of Algorithm 1 for the original graph G. We derive ŷ : 2X ! R as follows:518

ŷ(Z) =

(
y(Z) if Z ⇢ X
c⇤ �maxu2X

P
Z⇢X|e2�+

Ĝ
(Z) y(Z) if Z = X

First, analogously to (iii), it can be verified that ŷ is a feasible solution to (DLP). Moreover, again519

analogously to (iii), there exists some min-cost r-tree in Ĝ and a corresponding primal solution x,520

such that
P

e2E(Ĝ) c(e)xe =
P

Z✓X ŷX . (This tree is derived by first chosing a tight edge towards521

the dummy root node r and then again recurse over the laminar family F restricted to X .) This implies522

by weak duality that ŷ is an optimal solution to (DLP) and any min-cost r-tree in Ĝ is an optimal523

solution to (LP). As a result, we can again apply complementary slackness in both directions: Let T524

be a min-cost in-tree in G[X] with sink node u 2 X . Then let T̂ = T [{(u, r)} be the corresponding525

min-cost r-tree in Ĝ and x be the corresponding incidence vector. Then, complementary slackness526

implies that for any e 2 E[X] for which xe > 0 (and hence e 2 T), it holds that the corresponding527

constraint in (DLP) is tight with respect to ŷ (and also y). This implies that e 2 Ey. On the other528

hand, for any Z ⇢ X , if ŷZ > 0, and hence X 2 F , complementary slackness prescribes that the529

corresponding primal constraint is tight, and hence |T \ �+G[X](Z)| = 1, concluding the proof.530

For the proof of the next theorem, we first explain how to compute the absorbing probabilities of531

an absorbing Markov chain (G,P) and show a related lemma that we need in Appendix C. W.l.o.g.532

we assume that the states V (G) are ordered such that the non-absorbing states N come first and the533

absorbing states S last. We can then write the transition matrix as534

P =


D C
0 I|S|

�
,

where D is the |N |⇥ |N | transition matrix from non-absorbing states to non-absorbing states and535

C is the |N |⇥ |S| transition matrix from non-absorbing states to absorbing states. I|S| denotes the536

|S| ⇥ |S| identity matrix. The absorbing probability of an absorbing state s 2 S, when starting a537

random walk in a state v 2 N is then given as the entry in the row corresponding to v and the column538

corresponding to s in the |N |⇥ |S| matrix (I|N | �D)�1C [Grinstead and Snell, 1997].539

14

Lemma A.1. Adding a self-loop to a non-absorbing state v with probability p and scaling all other540

transition probabilities from that state by 1� p does not change the absorbing probabilities of an541

absorbing Markov-chain (G,P).542

Proof. Let (D,C) and (D0, C 0) be the transition matrices of the absorbing Markov chain before and543

after adding the self-loop. Let dv,d0
v, cv, c

0
v be the rows of D,D0, C, C 0, corresponding to state v544

respectively. Then545

d0
v = (1� p)dv + pe|v ,

c0v = (1� p)cv

and d0
u = du and c0u = cu for all u 6= v.546

We want to show that (I|N | � D)�1C = (I|N | � D0)�1C 0. Let Z = (I|N | � D)�1C. Then
Z = (I|N | �D0)�1C 0 if and only if Z = D0Z +C 0. Notice, that only the row corresponding to v in
D0 and C 0 differ from D and C and therefore for all u 6= v

zu = duZ + cu = d0
uZ + c0u ,

where zu is the row of Z corresponding to u. The only thing left to show is zv = d0
vZ + c0v . We have547

d0
vZ + c0v = ((1� p)dv + pe|v)Z + (1� p)cv

= (1� p)dvZ + pe|vZ + (1� p)cv
= (1� p)(dvZ + cv) + pe|vZ
= (1� p)zv + pzv (since DZ + C = Z)

= zv ,

which concludes the proof.548

Theorem 4 (F). Algorithm 2 returns MIXED BORDA BRANCHING and runs in poly(n).549

Proof. We start by showing by induction that the given interpretation of the weight function on the550

nodes is correct, i.e., for any v 2 N , tX(v) corresponds to the number of min-cost v-trees in the551

graph G[X]. The claim is clearly true for any singleton, since t{v}(v) = 1 and the number of v-trees552

in ({v}, ;) is one, i.e., the empty set is the only v-trees. Now, we fix some X 2 F
0 and assume that553

the claim is true for all children of X . In the following, we fix v 2 X and argue that the induction554

hypothesis implies that the claim holds for tX(v) as well.555

For any node u 2 X , let Yu 2 F be the child of X containing node u. Moreover, let T ⇤
v (G[X]) (or556

short T ⇤
v) be the set of min-cost v-trees in G[X], and TYv (GX) (or short TYv) be the set of Yv-trees in557

GX . Lastly, for any u 2 X , let T ⇤
u (G[Yu]) be the set of min-cost u-trees in G[Yu]. In the following,558

we argue that there exists a many-to-one mapping from T
⇤
v to TYv . Note that, by statement (iv)559

in Lemma 2, every min-cost in-tree T in G[X] (hence, T 2 T
⇤
v) leaves every child of X exactly560

once via a tight edge. Therefore, there exists a natural mapping to an element of TYv by mapping561

every edge in T that connects two children of X to their corresponding edge in GX . More precisely,562

T̂ = {(Y, Y 0) 2 EX | T \ �+(Y) \ ��(Y 0) 6= ;} is an Yv-tree in GX and hence an element of TYv .563

Next, we want to understand how many elements of T ⇤
v map to the same element in TYv . Fix any

T̂ 2 TYv . We can construct elements of T ⇤
v by combining (an extended version of) T̂ with min-cost

in-trees within the children of X , i.e., with elements of the sets T ⇤
u (G[Yu]), u 2 X . More precisely,

for any edge (Y, Y 0) 2 T̂ , we can independently chose any of the edges in (u, u0) 2 Ey \ (Y ⇥ Y 0)
and combine it with any min-cost u-tree in the graph G[Y]. This leads to

⇣ Y

(Y,Y 0)2T̂

X

(u,u0)2Ey\(Y⇥Y 0)

tY (u)
⌘
tYv (v) =

� Y

(Y,Y 0)2T̂

wX(Y, Y 0)
�
· tYv (v)

many different elements from T
⇤
v that map to T̂ 2 TYv . Hence,

|T
⇤
v | =

X

T̂2TYv

Y

(Y,Y 0)2T̂

wY (Y, Y
0) · tYv (v) = wX(TYv) · tYv (v) = tX(v),

where the last inequality follows from the definition of tX(v) in the algorithm. This proves the564

induction step, i.e., tX(v) corresponds to the number of min-cost v-trees in the graph G[X].565

15

Now, let X = N [S, i.e., we are in the last iteration of the algorithm. Due to an analogous reasoning
as before, there is a many-to-one mapping from the min-cost branchings in G to branchings in GX .
More precisely, for every branching B 2 BY,{s}(GX), there exist

Y

(Y,Y 0)2B

wX(Y, Y 0) = wX(B)

branchings in G that map to B. Hence, by the Markov chain tree theorem (Lemma 3), we get

Av,s = Qv,s =

P
B2BYv,{s}(GX) wX(B)
P

B2B(GX) wX(B)
=

P
B2B⇤

v,s(G) 1P
B2B⇤(G) 1

,

where (G0
X , P) is the Markov chain corresponding to GX and Q = lim⌧!1

1
⌧

P⌧
i=0 P

⌧ . This566

equals the definition of MIXED BORDA BRANCHING.567

Lastly, we argue about the running time of the algorithm. For a given delegation graph (G, c), let568

n = V (G), i.e., the number of voters. Algorithm 1 can be implemented in O(n3). That is because,569

the while loop runs for O(n) iterations (the laminar set family F can have at most 2n� 1 elements),570

and finding all strongly connected components in a graph can be done in O(n2) (e.g., with Kosaraju’s571

algorithm [Hopcroft et al., 1983]). Coming back to the running time of Algorithm 2, we note that572

the do-while loop runs for O(n) iterations, again, due to the size of F 0. In line 7, the algorithm573

computes O(n) times the number of weighted spanning trees with the help of Lemma 1 (Tutte574

[1948]). Hence, the task is reduced to calculating the determinant of a submatrix of the laplacian575

matrix. Computing an integer determinant can be done in polynomial time in n and log(M), if M576

is an upper bound of all absolute values of the matrix9. Note, that all values in every Laplacian577

(the out-degrees on the diagonals and the multiplicities in the other entries) as well as the results578

of the computation are upper-bounded by the total number of branchings in the original graph G579

(this follows from our argumentation about the interpretation of tX(v) in the proof of Theorem 4),580

hence in particular by nn. Therefore, the running time of each iteration of the do-while loop is581

polynomial in n. In the final step we compute the absorbing probabilities of the (scaled down version)582

of the weighted graph (GX , wX) (where X = N [S). For that, we need to compute the inverse583

of a O(n)⇥O(n) matrix, which can be done using the determinant and the adjugate of the matrix.584

Computing these comes down to computing O(n2) determinants, for which we argued before that585

it is possible in polynomial time10. Summarizing, this gives us a running time of Algorithm 1 in586

O((n7 log(n) + n4 log(n log(n))) ⇤ (log2 n+ (log(n log(n)))2)).587

B Further Remarks on Section 5588

Alternative Interpretation of Algorithm 2 We stated Algorithm 2 in terms of counting min-cost589

branchings. There exists a second natural interpretation that is closer to the definition of the RANDOM590

WALK RULE, in which we want to compute the limit of the absorbing probabilities of a parametric591

Markov chain. We give some intuition on this reinterpretation of the algorithm with the example in592

Figure 2, and later extend this interpretation to a larger class of parametric Markov chains.593

Intuitively speaking, every set X 2 F in the Markov chain (G,P (")) corresponding to the delegation594

graph G is a strongly connected component whose outgoing edges have an infinitely lower probability595

than the edges inside of X as " approaches zero. We are therefore interested in the behavior of an596

infinite random walk in G[X]. While in the branching interpretation, the node weight tX(v) can be597

interpreted as the number of min-cost v-arborescences in G[X], in the Markov chain interpretation598

we think of tX(v) as an indicator of the relative time an infinite random walk spends in v (or the599

relative number of times v is visited) in the Markov chain given by the strongly connected graph600

G[X]. Consider the example iteration depicted in Figure 2a, where we are given an unprocessed601

X 2 F whose children Y1, Y2 are all processed. When contracting Y1 and Y2 the weights on the602

edges should encode how likely a transition is from one set to another, which is achieved by summing603

over the relative time spent in each node with a corresponding edge. We then translate the resulting604

9More precisely, it can be computed in O((n4 log(nM)+n3 log2(nM))⇤(log2 n+(log logM)2)) [Gathen
and Gerhard, 2013]

10We argued this only for integer matrices, but we can transform the rational matrix into an integer one by
scaling it up by a factor which is bounded by nn.

16

graph (Figure 2b) into a Markov chain and again compute the relative time spend in each node. This605

computation is equivalent to calculating the sum of weights of all in-trees (up to a scaling factor,606

see Theorem 3). Indeed, we get a ratio of one to three for the time spend in Y1 and Y2. To compute607

tX(v) we multiply the known weight tYv (v) by the newly calculated weight of Yv. In the example608

this means that since we know, we spend three times as much time in Y2 as in Y1 all weights of nodes609

in Y2 should be multiplied by three (see Figure 2c).610

Extension of Algorithm 2 In addition, we remark that our algorithm could be extended to a larger611

class of parametric Markov chains, namely, to all Markov chains (G,P (")), where G is a graph in612

which every node has a path to some sink node, and, for every e 2 E(G), P (")
e is some rational613

fraction in ", i.e., fe(")
ge(")

, where both fe and ge are polynomials in " with positive coefficients.11614

Now, we can construct a cost function c on G, by setting c(e) = xe � ze + 1, where xe is the615

smallest exponent in fe(") and ze is the smallest exponent in ge("). Note that, if c(e) < 1, then the616

Markov chain cannot be well defined for all " 2 (0, 1]. Now, we run Algorithm 2 for the delegation617

graph (G, c) with the only one difference, i.e., the weight function wX also has to incorporate the618

coefficients of the polynomials fe(") and ge("). More precisely, we define for every e 2 E, the619

number qe as the ratio between the coefficient corresponding to the smallest exponent in fe and the620

coefficient corresponding to the smallest exponent in ge. Then, we redefine line 4 in the algorithm to621

be622

wX(Y, Y 0)
X

(u,v)2Ey\(Y⇥Y 0)

tY (u) · q(u,v).

One can then verify with the same techniques as in Section 4 and Section 5, that this algorithm returns623

the outcome of the above defined class of Markov chains.624

C Missing Proofs and Further Results of Section 6625

Theorem 6 (F). The RANDOM WALK RULE satisfies anonymity.626

Proof. Since � is a graph automorphism, we know that for all v 2 V (G) it holds that |�+(v)| =
|�+(�(v))| and c((v, w)) = c((�(v),�(w))) for any edge (v, w) 2 �+(v). In the corresponding
Markov chain M" we therefore get P (")

(v,w) = P (")
(�(v),�(w)) (see Equation 1). Since through the

bijection between the edges of the graph, we also get a bijection between all walks in the graph W

and for every s 2 S and walk in W[s, v] there is a corresponding walk in W[�(v),�(s)] of the same
probability. Therefore we have

Av,s = lim
"!0

X

W2W[v,s]

Y

e2W

P (")
e = lim

"!0

X

W2W[�(v),�(s)]

Y

e2W

P (")
e = A�(v),�(s) ,

which concludes the proof.627

Theorem 7 (F). The RANDOM WALK RULE satisfies copy-robustness.628

Proof. Let (G, c), v, (Ĝ, c), A, Â and Sv be defined as in the definition of copy-robustness. Let629

(F , y) and (F̂ , ŷ) be the set families and functions returned by Algorithm 1 for G and Ĝ, respectively.630

In this proof, we restrict our view to the subgraphs of only tight edges, denoted by Gy = (N [S,Ey)631

and Ĝŷ = (N \ {v} [V [{v}, Eŷ), respectively. Note, that this does not change the result of the632

RANDOM WALK RULE, since it is shown to be equal to MIXED BORDA BRANCHING, which only633

considers tight edges (in the contracted graph) itself.634

First, we observe that the set Sv is exactly the subset of S reachable by v in Gy. This is because635

the assignment A returned by the RANDOM WALK RULE is given as the absorbing probability of636

a Markov chain on the graph (GX , wX) with X = N [S, computed by Algorithm 2. The graph637

is constructed from Gy by a number of contractions, which do not alter reachability, i.e. for s 2 S638

the node {s} is reachable from the node Yv containing v in GX exactly if s is reachable from v in639

Gy . Since all edge weights wX are strictly positive, in the corresponding Markov chain all transition640

probabilities on the edges of GX are strictly positive as well. This gives {s} a strictly positive641

absorbing probability when starting a random walk in Yv exactly if s is reachable from v in Gy .642

11This class is reminiscent of a class of parametric Markov chains studied by Hahn et al. [2011].

17

Our next observation is that F̂ = F \ {Y 2 F | v 2 Y } [{{v}}, ŷ({v}) = 1 and y(Y) = ŷ(Y)643

for all Y 2 F̂ \ {{v}}. Consider the computation of F in Algorithm 1. Since the output is unique644

(see Lemma 2 statement (i)), we can assume without loss of generality that after initializing F , all645

sets in {Y 2 F | v /2 Y } are added to F first and then the remaining sets {Y 2 F | v 2 Y }. In Ĝ,646

the only edges missing are the outgoing edges from v, therefore, when applying Algorithm 1 to Ĝ647

all sets in {Y 2 F | v /2 Y } can be added to F̂ first (with ŷ(Y) = y(Y)). Note, that the set {v}648

with y({v}) = 1 was added to F̂ in the initialization. We claim, that the algorithm terminates at649

that point. Suppose not, then there must be another strongly connected component X ✓ N with650

�+(X) \ Eŷ = ;. If v 2 X then since v has no outgoing edges X = {v}, which is already in F . If651

v /2 X then X would have already been added.652

With these two observations, we can show the following claim: For every casting voter s 2 S \ Sv

the voting weight remains equal, when v turns into a casting voter, i.e., ⇡s(A) = ⇡s(Â). Fix
s 2 S \ Sv and let U ⇢ N be the set of nodes not reachable from v in Gy. We know that
F̂ = F \ {Y 2 F | v 2 Y } [{v}, which implies that for every node u 2 U the sets containing u
are equal in F and F̂ , i.e., {Y 2 F | u 2 Y } = {Y 2 F̂ | u 2 Y }. Therefore, the outgoing edges
from any u 2 U are equal in Gy and Ĝŷ. Since F̂ ✓ F , the edges in Ĝŷ are a subset of the edges
in Gy and therefore the set U is not reachable from v in Ĝŷ. When translating Ĝŷ into the Markov
chain (Ĝŷ, P̂ (")) (see Equation 1), we get for the probability of any tight out-edge e of u and any
" > 0, that P (")

e = P̂ (")
e , where P (") is the transition matrix induced by the original graph Gy . In the

following we argue about the set of walks in Gy and Gŷ . To this end we define for every u 2 N , the
set W[u, s] (Ŵ[u, s], respectively) as the set of walks in Gy (in Gŷ , respectively) that start in u and
end in sink s. Since all walks from any u 2 U to s contain only outgoing edges from nodes in U ,
we have Ŵ[u, s] = W[u, s]. For any other voter w 2 N \ U we have Ŵ[w, s] = W[w, s] = ; and
therefore

⇡s(Â) = 1 +
X

u2U

lim
"!0

X

Ŵ2Ŵ[u,s]

Y

e2Ŵ

P (")
e = 1 +

X

u2U

lim
"!0

X

W2W[u,s]

Y

e2W

P (")
e = ⇡s(A) ,

which concludes the proof of the claim.653

Summarizing, we know that that for any casting voter s 2 S \ Sv we have ⇡s(A) = ⇡s(Â), which654

directly implies that
P

s2Sv
⇡s(A) = ⇡v(Â) +

P
s2Sv

⇡s(Â).655

Theorem 8 (F). The RANDOM WALK RULE satisfies confluence.656

Proof. Before proving the claim, we introduce notation. For any walk W in some graph G, and657

some node v 2 V (G), we define W [v] to be the subwalk of W that starts at the first occasion of658

v in W . For two nodes u, v 2 V (G), we define W [u, v] to be the subwalk of W that starts at659

the first occasion of u and ends at the first occasion of v. (Note that W [v] and W [u, v] might be660

empty.) Now, for a set of walks W and u, v, s 2 V (G), we define W[v] = {W [v] | W 2 W} and661

W[u, v] = {W [u, v] | W 2W}. Lastly, we define W[u, v, s] = {W 2W [u, s] | v 2W [u, s]}. We662

usually interpret a walk W as a sequence of nodes. In order to facilitate notation, we abuse notation663

and write v 2W for some node v 2 V (G) in order to indicate that v appears in W , and for an edge664

e 2 E(G), we write e 2W to indicate that tail and head of e appear consecutively in W .665

For the remainder of the proof we fix W to be the set of walks in the input delegation graph G starting666

in some node from N and ending in some sink node S. Moreover, let GX be the graph at the end of667

Algorithm 2, i.e., GX for X = N [S. We fix Ŵ to be the set of walks which start in some node of668

GX and end in some sink node of GX (which are exactly the nodes in {{s} | s 2 S}).669

In the following, we define for every v 2 N a probability distribution fv : W[v]! [0, 1], such that it670

witnesses the fact that the RANDOM WALK RULE is confluent. To this end, we define a mapping671

�v : Ŵ[Yv] ! W[v], where Yv is the node in GX that contains v. Given a walk Ŵ 2 Ŵ[Yv],672

we construct �v(Ŵ) 2 W[v] as follows: Let Ŵ = Y (1), . . . Y (k). By construction of GX we673

know that for every i 2 {1, . . . , k}, the fact that (Y (i), Y (i+1)) 2 EX implies that there exists674

(b(i), a(i+1)) 2 E with b(i) 2 Y (i) and a(i+1)
2 Y (i+1). Moreover, we define a(1) = v and b(n) = s,675

where {s} = Y (k). Under this construction it holds that a(i), b(i) 2 Y (i) for all i 2 {1, . . . , k}, but676

the two nodes may differ. Therefore, we insert subwalks W (i) connecting a(i) to b(i) by using only677

18

nodes in Y (i) and visiting each of these nodes at least once. The final walk �v(Ŵ) is then defined by678

(a(1),W (1), b(1), . . . , a(n),W (n), b(n)). We remark that this mapping is injective, and it holds that679

Ŵ visits some node Y 2 V (GX) if and only if �v(Ŵ) visits all nodes in Y .680

Recall that the assignment A of the RANDOM WALK RULE can be computed via a Markov chain
(G0

X , P) derived from the contracted graph (GX , wX) (see Section 4 and Section 5), where G0
X is

derived from GX by adding self-loops. In Lemma A.1 we show that introducing (and thus removing)
self-loops to states in an absorbing Markov chain does not change its absorbing probabilities. We
retrieve the Markov chain (GX , P̂) by removing all self loops of all voters in N and rescaling the
other probabilities accordingly. We then make use of this Markov chain in order to define fv over
W[v]. That is, for any W 2W[v] let

fv(W) =

⇢Q
e2Ŵ P̂e if there exists Ŵ 2 Ŵ[Yv] such that �v(Ŵ) = W

0 else.

Note that, the above expression is well defined since �v is injective.681

In the remainder of the proof, we show that fv witnesses the confluence of the RANDOM WALK
RULE. First, we show that fv is indeed consistent with the assignment A returned by RANDOM
WALK RULE. That is, for any v 2 N and s 2 S it holds that

PW⇠fv [s 2W] =
X

W2W[v,s]

fv(W) =
X

Ŵ2Ŵ[Yv,{s}]

Y

e2Ŵ

P̂e = Av,s .

The second equality comes from the fact that �v is injective and exactly those walks in Ŵ[Yv, {s}]682

are mapped by �v to walks in W[v, s]. Moreover, all walks in W[v, s] that have no preimage683

in Ŵ[Yv, {s}] are zero-valued by fv. The last equality comes from the fact that Av,s equals the684

probability that the Markov chain (G0
X , P) (equivalently, (GX , P̂)) reaches {s} if started in Yv (see685

Section 4 and Section 5).686

We now turn to the second condition on the family of probability distributions fv, v 2 N . That is, for687

every u, v 2 N, s 2 S it holds that688

PW⇠fu [v 2W ^ s 2W] =
X

W2W[u,v,s]

fu(W) =
X

Ŵ2Ŵ[Yu,Yv,{s}]

Y

e2Ŵ

P̂e

=
X

Ŵ2Ŵ[Yu,Yv,{s}]

� Y

e2Ŵ [Yu,Yv]

P̂e

�� Y

e2Ŵ [Yv,{s}]

P̂e

�

=
� X

Ŵ2Ŵ[Yu,Yv]

Y

e2Ŵ

P̂e

�
·
� X

Ŵ2Ŵ[Yv,{s}]

Y

e2Ŵ

P̂e

�

=
� X

s02S

X

Ŵ2Ŵ[Yu,Yv,{s0}]

Y

e2Ŵ

P̂e

�
·
� X

Ŵ2Ŵ[Yv,{s}]

Y

e2Ŵ

P̂e

�

=
� X

s02S

X

W2W[u,v,s0]

fu(W) ·
� X

W2W[v,s]

fv(W))

= PW⇠fu [v 2W] · PW⇠fv [s 2W].

The second equality follows from the same reason as above, i.e., �v is injective, exactly those walks689

in Ŵ[Yu, Yv, {s}] are mapped by �v to walks in W[u, v, s], and all walks in W[u, v, s] that have no690

preimage in Ŵ[Yu, Yv, {s}] are zero-valued by fv. The third inequality holds by the fact that every691

walk that is considered in the sum can be partitioned into Ŵ [Yu, Yv] and Ŵ [Yv, {s}]. The fourth692

equality follows from factoring out by the subwalks. The fifth equality follows from the fact that693

every walk in Ŵ reaches some sink node eventually, and therefore, the additional factor in the first694

bracket sums up to one. Lastly, the sixth equality follows from the very same argument as before.695

From the above equation we get in particular that for every u, v 2 N, s 2 S it holds that

PW⇠fu [s 2W | v 2W] =
PW⇠fu [s 2W ^ v 2W]

PW⇠fu [v 2W]
= PW⇠fv [s 2W].

This concludes the proof.696

19

The next axiom was in its essence first introduced by Behrens and Swierczek [2015] and first given697

the name guru-participation in Kotsialou and Riley [2020]. The idea is that a representative (the698

guru) of a voter, should not be worse off if said voter abstains from the vote. Brill et al. [2022]699

define this property for non-fractional ranked delegations by requiring that any casting voter that was700

not a representative of the newly abstaining voter should not loose voting weight. This definition701

translates well into the setting of fractional delegations where we can have multiple representatives702

per voter. For simplicity, we made a slight modification to the definition12, resulting in a slightly703

stronger axiom.704

Previously, we stated the general assumption that every delegating voter in a delegation graph (G, c)705

has a path to some casting voter in G. In this section we modify given delegation graphs by removing706

nodes or edges, which may result in an invalid delegation graph not satisfying this assumption.707

To prevent this, we implicitly assume that after modifying a delegation graph, all nodes in N not708

connected to any sink in S (we call them isolated) are removed from the graph.709

Guru Participation: A delegation rule satisfies guru-participation if the following holds for every710

instance (G, c): Let (Ĝ, c) be the instance derived from (G, c) by removing a node v 2 N (and all711

newly isolated nodes), let Sv = {s 2 S | Av,s > 0} be the set of representatives of v and let A and712

Â be the assignments returned by the delegation rule for (G, c) and (Ĝ, c), respectively. Then713

⇡s(Â) � ⇡s(A) 8s 2 S\Sv .

In particular, this implies714 X

s2Sv

⇡s(Â) + 1 
X

s2Sv

⇡s(A) .

In order to prove that the RANDOM WALK RULE satisfies guru-participation we first show the715

following lemma, saying that the voting weight of no casting voter decreases, when the in-edges of716

another casting voter are removed from the graph.717

Lemma C.1. For the RANDOM WALK RULE, removing the incoming edges of some casting voter718

s 2 S (and all newly isolated voters) does not decrease the absolute voting weight of any casting719

voter s0 2 S \ {s}.720

Proof. Let (G, c) be a delegation graph and s 2 S a sink. Let (Ĝ, c) be the delegation graph, where721

the in-edges of s and all voters disconnected from casting voters are removed. Let P (") and P̂ (") be722

the transition matrices of the corresponding Markov chains M" and M̂". Then, for any " > 0 and723

edge e in Ĝ we have P (")
e  P̂ (")

e . Since no edge on a path from any v 2 N to any s0 2 S \ {s} was724

removed, we have Ŵ[v, s0] = W[v, s0] and P̂ (")
e � P (")

e for every edge e in Ĝ and " > 0. Therefore,725

for the absolute voting weight of any s0 2 S \ {s} in Ĝ we get726

⇡s0(Â) = 1 +
X

v2N

lim
"!0

X

Ŵ2Ŵ[v,s0]

Y

e2Ŵ

P (")
e � 1 +

X

v2N

lim
"!0

X

W2W[v,s0]

Y

e2W

P (")
e = ⇡s0(A) ,

which concludes the proof.727

Using Lemma C.1 and the proof of Theorem 7, we can show that guru-participation is satisfied by728

the RANDOM WALK RULE by removing a delegating voter step by step.729

Theorem C.2. The RANDOM WALK RULE satisfies guru participation.730

Proof. Let (G, c) be a delegation graph and v 2 N a delegating voter. We remove v from G in731

three steps. First, we remove all out-edges of v, making v a casting voter and call the new delegation732

graph (Ĝ1, c). Then we remove the in-edges of v (and all newly isolated voters) and get (Ĝ2, c).733

Finally, we remove v itself to retrieve (Ĝ, c) as in the definition of guru-participation. Let A, Â1, Â2734

and Â be the assignments returned by the RANDOM WALK RULE for (g, c), (Ĝ1, c), (Ĝ2, c) and735

(Ĝ, c), respectively. From the proof of Theorem 7 we know that for every casting voter s 2 S \ Sv736

the voting weight in the instances (G, c) and (Ĝ1, c) is equal, i.e., ⇡s(Â1) = ⇡s(A). From Lemma737

12More specifically, Brill et al. [2022] use the notion of relative voting weight between the casting voters in
the definition of the axiom, which follows from our version of the axiom using absolute voting weight.

20

C.1 it follows that the voting weight of these voters can only increase if also the in-edges of v are738

removed, i.e., ⇡s(Â2) � ⇡s(Â1). Finally, removing the now completely isolated (now casting) voter739

v does not change the absolute voting weight of any other voter and therefore ⇡s(Â) � ⇡s(A).740

Top-rank priority: For any delegation graph and output of the delegation rule A, if voter v 2 N has741

exactly one outgoing edge of cost 1 and that edge ends in a casting voter s 2 S, then Av,s = 1.742

Theorem C.3. MIXED BORDA BRANCHING satisfies top-rank priority.743

Proof. Let G, v and s be defined as above. We show that for the assignment returned by MIXED744

BORDA BRANCHING Av,s = 1 by showing that every Borda branching contains the edge (v, s).745

Suppose there is a Borda branching B0 with (v, s) /2 B, then we construct a new branching B̂ by746

removing the out-edge of v from B0 and adding (v, s) instead. B̂ is a branching, since no cycles can747

be introduced by adding an edge to a sink and |B̂| = |B0
|. Since v has only one outgoing edge of cost748

one, B̂ has lower total cost that B0, contradicting the assumption that B0 is a Borda branching.749

D Broader Impact750

We are aware of the fact that any delegation rule, and in particular the one suggested in this paper,751

may be implemented in a liquid democracy system and could thereby have real world impact. In this752

paper, we chose the axiomatic method in order to evaluate the suggested rule in a principled way.753

While, with respect to the axioms considered in the literature so far, our delegation rule performs754

very well, we want to point out that this is the very first paper introducing fractional delegation rules755

for ranked delegations. In particular, there is a risk of some unforeseen disadvantages of the rule756

that could possibly be used for manipulations or lead to other negative societal effects. Therefore,757

we think that further theoretical and also empirical research is necessary before recommending our758

suggested delegation rule for (high-stake) real-world decision making.759

21

	Introduction
	Preliminaries
	Liquid Democracy with Fractional Delegations
	Computation of Mixed Borda Branching
	Equivalence of Mixed Borda Branching and Random Walk Rule
	Axiomatic Analysis
	Concluding Remarks
	Missing Proofs of sec:borda
	Further Remarks on sec:equivalence
	Missing Proofs and Further Results of sec:axioms
	Broader Impact

