A Proof of Theorem (1]

Proof. Note that the second phase is to find the best function within the class Fy, o h. We first apply
the standard bounded difference inequality (Bartlett and Mendelsonl 2002) as shown in Theorem [6]

Theorem 6 (Bartlett and Mendelson| (2002)). With a probability at least 1 — 6,

- V21 &, (Fra o h) n 91n(2/9) -

sup |Rea(f o h) — Ria(f o h)| < =: €(h,Ntq,9),
fE€Fta Nta 2nta
furthermore, the total generalization error can be upper bounded by
Ealfraoh) < inf Eu(f,h)+  elhnwd) 2)
f€Fta —_——

V generalization error over Fq0h

approximation error

Theorem [f] is stated in terms of Gaussian complexity. It is more common to use Radamecher
complexity, which can be upper bounded by v/27 of the corresponding Gaussian complexity. For
the generalization bound in terms of Rademacher complexity, Theorem 26.5 of [Shalev-Shwartz and
Ben-David| (2014) has a full proof. Then recall that ); and Yy, C [0, 1], we get rid of the loss function
by the contraction lemma, which leads to Theorem@ The result follows by the definition,

A inf a(fra b o oo,
inf 5ta(f7 h) S . = ftae]:ta gt (ftA ) (gso(fsoa h) + ,LL/I/) S VSSO(-fS"? h) + /JJ
fE€Fta lnffsoE}-?i)S Eso(.fsoa h) + M/V

B Proof of Theorem 2

Proof. To show [ is (L, 0)-transferable to f;,, we bound the approximation error of the target task

given any fixed h € H.

Eta(flarh)
=Exy [lia(fia o M(X),Y) = lta(frq 0 h*(X),Y)]
=Ex||fr, o h(X) — fi, 0o B*(X)]I5
< LEx||h(X) — h*(X)|f5- 3)

Now using Assumption [T} we have

gso(h) = EX,Y[lso(h(X)a Y) - ZSC'(h»< (X)) Y)]
= Ex || (X) - h(X)|3
Combined with Equation (3), we have sup,c[Ea(f7, h) /Eso(h)] < L.

Firstly, using Theorem@on source tasks solely, we have £,,(h) = O(&,,..(G)//Trs0)- Deﬁnition
gives us

il Ea(fh) < LE(h) = O(L&n,, (9)/Vs0):

Combined with (2), we have

o (fuuh) =0 [ L
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C Proof of Theorem
Proof. Let f} (x) = fix(ff o h*(x),... f% o h*(z)). Define new tasks 1, .. .¢,,. Each t; has the
prediction function f*.

By Deﬁnition the source tasks are (v, p)-transferable to each ¢;. By Theorem we have

inf &, i,il < gso Asoaﬁ .
it En(fih) < VEuo(fuon ) + 1

Since we use Lo loss,
inf Ex||fi o h(X) = ffoh*(X)|2= inf &.,(fi,h) < vEso(fsorh .
Jnf Exlfioh(X) = fi o h (X3 = inf &, (fuh) < vuolfuorh) + 1

As this holds for all ¢ € [m], we have

nf Ex|[(f1oh(X), .-, fmoh(X))=(fioh*(X), ..., froh*(X))I5 < m(vEeo(Foor h)+1).

j PEEEY) m s

Using Assumption 2] we have

. b < ! r I .
fg}:fta gm(f, h) <L m(Vgso(fsov h) + /~L)

Theorem 3| follows by plugging this into (2). O

D Proof of CorollaryI]

This section we prove Corollary [T|using Theorem [3] the standard bound for Gaussian complexity of
DNN model and the Gaussian complexity decomposition from Tripuranenti et al.|(2020).

The following theorem bounds the Rademacher complexity of a deep neural network model given an
input dataset Xy = (x1,...,xy)T € RVX4,

Theorem 7 (Golowich et al.|(2018)). Let o be a 1-Lipschitz activation function with o(0) = 0. Recall
that M is the depth K neural network with d-dimensional output with bounded input ||z ;|| < Dz
and |Wy||oo < M (k) for all k € [K). Recall that £ = {z — aTx + 8 :Va € RP, ||la|s < M(a)}
is the linear class following the depth- K neural network. Then,

2DzK +2+logd - M(a)ITE_ M (k)
NG .

Since for any function class F, &, (F) < 2v/Iog n - R, (F), we also have the bound for the Gaussian
complexity under the same conditions.

%n(EOMK;XN) S

Applying Theorem|[7} we have an upper bound for the second term in Theorem [3}

Nta Nta Nta

It only remains to bound &, (FET oH) /\/Ths in Theorem@ To proceed, we introduce the
decomposition theorem for Gaussian complexity (Tripuraneni et al.;[2020).

Theorem 8 (Theorem 7 in|Tripuraneni et al.|(2020)). Let the function class F consist of functions that
are L(F)-Lipschitz and have boundedness parameter Dx = supy ¢/ .. . || f(z) — f'(2")||2. Further,
define Q = {h(X) : h € H, X € U;_1{X;}}. Then the Gaussian complexity of the function class
FOT(H) satisfies,

bx (FET(H)) < DX

= ar)y +128C (F¥T(H)) - log(nT),

where C (F&(H)) = L(F)&x (M) + maxqe o Bq(F).
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With Theorem [§]applied, we have

éanso (]_—SgoT o 7-[) < 8Dy 128 (L(fso)@Tnso (H) + maxqeo @q(]-'so)) -log(Tnso)
VTng, ~ (Tngo)? + VT, '

“4)

The second term relies on the Lipschitz constant of DNN, which we bound with the following lemma.
Similar results are given by |Scaman and Virmaux| (2018)); [Fazlyab et al.|(2019).

Lemma 1. If the activation function is 1-Lipschitz, any function in L o M is M (a)ITE_ M (k)-
Lipschitz with respect to Lo distance.

Proof. The linear mapping x — Wiz is ||W}]||2-Lipschitz. Combined with the Lipschitz of activation
function we have o(Wj,x) is also ||Wy]||2-Lipschitz. Then the composition of different layers has
Lipschitz constant II;, M}. The Lemma follows by adding the Lipschitz of the last linear mapping. [

Thus, we have

By Theorem |7}
Dz VKoM (0)To5 M (k)

2163*5 Gq(Fso) = O( Moo )-
Plug the above two equations into @), we have
éT’nso ]:.g@oT oH A DX QASTnSO H DZ Kso
( ) _ =+ M(e)IT2 M (k) ( ) | Dzv )],
VTnse (Tnso) VTng, N

where DX = Sup(h,fyz),(hzfl,z/)e;{X]:SOXX ||h o f(l') —ho f'(z’)”
Lemma 2. The boundedness parameter Dx satisfies Dx < Dz M (a)TI}=5 M (k).

Proof. The proof is given by induction. Let r;, denote the vector-valued output of the k-th layer of
the prediction function. First note that

Dx <2 sup [f(2)|I <2M(a)|rx,, |
fEFs0,2EZ

For each output of the k-th layer, we have
Ir%l1* = llo(Wirk—1)II* < [[Wirk-1ll3 < [IWkl3llra-113,
where the first inequality is by the 1-Lipschitz of the activation function. By induction, we have
Dx < 2Dz M ()T M (k).
O

Recall that Fy, = Lo Mg, —k.,—1 © (F&P) and the Lipschitz constant L' < M(a)Hﬁ‘:HM(k).
Using Theorem [3|and apply Lemma 2] we have

gta (ftav }AL) =
A ) Kia
0 (PVHf—tkoJrzM(k) (M(a)nf_saM(k)(@j’;#) n Dfﬁ)) + D2vFu MM
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E Lower bound results for the diversity of depth-1 NN

We first give the proof using ReLu activation function (Theorem [}, as the result is more intuitive
before we extend the similar results to other activation functions.

Proof. As we consider arbitrary representation function and covariate distribution, for simplicity we
write X' = h*(X) and Y’ = h(X).

We consider a subset of depth-1 neural networks with ReLu activation function: F = {z
[(z,w) — (1 —€/D)]4 : ||z]l2 < 1, ||w| < 1}. Let f,, be the function with parameter w. Consider
U C {z:||z|2 = 1} such that {(u,v) <1 —eforall u,v € U,u # v.

Lemma 3. Forany T C F, |T| < ||U|/2], there existsa V" C U,
feT, flv)y=0forallveV.

V| > ||U|/2] such that any

Proof. For any set T, let Ur = {u : 3t € T,u € argmax,c;(u, f)} be a subset of U. Thus,
Ur| <T < [|U]/2]. LetV = U\ Ur.

For any f € T, let uy be its closed point in U. Let v be its closed point in V. Let §; be the angle
between us and vy. By the definition of U, we have cos(6f) = (uy,vs) < 1 — e. We will show that

(rvg) < 1— /4.
Note that since (f,vs) < (f,uy), we have the angle between f and v is larger than 6 /2. By the
simple fact that cos(;/2) < 1 — (1 — cos(6y))/4, we have (f,vs) < 1 —¢€/4. Thus, f(vs) =0
and f(v) =0forallv € V. O

For any set of prediction functions in source tasks, let V' be the set defined in the above lemma.
Consider any v € U \ V and let V! = U \ (V U w). By this construction, we have f,(u) = ¢/4,
while all f € T, f(u) = 0. Note that
1 V-1 1
inf —— () — e L i B
Fer v z;/(f () = T2 g © = 32
while

5 X G - s =0

feT zeV’

Thus, we let X’ = u almost surely and Y’ follows a uniform distribution over V’. This is true when
the covariate distribution is the same as Y and h = = — x and h* = x > u. Recalling the definition
of diversity, we have

1
inf Ex/ v/ (fu(X") = f(Y)? = €2/32 — inf Ex/ v/ (fo(X) — f/(Y")? =0.
Jnf xy (fu(X) = f(Y')" =€/3 ande;fi,gf xy (fs(X7) = fo(Y')" =0

Note that the same result holds when the bias b < —(1 — €¢/4). For general bounded ||b||2 < 1, one
can add an extra coordinate in z as an offset. O

In Theorem[z_fl, we show that in depth-1 neural network with ReLu activation function, we will need
exponentially many source tasks to achieve diversity. Similar results can be shown for other non-linear
activation functions that satisfies the following condition:

Assumption 3. Let o0 : R — R be an activation function. We assume there exists x1,x2 € R,
x1 > X9, such that |o(x1)| > sup,<,, |o(x)|M for some M > 0.

ReLu satisfies the assumption with any M > 0 for any z; > 0 and z5 < 0. Also note that any
continuous activation function that is lower bounded and increasing satisfies this assumption.

Theorem 9. Let o satisfies the above assumption with M for some x1 and x5. Let F = {z —
o(8(z1 — x2){x,w) — Tz1 + 8x2)) : ||z|l2 < 1,||wlle < 1} Let T = {f1,..., fr} be any
set of depth-1 neural networks with ReLu activation in F. If T < 2%1°8)=1 there exists some
representation h*, h' € H, some distribution Px and a target function f, € F, such that

infrer Ea(f, 1) - (M —1)2

inffey:é'so(f,h’) - 8 '
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Proof. We follow the construction in the proof of Theorem E fixane = 1/2and let U C {z :
||z|l2 = 1} such that (u,v) <1 —eforallu,v € U,u # v.

For any source tasks set 7, let Uy = {u : 3t € T,u € argmax,,c;; (u, f¢)} be a subset of U. Thus,
|Ur| <T < [|U|/2]. LetV =U \ Ur. Forany f € T, v € V, similarly to the previous argument,
we have (f,v) <1—¢€/4 =1/8. Therefore, (f,v) <1—¢€/4=1/8 < xa.

For any set of prediction functions in source tasks, let V' be the set defined in the above lemma.
Consider any u € U \ V and let V! = U \ (V U u). By this construction, we have f,(u) = o(z1),
while all f € T, f(u) = o(x2). Note that

B 3 () = @) = Pt > Soten) — o)
zeV’
while .
> 2 () = F@)* <4 5w ofwa)”
feT eV’ z<wo
Thus

infrer ﬁ Zmevf(fu(u) - f(x))2 - (M — 1)2
> rer 7 Laev (F(W) — f(2))> = 8

F Proof of Theorem

Proof. Since dim®(F*) is at least dg, for any set {f1,..., fi}, there exists a f; 1 thatis (F*, €)-
independent of {f1, ..., f;}. By definition, we have

t
3r1, w0 € X, Y || filwr) = fi(wa)|3 < €%, while || fra(z1) = frra(z2)[3 > €.
i=1
We only need to construct appropriate data distribution Px and representation g, g* to finish the

proof. As we do not make any assumption on g, g* and Py, it would be simple to let X; = g(X)
and X, = ¢g*(X).

We let the distribution of X; be the point mass on z;. Let X5 be the uniform distribution over
{I 15 1’2}-

For the excess error of source tasks, we have

t
f,inff, > Exixlf(X0) - fi(X2)|3
1 t_

""" =1

<3 Exy wallfi(X0) — Fi(X2)]3
=1

€2

t
1
=3 i) = el < 5
For the excess error of the target task f;, 1, we have

i EXfa (X0) = fin (X2)l3

t+1

1 1
= ft,ifllgf[§||f{+1($1) — frr(z2)|3 + §Hft/+1(951) — fir1(z1)]I3]

el 1
> inf [lla — fea (22)l3 + 5la = forr (o) ]

62

= (Mo ~ (@l > 5

The statement follows. O



G Extending to general loss functions

In all the above analyses, we assume the square loss function for both source and target tasks. We first
show that diversity under square loss implies diversity under any convex loss function. Let Vi(z, y)
be the gradient of function VI(-,y) evaluated at .

Lemma 4. Any task set F that is (v, p)-diverse over any prediction space under square loss is also
(v/e1, p/cr)-diverse over the same space under loss I, if 1 is ¢q strongly-convex and for all x € X

E[VI(¢"(X),Y) [ X =] =0 5

Proof. Using the definition of the strongly convex and (3),
Exy[l(fe o h(X),Y) = I(f{ o h*(X),Y)]
> Exy[VL(f{ o h(X),Y)" (ff o h*(X) = fe o h(X)) + ex | f{ o h*(X) = fe o h(X)]3]

* * 2
= aExy[|[ff o h*(X) = fro h(X)|3],
which is the generalization error under the square loss. O

Note that Equation (), is a common assumption made in various analyses of stochastic gradient
descent (Jin et al., [2021).

On the other direction, we show that any established diversity over the target task with square loss
also implies the diversity over the same target task with any loss [ if V2] = ¢y 1 for some ¢z > 0.
Lemma 5. Any task set F that is (v, u)-diverse over a target prediction space under square loss is

also (vea, jico)-diverse over the same space under loss 1, if V2I(-,y) = coI for ally € V4, and for
all x € X we have E[VI(¢*(X),Y) | X =] =0.

Proof. The proof is the same as the proof above except for changing the direction of inequality.
Using the definition of the strongly convex and (3)),

Exy[I(fi o h(X),Y) = I(f; o B"(X),Y)]
< Exy[VI(f7 o " (X), V)" (fi o B*(X) = fro (X)) + 2 ||ff o h*(X) = f o h(X)|3]

* * 2
= aEx y[[[ff o h*(X) = fr o h(X)[3],
which is the generalization error under the square loss. O

H Missing proofs in Section 6

Assume we have T tasks, which is (v, u)-diverse over F,, and Vs, C R. Then we can construct
a new source task so with multivariate outputs, i.e. Vs, C RT, such that Hy, = F. ?;T and each
dimension k on the output, given an input z, is generated by
Yi(X) = fioh*™(X) + e

Intuitively, this task is equivalent to 7" source tasks of a single output, which is formally described in
the following Theorem.
Theorem 10. Let so be a source task with Vs, C R and f7,(-) = (mi(-),...,m%()) for some
class M : Z — R. Then if the task set t1,...,tx with prediction functions mj,...,mj. from
hypothesis class M is (v, )-diverse over M, then so is (%, 4 )-diverse over the same class.
Proof. This can be derived directly from the definition of diversity. We use ¢ to denote the new task.
By definition,
; ing__ Eso(fsos h) = }lnf Ex||(mio(X),...,mg oh(X)) — (m} oh*(X),...,m} o h*(X))|3

20EFs0 so

K

inf hMX) —m* o h*(X)]?
D im0 h(X) = mi o b ()l

K
=2, Eulfush)
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As (t1,...,tx) is (v, p)-diverse, we have

SUP,e e pq i0fept Em= (M, h) 1 sup,e e ng infruept E= (M, h) <Y

infhsoefso gso(fS(h h) + N/V B ? % Zszl inf'mke./\/l 5tk (hk, h) + z/K K’

O

For the multiclass classification problem, we try to explain the success of the pretrained model
on ImageNet, a single multi-class classification task. For a classification problem with K-levels,
a common way is to train a model that outputs a K -dimensional vector, upon which a Softmax
function is applied to give the final classification result. A popular choice of the loss function is the
cross-entropy loss.

Now we formally introduce our model. Let the Softmax function be ¢ : R s [0,1]%. Assume
our response variable y € RE is sampled from a multinomial distribution with mean function
q(fr, o h*(x)) € [0,1)%, where h* € H : X + Z and f!, € Fs : Z +— RE. We use the

cross-entropy loss [ : [0, ] x [0,1]5 — R, I(p,q) = — Zk:lpk log(qx)-

Assumption 4. [Boundedness] We assume that any f o h(zx) € Fso X H is bounded in
[— log(B),log(B)] for some constant positive B. We also assume the true function ming U (f* o
h*(x))x > 1/B. for some B, > 0.

Theorem 11. Under Assumption a K-class classification problem with f¥ () =
(mi(),...,m% () for some mi,...,m% € M and Softmax-cross-entropy loss function is
(2B2B*v, B2y)-diverse over any the function class M as long as [, with Ly loss is (v, u)-diverse

over M.

Proof. We consider any target task with prediction function from M®X’ Let U : RX" — [0,1]%" be
the softmax function. We first try to remove the cross-entropy loss. By definition, the generalization

errorof any f o h € M®K' x 7 is

gta(fo )_gta( *Oh*)

ZU * o h*) log( U(J(r{:ohz))] ©)

which gives us the KL-divergence between two distributions U(f o h) and U(f* o h*).
Lemma 6. For any two discrete distributions p, q € [0, 1]%, we have

L(p.q _2Z|p—q| Z%Z( —a).

=1

On the other hand, if min; p; > b for some positive b, then
1 &
L(p.q) < 35 > (p
i=1

Proof. The first inequality is from Theorem 2 in |Dragomir and Gluscevic| (2000). The second
inequality is by simple calculus. O

By the assumption[d} we have that for any h, g, x,

1 1
®B T (K — 1)/32}'

U(foh(x)): €
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We also have Zfil exp(f o h(z);) € [K/B, KB. To proceed,

SUD e e pqonia 0f 5, Eralfra © B) = Era(f7, 0 h*)
i £ 2
il pgoren Esolfeo 0 h) = Exolfiy 0 h*) + spes
(Applying ([6) and Lemmal6))
supy; e e ifp Ex||U(fra 0 h(X)) = U(ff, o h*(X))|3

< 2B ;
mffsoeM@vao Ex||U(fso 0o h(X)) = U(f%, 0 h*(X))H% + Bliu
K
(Using the boundedness ofz exp (f o h(x);))
i=1

supy; o ff, Ex|lexp(fia 0 h(X)) — exp(fi; o B (X))|3
inf 7 pereo Exllexp(foo 0 h(X)) — exp(f2, o h*(X))II3 + #5;
(Using the Lipschitz and convexity of exp)

SUD  eaae s inf 7, Exllfra @ h(X) = fi, 0 W (X) 3
inf; e peren Ex[foo 0 R(X) = fiy 0 B (X) 3 + /v
<2BZB%.

< 2B2?B?

<2B?pB*

The diversity follows.

I Experimental details

Each dimension of inputs is generated from A/(0, 1). We use Adam with default parameters for all
the training with a learning rate 0.001. We choose ReLu as the activation function.

True parameters. The true parameters are initialized in the following way. All the biases are set
by 0. The weights in the shared representation are sampled from A/ (0,1/,/7,,). The weights in the
prediction function for the source task are set to be orthonormal when K, = 1 and p < n,,. For the
target prediction function or source prediction function if K, > 1, the weights are sampled from
N(0,1//n,,) as in the representation part.

Hyperparameters. Without further mentioning, we use the number of hidden units, n,, = 4, input
dimension p = 4, K = 5, Ky, = K, = 1, the number of observations ns, = 1000 and n;, = 100
by default. Note that since p is set to be 4 by default, equivalently we will have ng, - p = 4000
observations.
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