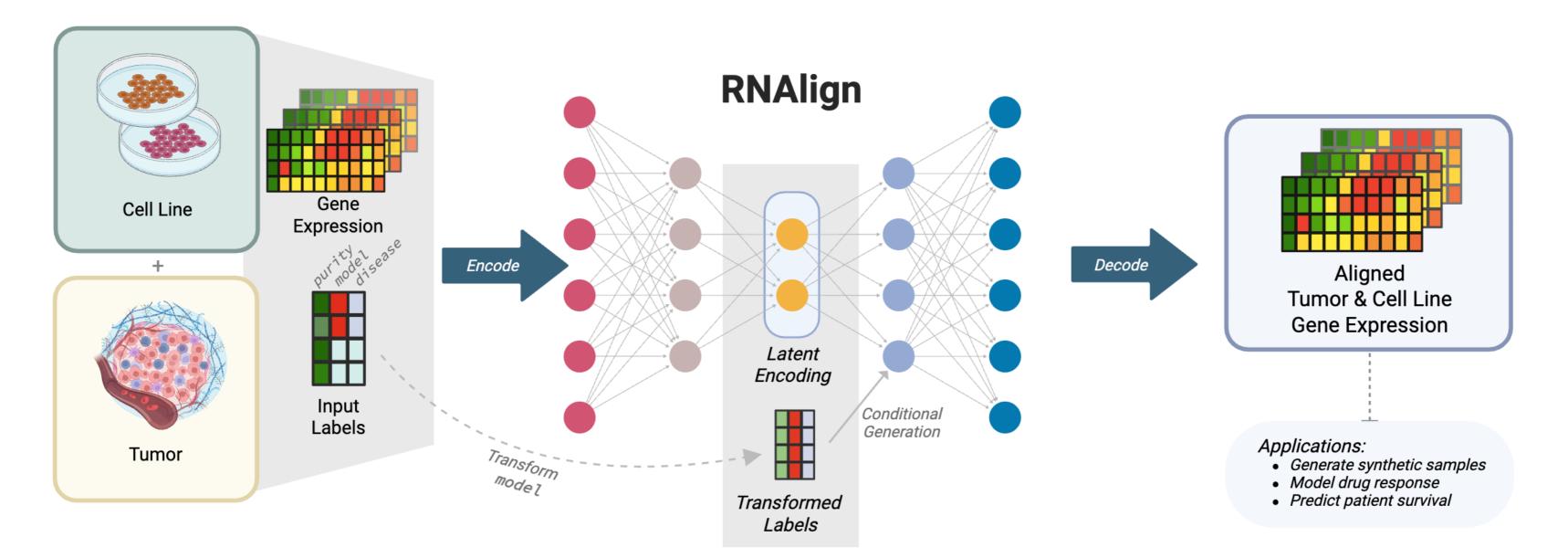


RNALIGN : ALIGNMENT OF TUMOR AND CELL LINE TRANSCRIPTOMES USING CONDITIONAL VAES

Jacob Alvarez^{1,2}, Kiran Krishnamachari¹, Anders Skanderup^{1,2}

1. Computational Cancer Genomics, Agency for Science Technology and Research, Genome Institute of Singapore 2. School of Computing, National University of Singapore, COM1, 13, Computing Dr, 117417 jalvarez,kiran_krishnamachari,skanderupamj@gis.a-star.edu.sg Al for Science (Al 4 X) Conference 2025

School of Computing



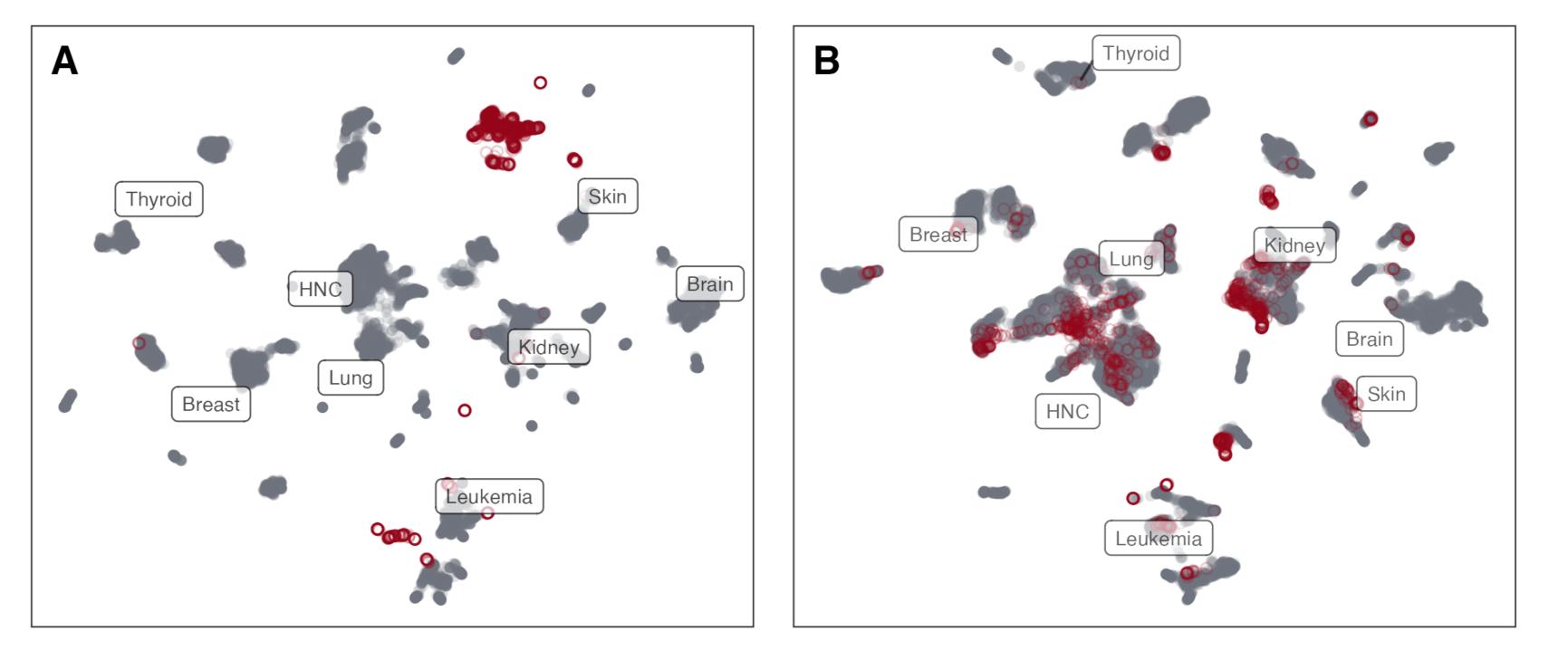
To harmonize innately discordant cell line and tumor gene expression data, RNAlign is a CVAE trained on cell line and tumor data, conditioned with class labels. Two novel regularisation terms are introduced - distance correlation loss L_{cor} regularizes the latent space to be independent from class labels, and a gradient-based loss L_{grad} on the ELBO with respect to class labels, to increase decoder sensitivity to class labels.

Data Integration:

RNAlign was trained with samples from TCGA and CCLE, using purity, sample type, cancer type as class labels.

Enhanced Alignment:

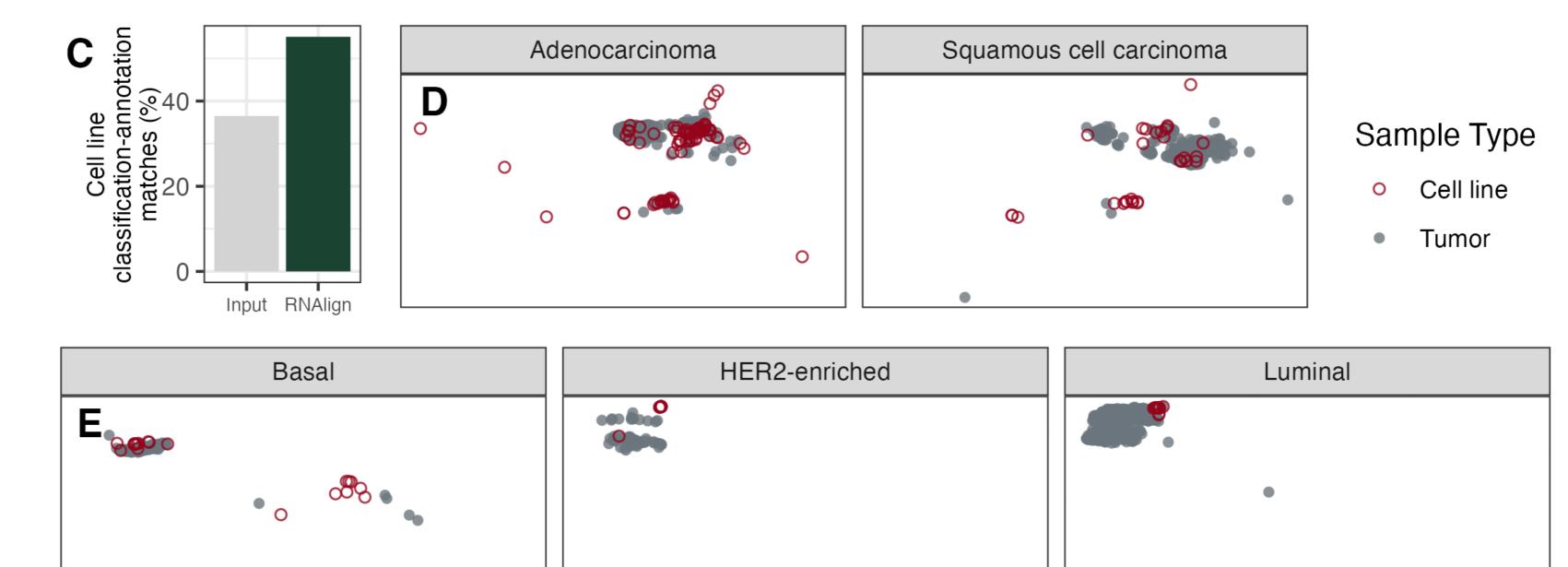
Transformed data enhances clustering of tumors and CLs by cancer type (B). To align, we decode with homogenized class labels – model set to 'CL' and purity set to 1.



2D UMAP representation of 12,236 tumors and 1,249 CL pan-cancer samples used for training RNAlign before **(A)** and after **(B)** RNAlign transformation.

Quantified Improvement:

CL-tumor match increases from 36.5% to 55.1% (C). RNAlign is effective at removing sample type related variation (Table 1).



Subtype Preservation: Retains intra-disease heterogeneity in NSCLC (D) and BRCA (E), resulting in subtype alignment of

Novel regularization

unsupervised factors.

terms: L_{cor} and L_{grad} are key to disentanglement and improves conditional generation (Table 2)

Median percentage of CL samples clustering around tumors of same cancer type (C). 2D UMAP representation of transformed non-small cell lung cancer (D) and breast cancer (E) samples across unsupervised subtype information

Method	ΔD	PVCA	$\Delta \mathbf{kBET}$
Input	22.56	0.27	0.90
Linear Projection	10.57	0.16	0.91
Celligner	8.59	0.10	0.86
RNAlign	4.75	0.13	0.65

Table 1 : RNAlign tops cancer-type	
batch effect removal metrics.	

Method	ΔD
Input data	22.56
RNAlign	4.75
RNAlign (no L_{grad})	6.12
RNAlign (no L_{cor})	10.70
RNAlign (no purity labels)	17.34

0

Table 2 : Model ablation impairsbatch effect removal performance.

