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ABSTRACT

Large language models (LMs) are typically adapted to improve performance on
new contexts (e.g., text prompts that define new tasks or domains) through fine-
tuning or prompting. However, there is an accuracy compute tradeoff—fine-
tuning incurs significant training cost and prompting increases inference over-
head. We introduce Generative Adapter, an effective and efficient adaptation
method that directly maps new contexts to low-rank LM adapters, thereby sig-
nificantly reducing inference overhead with no need for finetuning. The adapter
generator is trained via self-supervised learning, and can be used to adapt a single
frozen LM for any new task simply by mapping the associated task or domain
context to a new adapter. We apply Generative Adapter to two pretrained LMs
(Mistral-7B-Instruct and Llama2-7B-Chat) and evaluate the adapted models in
three adaption scenarios: knowledge acquisition from documents, learning from
demonstrations, and personalization for users. In StreamingQA, our approach
is effective in injecting knowledge into the LM’s parameters, achieving a 63.5%
improvement in F1 score over the model with supervised fine-tuning (from 19.5
to 31.5) for contexts as long as 32K tokens. In the MetaICL in-context learn-
ing evaluation, our method achieves an average accuracy of 44.9 across 26 tasks,
outperforming the base model. On MSC, our method proves to be highly com-
petitive in memorizing user information from conversations with a 4x reduction
in computation and memory costs compared to prompting with full conversation
history. Together, these results suggest that Generative Adapter should allow for
general adaption to a wide range of different contexts. The code is available at
§https://github.com/chentong0/generative-adapter.

1 INTRODUCTION

Adaptation is essential for language models (LMs) to acquire new world knowledge (Jiang et al.,
2024; Hu et al., 2023; Mecklenburg et al., 2024), learn new tasks (Min et al., 2022), and person-
alize to individual users (Salemi et al., 2024). Existing adaptation methods typically involve either
prompting or fine-tuning (Brown et al., 2020). As the scale of LMs continues to increase, adapting
them becomes increasingly difficult due to efficiency constraints during both training and infer-
ence (Hu et al., 2022).

Prompting with task-specific demonstrations (i.e., in-context learning (Brown et al., 2020)) or back-
ground knowledge (i.e., retrieval-augmented generation (Lewis et al., 2020)) is one way to enable
models to temporarily encode such relevant information, allowing flexible adaptation to various
tasks. However, to maintain additional memory across sessions, some extra prompts must be added
to the input, which incur an inference-time or storage overhead (Chevalier et al., 2023). Fine-
tuning is another way to embed new information into the LM’s parameters, retaining long-term
memory. Nevertheless, it requires a training phase that is more computationally expensive than a
single forward pass, and acquiring knowledge through continual pretraining has shown to be data-
inefficient (Yang et al., 2024; Allen-Zhu & Li, 2024). Thus, we are interested in exploring alternative
approaches for effectively and efficiently adapting pretrained LMs.
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In this work, we present Generative Adapter, a novel method for training a neural network (adapter
generator) to generate adapters that contextualize pretrained LMs on-the-fly with temporary knowl-
edge from incoming contexts. Inspired by fast weights (Ba et al., 2016; Schmidhuber, 1992, inter
alia), our approach incorporates a lightweight adapter generator on top of pretrained LM as the slow
network to produce updated parameters for the fast network (the adapted LM). As far as we know,
we are the first to explore this direction. Specifically, the pretrained base LM remains frozen while
we train the LM-specific adapter generator to generate layer-by-layer additive updates, similar to
recent parameter-efficient fine-tuning (PEFT) techniques (Houlsby et al., 2019; Hu et al., 2022). For
each layer, an adapter generator network uses the outer product of past context hidden states from
the corresponding base LM layer to generate delta weights. These generated delta weights are then
added to the base LM weights to form an adapted LM for future predictions. Similar to previous
work on fast weights, our method achieves test-time adaptation using only forward passes, allowing
dynamic updates as new context arrives in sequential chunks. We train the generator end-to-end in
a self-supervised manner by compressing the context into a generated adapter and then computing
the next-token prediction loss on a target sequence using the adapted LM. Once trained, our method
can produce adapted LMs that effectively capture knowledge from the context to solve multiple
downstream tasks, thus improving the adaptability of off-the-shelf pretrained LMs.

We evaluate our method on three scenarios where on-the-fly contextualizing pretrained LMs is cru-
cial: acquiring new factual knowledge, learning from demonstrations, and personalizing for in-
dividual users. These scenarios involve diverse forms of context with varying lengths, including
documents with background knowledge, task-specific input-output examples and user-specific con-
versations. In the knowledge acquisition scenario, Generative Adapter effectively memorizes fac-
tual knowledge from provided documents, with minimal information loss compared to full-context
prompting at short context lengths. Notably, our method excels in memorizing long-context doc-
uments, managing to handle context lengths up to 32K on StreamingQA (Liska et al., 2022) and
8K on SQuAD (Rajpurkar et al., 2016) better than continous pretraining. In learning from demon-
strations on MetaICL (Min et al., 2022), Generative Adapter follows demonstrations effectively,
achieving superior accuracy compared to the in-context learning of its base model. This exempli-
fies the model’s ability to adapt to new tasks efficiently. For personalization, Generative Adapter is
highly effective in retaining user information from conversations, achieving a fourfold reduction in
computation and memory costs compared to full conversation prompting. In practical scenarios with
many queries from the same user on edge computing devices, the benefits of our method are even
more evident. This positions Generative Adapter as a highly efficient tool for personalized LMs.

Our contributions are summarized as follows:

1. We introduce Generative Adapter, a novel method for efficiently adapting pretrained LMs
on-the-fly using test-time contexts. To our knowledge, we are the first to explore retaining
the relevant temporary knowledge through generated parameter-efficient model updates for
state-of-the-art pretrained LMs.

2. We develop an adapter generator network on top of frozen pretrained LMs to transform text
contexts into updated model parameters (adapted LMs) for future queries. We also design
an efficient end-to-end training process to enhance the LMs’ adaptability, i.e., the resulting
generator augmented LM can be used for various downstream tasks using only forward
passes.

3. We validate the proposed method on two representative pretrained LMs. Empirically, we
show the effectiveness of Generative Adapter in various adaptation scenarios, including
knowledge acquisition from documents, learning from demonstrations, and personalized
user interactions. Our method proves to be generalizable across different types of contexts
and applicable to multiple downstream tasks.

2 METHOD

We present Generative Adapter, an efficient and effective framework for directly generating additive
weight updates to contextualize the pretrained LM (a frozen base LM) at test time. Unlike continual
pretraining and supervised fine-tuning which update the pretrained LM via gradient descent, our
method achieves adaptation using forward passes only. In the following sections, we first provide a
task formulation and an overview of Generative Adapter (§2.1). Then we describe the the adapter
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Figure 1: Overview of Generative Adapter. Left: During test-time contextualization, the adapters
∆1, . . . ,∆t are generated sequentially for the stream of context chunks C1, . . . , Ct. At a given time
step t, the context chunk Ct is encoded by the base LM Θbase into hidden state vectors Ht. Then the
generator G produces a new adapter ∆t based on the collection of hidden state vectors H1, . . . ,Ht

representing the accumulated context. Right: During inference, we combine the latest adapter ∆t

with the base LM Θbase to generate responses for input prompts.

generator (§2.2), followed by the self-supervised pretraining tasks (§2.3) and the normalization tech-
niques for improving training stability (§2.4).

2.1 ADAPTATION WITH TEST-TIME CONTEXTUALIZATION

To contextualize a base model, Θbase, to a given context C, our goal is to obtain an updated model,
ΘC , that can respond to user instructions using the information provided in the context C. In prac-
tice, the context can include different types of data, such as documents, dialogues, or task description
and few-shot demonstrations.

We specifically focus on test-time contextualization, where context arrives incrementally as a stream
of data, such as a continuous flow of documents or dialogue sessions. We represent this streaming
context up to time step t as Σ(t) := (C1, . . . , Ct), where Ct is the context chunk arriving at time
step t. In this online adaptation scenario, the model must be efficiently adapted to each new context
chunk as it becomes available.

As shown in Figure 1, we propose Generative Adapter as a framework that adapts the base model
Θbase to new contexts through a single forward pass as each context chunk arrives. Specifically,
given test-time context Σ(t), we adapt the base model Θbase to a new model ΘΣ(t) using a context-
dependent additive adapter ∆t, i.e., ΘΣ(t) = Θbase + ∆t. More details regarding the adapter ∆t

will be provided in §2.2. After this adaptation, the modified model ΘΣ(t) can be utilized for any test
input relevant to the context Σ(t) during inference. For example, if the context Σ(t) consists of a
user’s past conversations, the modified model ΘΣ(t) can effectively summarize or answer questions
about these conversations.

2.2 GENERATIVE ADAPTER

In this paper, we propose using a learned adapter generator G to directly produce the adapter ∆ based
on the streaming context Σ. The core idea is to use the adapter generator to project context token
embeddings, encoded by the base language model (LM), into the matrices of each layer in the LM.
Specifically, we consider only adapting the linear projection layers of the base Transformer model,
i.e., the key/query/value/output layers of the multi-head attention unit and the down/up projection
layers of the feed-forward network.

Concretely, a linear projection layer in the l-th Transformer block (l = 1, 2, . . . , L) can be written as
o = W(l)h, where W(l) ∈ Rdout×din is the weight matrix, h ∈ Rdin is the input vector, o ∈ Rdout
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is the output vector, and we omit the bias term for simplicity. For the adapted LM, we parameterize
W(l) = W

(l)
base +W

(l)
∆ , where W

(l)
base and W

(l)
∆ are the corresponding weight matrices in the base

model Θbase and the context-dependent adapter ∆, respectively.

To generate the weights of the context-dependent adapter ∆, we first encode the streaming context Σ
using the base model Θbase and obtain the sequence of hidden states h(l)

1 ,h
(l)
2 , . . . ,h

(l)
M ∈ Rdh (i.e.,

the outputs of the l-th Transformer block), where M is the number of tokens in the context Σ, and dh
is the dimension of hidden states. These hidden states are packed in a matrix H(l) ∈ RM×dh . Then
we use the hidden states from the (l − 1)-th Transformer block to generate the adapter’s weights
W

(l)
∆ for the l-th Transformer block, i.e., W(l)

∆ = G(l)(H(l−1)), where G(l)(·):R∗×dh → Rdout×din

denotes the layer-specific adapter generator which can transform any hidden state sequence of arbi-
trary length into a fixed-dimensional weight matrix. For conciseness, we will omit the superscript
denoting the layer number l when it does not cause ambiguity.

To obtain a generator G(·) without the undesirable dependency on the context length M , we use a
bi-linear function as following,

W∆ = G(H) = (A1A2)H
⊤H(B1B2) = (A1A2)(

M∑
m=1

hm ⊗ hm)(B1B2), (1)

where ⊗ denotes the outer product operator, A1 ∈ Rdout×dr , A2 ∈ Rdr×dh , B1 ∈ Rdh×dr , B2 ∈
Rdr×din are all learnable parameters, and we set the dimension dr to be much smaller than din, dout
and dh to keep the number of learnable parameters within an acceptable range.

Dynamic Streaming Update In practice, the context can arrive in chunks sequentially. The matrix
of hidden states Ht at step t is computed based on all previous context chunks Σ(t−1). This hidden
state is then used to generate an adapter for the current chunk Σ(t), which, in turn, is also used to
compute the hidden states for future context steps. Based on Equation 1, to compute the adapter of
Σ(t) we need to concatenate all hidden states (i.e., [H1; . . . ;Ht] ∈ R(M1+···+Mt)×dh ) of the context
chunks in Σ(t) to generate the adapter, i.e., W∆t

= G([H1; . . . ;Ht]).

Fortunately, our formulation allows an efficient updating mechanism without explicitly storing his-
tory hidden states, noting that

W∆t = (A1A2)([H1; . . . ;Ht]
⊤[H1; . . . ;Ht])(B1B2) = (A1A2)(

t∑
i=1

H⊤
i Hi)(B1B2). (2)

Thus, the update can be efficiently computed as

St ← St−1 +A2H
⊤
t HtB1 (3)

W∆t
← A1StB2 (4)

where Ht ∈ RMt×dh stores the hidden states for the t-th context chunk, and the partial sum St ∈
Rdr×dr acts as the memory of history context chunks with S0 initialized as all zeros. Note directly
storing W∆t

∈ Rdout×din or
∑

i H
⊤
i Hi ∈ Rdh×dh would require much more memory because we

control dr ≪ min{din, dout, dh}.
Our preliminary experiments find that this architecture exhibits some empirical instability because
the generated matrix W∆t can transform an input vector x into a vector containing values with
either extremely large or near-zero magnitudes, due to its skewed distribution of its singular values.
In §2.4, we will explain how normalization can address the instability issue.

2.3 LEARNING TO UPDATE WITH SELF-SUPERVISED PRETRAINING

To preserve the language modeling capability of the adapted models ΘΣ(t) for t ∈ {1, 2, . . .}, we
pretrain the weight generator G using the next-token prediction loss of ΘΣ(t) in a self-supervised
manner on web corpora. In other words, the adapter generator is trained on top of the frozen base
model Θbase in an end-to-end fashion. Specifically, we use two self-supervision pretraining tasks:
reconstruction and completion.

The reconstruction task (Ge et al., 2024) draws inspiration from autoencoders and aims to train
the weight generator G to embed contextual information into the generated weights. This process
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compresses the input context (x1, . . . , xm) into a generated adapter, G(x1:m), which is subsequently
used to reconstruct the input. Formally, this is accomplished by maximizing the log-likelihood of the
input tokens with the adapted LM, using weights updated from the same text: Lreconstruction(G) =
logP (x1, . . . , xm | Θbase + G(x1:m)) .

The completion task (Zhang et al., 2024; Kim et al., 2024) trains the adapted LM to gener-
ate the continuation of the given context. The goal is to maximize the log-likelihood of to-
kens xm+1, . . . , xn, which represent the continuation of the context x1, . . . , xm in the dataset:
Lcompletion(G) = logP (xm+1, . . . , xn | Θbase + G(x1:m)) .

We observe using both of the task can make the generated adapter memorize and utilize the contex-
tual information. Similar to prior work (Ge et al., 2024), the generator is trained to maximize the
sum of the objective functions of the two task:

max
G
Lreconstruction(G) + Lcompletion(G) (5)

2.4 NORMALIZATION FOR GENERATED WEIGHTS

In preliminary experiments, we find that using the naive outer product for generating weights led to
instability during training, causing convergence issues. When multiplying the generated matrix with
the input vector, the resulting output can either diminish to near-zero or grow excessively large.

To address this instability, we introduce normalization into the formulation, i.e.,

W∆t ← A1 norm(St)B2 = A1 norm

(
A2

t∑
i=1

(
H⊤

i Hi

)
B1

)
B2. (6)

Our pilot experiments find that normalization based on singular value decomposition (SVD) is par-
ticular effective, among other normalization strategies.

SVD Normalization The SVD normalization technique ensures the singular values of the outer
product are normalized to 1. Given a matrix M, we define SVD normalization as:

norm(M) = UV⊤, (7)

where M = UΣV⊤ is the SVD factorization. This normalization resets the positive singular values
of the matrix to one, preventing the vectors from excessively shrinking or exploding.

Low-Rank SVD and LoRA An additional benefit of SVD normalization is that it can naturally
produce low-rank matrices. Instead of performing a full-rank decomposition, we approximate the
input matrix with a rank-r SVD decomposition, where r is a hyperparameter set in advance. Con-
sequently, the matrix can be written as the product of two low-rank matrices, similar to a LoRA
adapter (Hu et al., 2022):

W∆t = A1 norm(St)B2 (8)

= (A1U(H))(V ⊤(H)B2), (9)

where U(H) and V (H) are the matrices resulting from SVD normalization. This low-rank approx-
imation reduces both computational cost and memory usage.

3 EXPERIMENTS SETTINGS

We experiment with using both Mistral-7B-Instruct (v0.2) (Jiang et al., 2023) and Llama2-7B-Chat
(Touvron et al., 2023) as the base LMs. For efficiency, our main experiments train adapter generators
to only update the output projection layers of the multi-head attention unit in Transformer. We study
a more capable implementation in §5 and defer the full exploration of other modules for future work.

Hyperparameters The intermediate dimension dr and SVD rank r are set to 1,024 and 128, re-
spectively. Approximately, this leads to 500 million parameters for the generator, with the generated
adapter of 32 million parameters.

Training Following the standard training pipeline of LM development (Jiang et al., 2023; Touvron
et al., 2023), the training of our adapter generator includes a pretraining phase described in §2.3
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followed by instruction tuning. For pretraining, we randomly sample 1 billion tokens from SlimPa-
jama (Soboleva et al., 2023) which are split into segments of 8,192 tokens each. For instruction
tuning, we use a mix of tasks such as question answering, in-context learning, and general instruc-
tion following, which we ensure that there is no overlap with downstream tasks, with a detailed list
provided in the appendix. The context is divided into chunks of 1,024 tokens to utilize the dynamic
updating mechanism described in §2.2.

4 MAIN RESULTS

We evaluate Generative Adapter on three representative scenarios where contextualizing pretrained
LMs is crucial, i.e., acquiring new factual knowledge (§4.1), learning from demonstrations (§4.2),
and personalizing to individual users (§4.3).

4.1 DOCUMENT-BASED QUESTION ANSWERING WITH VARYING CONTEXT LENGTH

The factual knowledge stored in the parameters of a LM remains static after pretraining. Here, we
consider the scenario where the model needs to adapt to new knowledge based on documents. After
adaptation, it is expected to correctly answer information-seeking questions about these documents.

Setup and Baselines To evaluate the fact recall ability of the adapted model, we use two question
answering (QA) datasets, SQuAD (Rajpurkar et al., 2016) and StreamingQA (Liska et al., 2022),
where each test case consists of a passage and a corresponding question about some information
from that passage. To analyze the impact of context length on performance, we conduct an evalua-
tion using contexts of varying lengths.

We divide the documents in the corresponding test set evenly into groups, with each group having
an average length of k tokens (k ∈ {512, 1K, 2K, 4K, 8K, 16K, 32K}). Thus, the model should
contextualize on the article in each group and evaluate fact recall by the question associated with the
articles. The QA accuracy is evaluated by comparing the generated output with the gold answer for
all questions associated with the documents within the group. Following Rajpurkar et al. (2016), F1
score is used as the metric for evaluation.

We also analyze the computational and storage requirements of Generative Adapter, which com-
prises three phases: general-purpose pretraining, contextualization, and inference. The generator
is pretrained once and can subsequently be used for any task. During the contextualization phase,
Generative Adapter encodes the context into an adapter with a single forward pass. In the inference
phase, the adapted model generates responses based on the input. Beyond the LM parameters, the
extra storage required includes the parameters of the generative adapter.

Here, we consider both full parameter fine-tuning and full context prompting using the same base
model as baselines. For fine-tuning, we consider two variants. The first approach, supervised fine-
tuning (SFT), trains the base model exclusively on a training set of question-answer pairs sourced
from articles distinct from those in the test set. The second variant, known as continual pretraining
(CPT), involves first training the base model on all documents in the test set, followed by further
adaptation through SFT using the the training set of question-answer pairs. During inference, we
evaluate the fine-tuned model in a closed-book manner, i.e., the model is tasked with directly pro-
ducing the answer to a given question. For prompting, we simply concatenate all documents in
the group as a single context and prompt the base model to respond accordingly. Specifically, for
Llama2-7B-Chat, if the context length exceeds the maximum limit of 4K tokens, we truncate the
prompt to include only the last 4K tokens. For Generative Adapter, we create an adapted model for
each document group, which is similar to how the context is encoded as prompting. After that, the
adapted model is asked to answer the question again in a closed-book fashion, akin to fine-tuning.

Results We present the QA accuracy results for SQuAD and StreamingQA and the computation
costs for StreamingQA in Figure 2 and Figure 3, respectively. Both fine-tuning methods (SFT and
CPT) are evaluated in a closed-book manner, resulting in constant QA performance regardless of
varying context lengths. In contrast, both Generative Adapter and prompting are evaluated on vary-
ing context lengths, where recalling facts can become more difficult as the context length increases.

As expected, both our method and prompting achieve improved QA performance by using relevant
contexts compared to supervised fine-tuning baselines. Notably, Generative Adapter is highly effec-

6



Published as a conference paper at ICLR 2025

512 1K 2K 4K 8K 16K 32K
Context Length

10

20

30

40

50

F1
 sc

or
e

SQuAD

512 1K 2K 4K 8K 16K 32K
Context Length

20

30

40

50

F1
 sc

or
e

StreamingQA

Closed-book Prompting Supervised Finetuning Continual Pretraining In-context Prompting GenerativeAdapter

512 1K 2K 4K 8K 16K 32K
Context Length

10

20

30

40

50
F1

 sc
or

e
SQuAD

512 1K 2K 4K 8K 16K 32K
Context Length

20

30

40

50

F1
 sc

or
e

StreamingQA

Closed-book Prompting Supervised Finetuning Continual Pretraining In-context Prompting GenerativeAdapter

(a) Mistral-7B-Instruct
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Figure 2: Document-based QA performance of Generative Adapter across different context lengths.
Both fine-tuning methods (supervised fine-tuning and continual pretraining) are evaluated in a
closed-book manner and remain consistent F1 across context lengths. Generative Adapter achieves
the same inference time as fine-tuning methods while demonstrating higher knowledge recall.
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Figure 3: Computation and storage requirements for Generative Adapter and baseline methods on
StreamingQA. For Generative Adapter, the context is converted into an adaptor during contextual-
ization and then stored for inference. For the prompting method, the key-value (KV) cache can be
generated during contextualization and reused during inference.

tive when the context is relatively short (< 1K tokens). Moreover, it avoids the additional inference
overhead associated with prompting, which requires attention computation over the context input
regardless of using key-value (KV) caches (illustrated by the green lines in Figure 3). This overhead
issue worsens with longer contexts.

In most cases, Generative Adapter outperforms CPT, especially when the context length is less than
8K tokens. Importantly, although both approaches adapt model parameters using documents, Gener-
ative Adapter requires preprocessing time (forward passes only) that is orders of magnitude smaller
than CPT (which involves multiple forward and backward passes), as demonstrated in Figure 3.
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Figure 4: Accuracy plots on MetaICL with varying K-shot in-context examples. Both fine-tuned and
zero-shot prompting baselines are instructed to complete the task without any in-context examples.
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4.2 IN-CONTEXT LEARNING WITH VARYING IN-CONTEXT EXAMPLES

In the prompting paradigm, one emerging ability of pretrained LMs is that they can perform a task
with a few task-specific input-output examples as context on unseen cases, also known as in-context
learning (Brown et al., 2020). Here, we are interested to see whether Generative Adapter can provide
further benefits in enhancing the base LM’s in-context learning ability.

Setup and Baselines We conduct experiments using MetaICL (Min et al., 2022), consisting of 26
test tasks. We also ensure that none of these test tasks were seen during the training of adapter
generator. For each task, we use 1, 2, 4, 8, and 16 demonstrations randomly sampled from the
corresponding development split following the MetaICL evaluate pipeline. To reduce evaluation
variance, we repeat the sampling process five times for each few-shot setting. We report separate
average accuracy for classification and non-classification tasks. For classification tasks, achieving
high accuracy requires the model to learn both the candidate options and the input-output relation-
ships from the provided examples. For non-classification tasks, the model also needs to learn the
output style.

We consider three baselines: 1) zero-shot prompting with the base LM where only task instruction
is provided; 2) standard few-shot prompting with the base LM (Min et al., 2022) where each test
case is prepend with those few-shot examples; and 3) fine-tuning the base LM on each evaluation
task using 16 input-output pairs, corresponding to the maximum number of shots in our evaluation.

Results Figure 4 summarizes the results for MetaICL with various number of in-context examples
for both classification and non-classification tasks. The performance of fine-tuned models (blue
lines) and zero-shot prompt baselines (grey lines) is evaluated without demonstrations, resulting in
constant performance across different numbers of shots. While fine-tuned models generally achieve
higher accuracy on classification tasks, their performance on non-classification tasks is lower. We
speculate that the few-shot setting (16 shots) is insufficient for the model to learn the desired out-
put style through fine-tuning. In contrast, Generative Adapter outperforms few-shot prompting in
most cases, with more significant improvements observed in the more challenging non-classification
tasks, where the model must adapt to specific output styles. This indicates that the generated adapter
not only retains the in-context learning ability but also enhances the base model.

4.3 PERSONALIZATION

Using LMs to analyze users’ behaviours and memorize their preferences is the key to unlocking
a tailored and engaging user experience, i.e., personalized LMs. Towards this goal, we focus on
evaluating the LM’s ability to memorize user information in conversations.

Setup and Baselines We use the Multi-Session Conversation (MSC) dataset (Xu et al., 2022) for
our experiments, following Packer et al. (2024). Each test case comprises a multi-session human-
human conversation between two participants, along with a question regarding information men-
tioned within the conversation. The average length of the conversational context is 2.5K tokens,
which makes it inefficient to prompt the model repeatedly with the entire conversation history for
the same user. Similar to document-based QA (§4.1), we evaluate the model quality using the F1
score by comparing the generated answers to the ground truth. We also report computation and
memory costs. Here, we use Mistral-7B-Instruct as the base LM.

As baselines, we include both closed-book and full-conversation prompting based on the base LM,
where the former involves random guesses and the latter incurs higher computation and memory
costs by storing the entire long conversation. We also include the state-of-the-art prompt compres-
sion method, UltraGist (Zhang et al., 2024), which reduces the context into fewer token embeddings,
thereby saving computation and memory costs.

Results The results on MSC are summarized in Table 1. As expected, the closed-book approach,
which does not memorize any user information performs very poorly. In contrast, methods that uti-
lize proper user conversations as context can accurately recall user information, achieving reasonable
answer accuracy. Although using the entire conversation leads to better accuracy, full conversation
prompting incurs significant computation and storage costs, i.e., 4x those of Generative Adapter.
Such costs are highly undesirable for personalizing LMs for individual users, especially since most
computations occur on edge devices without power GPUs. Comparing to UltraGist at the same
level of storage cost (compressed into 512 tokens), Generative Adapter further reduces inference
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Table 1: Performance comparison on MSC. A higher F1 indicates better performance, and lower
inference computation and extra storage costs are preferable. For Ultragist (Zhang et al., 2024),
fewer compressed tokens (noted in parentheses) correspond to lower computation and memory costs.

Model F1
Inference

Computation
(TFLOPS)

Extra
Storage

(M floats)

Closed-book 8.1 0.505 0
Full-conversation Prompting 66.0 2.059 128+

Ultragist (64 Tokens) 26.5 0.514 4
Ultragist (128 Tokens) 32.2 0.552 8
Ultragist (256 Tokens) 38.3 0.627 16
Ultragist (512 Tokens) 40.8 0.772 32
Ultragist (1K Tokens) 44.4 1.067 64
Ultragist (2K Tokens) 42.4 1.658 128

Generative Adapter 40.2 0.505 32

cost without performance drop. In real world scenarios with many queries from the same user, the
benefits of our method are even more pronounced.

5 ANALYSIS

5.1 MODEL DESIGN OPTIONS

Here, we exam different Generative Adapter design choices. Specifically, we train adapter gener-
ators for Mistral-7B-Instruct under various configurations and assess their quality based on recon-
struction and completion perplexities on the validation set. Table 2 summarizes the results. These
metrics have shown a strong correlated with model quality, e.g., the default setting (row 1) achieves
an F1 score of 40.2 on MSC, while using the Frobenius norm (row 4) reduces the score to 27.1.

Mixing pretraining tasks improves generalization. Training only on one task degrades perfor-
mance. Without the completion task, completion perplexity deteriorates, suggesting overfitting to
memorization. This highlights its role as a regularizer, helping Generative Adapter distill contextual
information into adapters for better future predictions.

SVD is a more effective normalization. We compare SVD-based normalization (default) to Frobe-
nius norm. While computationally simpler, Frobenius norm exhibits inferior performance, likely
due to excessive shrinkage in certain directions, reducing model expressiveness.

More updatable parameters improve performance. By default, we insert adapters in the attention
output projection layer. Switching to the feedforward down-projection layer (tripling the number of
updated parameters) enhances both perplexities. Due to computational constraints, we leave further
exploration to future work.

5.2 COMPATIBILITY WITH BASE LM AND RAG

First, we exam whether Generative Adapter preserves the capabilities of the base model by adding
the adapter layers. We generate an adapter using the prompt “You are a helpful AI assistant” and
evaluate it on MMLU (0-shot) (Hendrycks et al., 2021). The base model (Mistral-7B-Instruct-v0.2)
scores 0.574, and Generative Adapter achieves 0.576, indicating a negligible impact on accuracy.

Generative Adapter can also be seamlessly combined with RAG (Lewis et al., 2020). To illusrate
this, we combine Generative Adapter with RAG by prepending the most relevant 100-token chunk
(retrieved via BM25) to the query at inference. On StreamingQA with a 1K-token context, Genera-
tive Adapter alone achieves an accuracy of 49.3, while Generative Adapter + RAG reaches 63.6 with
only 0.1K additional tokens. In comparison, full-context RAG requires 1K tokens to achieve 67.8
accuracy. This highlights the effectivenss of using Generative Adapter alongside RAG to enhance
performance with minimal additional context. The full results are shown in Table 6 of Appendix.
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Table 2: The validation set perplexity of the pretrained model under different design choices.

Factor Setting Reconstruction
Perplexity

Completion
Perplexity

- Default 1.75 7.40

Pretraining
Task

Reconstruction Only 1.75 34.34
Completion Only 6.38 6.71

Normalization Frobenius 7.72 7.32

Module Feedforward 1.68 7.26

6 RELATED WORKS

Fast Weights: Our proposed method is closely related to the idea of “fast weights” (Hinton &
Plaut, 1987; Ba et al., 2016; Schlag et al., 2021), which makes the model weights being adaptive to
the model input. Context-dependent fast weight programmers (FWPs) introduced by Schmidhuber
(1992; 1993) use a slow network with slow weights to reprogram the fast weights of the correspond-
ing fast network. Schlag et al. (2021) point out that self-attention without softmax and other linear
Transformer variants (Tsai et al., 2019; Katharopoulos et al., 2020; Choromanski et al., 2021; Peng
et al., 2021) can be viewed as FWPs. Clark et al. (2022) propose fast weight layers which are added
on top of the Transformer model after the last attention layer for language modeling. Different from
previous work mainly focusing on specific tasks, our goal is to enhance frozen pretrained LMs with
fast associative memory for general language processing. Instead of using a slow network to pro-
gram a separate fast model, our method can be viewed as a self-programming model, i.e., context
encoded by the base LM is used to update the base LM itself. Our work is also related to hyper-
networks (Ivison et al., 2023; Vladymyrov et al., 2024; von Oswald et al., 2020), which typically
introduce additional layers to improve multi-task learning and in-context learning. However, our
method directly integrates generative fast weights into the Transformer architecture, and our method
can recall user-provided facts for tasks such as question answering beyond in-context learning.

Adapting LMs via Meta-Learning: Recent work explores adapting pre-trained LMs to an online
stream of documents using meta-learning. Hu et al. (2023) propose context-aware meta-learned
loss scaling, which reweights token-level losses during online fine-tuning, addressing the inefficacy
of naive fine-tuning for downstream QA. Tack et al. (2024) introduce a meta-learned amortization
network that predicts parameter-efficient fine-tuning modulations for individual context documents,
which are then aggregated for QA. Unlike these approaches, which typically require a nested training
loop, our adapter generator augments pre-trained LMs and enables end-to-end training with self-
supervised objectives.

Parameter-Efficient Fine-Tuning (PEFT): Generative Adapter employs a low-rank adapter akin
to LoRA (Hu et al., 2022), which was originally designed for PEFT. Several derivatives of LoRA
exist such as AdaLoRA (Zhang et al., 2023) and DoRA (Liu et al., 2024), along with various other
PEFT strategies such as serial adapters (Houlsby et al., 2019) and prefix tuning (Li & Liang, 2021).
A thorough survey of PEFT methods is presented by Han et al. (2024). Most work focuses on task-
specific fine-tuning scenarios. Instead, Generative Adapter is a general LM and does not require a
downstream dataset for adaptation.

7 CONCLUSION

In this work, we introduce Generative Adapter, a method for efficiently adapting pretrained LMs
on-the-fly using test-time context through forward passes only. We design an adapter generator net-
work on frozen pretrained LMs to transform text contexts into updated model parameters. Trained
end-to-end with the frozen LM using two self-supervised tasks on web corpora, Generative Adapter
is evaluated in three scenarios: acquiring new factual knowledge, learning from demonstrations,
and personalizing to individual users. Our experiments show that Generative Adapter reduces infor-
mation loss compared to continual pertaining in retaining factual knowledge from new documents.
Additionally, the model effectively adapts to new task instructions when learning from demonstra-
tions. Finally, Generative Adapter achieves comparable fact recall to efficient prompting methods
while using less inference-time computation, making it well-suited for personalization. Future work
could explore scaling the adapter generator, such as integrating adapters into additional layers, and
investigating more selective update rules (Schlag et al., 2021).
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A DATASET DETAILS

Pretraining. We pretrain our models using a randomly sampled subset of 1B tokens from the
SlimPajama corpus. For validation, we sample an additional 100 segments, each containing 2K
tokens, from the same corpus.

Instruction Tuning. We perform instruction tuning using a combination of question answering,
in-context learning, and instruction following datasets, following prior studies (Lin et al., 2024; Ge
et al., 2024; Zhang et al., 2024).

B TRAINING SETUP

Implementation We empirically found that normalization is crucial for Generative Adapter to
function effectively. For SVD normalization, we implemented it using torch.svd lowrank(),
setting the number of iterations to 1.

Generative Adapter is able to generate the adaptors for prefixes of chunks simultaneously by process-
ing the context chunks in parallel. The computation proceeds by processing the hidden states of each
Transformer block for all context chunks layer by layer. Given the hidden states of Σ(1), . . . ,Σ(t)
from the (l − 1)-th Transformer block, denoted by H

(l−1)
1:t , we first compute the accumulated outer

product S(l)
1:t using Equation 2. We then normalize this outer product to obtain the additive matrix

W
(l)
∆,1:t using Equation 6, and finally get the output of the l-th Transformer block H

(l)
1:t by the base

model.

Pretraining. For Mistral-7B-Instruct (hereafter referred to as Mistral), we use a learning rate of
5 × 10−5, and for Llama2-7B-Chat (Llama2), we use 1 × 10−4. We apply a weight decay of 0.01
and no dropout. The adapter added to the base model are scaled by 1/16 for Mistral and 1/8 for
Llama2. We employ a WarmupDecayLR learning rate scheduler with a 100-step warmup and use
the Adam optimizer. The global batch size is set to 8. Pretraining the adapter generator on 1B tokens
takes approximately 20 hours using 8 NVIDIA H100 GPUs.

Instruction Tuning. For instruction tuning, we largely follow the same configurations as in pre-
training, with some adjustments. We set the learning rate to 5 × 10−5 for both Mistral and Llama2
models. We train the models for 2 epochs and use a batch size of 32.

C EXPERIMENT SETUP

Document-based QA. We set up experiments for document-based question answering (QA) using
both supervised fine-tuning and continuous pretraining. For supervised fine-tuning on question-
answer pairs, we train on the training split of each dataset, evaluate on a validation set, and employ
early stopping when the validation loss increases. We use a learning rate of 1 × 10−5 and a global
batch size of 64. For continuous pretraining, we train for 8 epochs using the log-likelihood of the
document as the training loss, with learning rates of 1× 10−5 for Mistral and 3× 10−5 for Llama2.
Each passage is treated as a training sample, and we use a global batch size of 16.

For closed-book prompting and in-context prompting, we apply an instruction template to encourage
the model to generate a short answer. The prompts are shown in Figure 7.

In-Context Learning. We explore in-context learning using both fine-tuning and prompting meth-
ods. For fine-tuning, we conduct task-specific fine-tuning on 16 samples for each dataset. We use
a learning rate of 5 × 10−6 for Mistral and 1 × 10−5 for Llama2. A validation set of 16 samples,
disjoint from the training set, is collected from the same dataset. We train the model for a maximum
of 40 epochs, employing early stopping if the validation loss increases for three consecutive epochs.

For in-context prompting, we observe that omitting additional instructions yields better performance
for Mistral, whereas adding an instruction template improves performance for Llama2. The prompts
are shown Figure 7.
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Table 3: Statistics of data used in the instruction tuning.

Type Dataset #Docs #Instructions Context len Instruction len Response len

Question Answering

COQA (Reddy et al., 2019) 1798 57.2 1083.5 5.5 2.7
DROP (Dua et al., 2019) 1379 38.4 848.6 11.0 1.4

NarrativeQA (Kočiský et al., 2018) 1047 29.4 574.5 8.5 4.4
PubMedQA (Jin et al., 2019) 1000 1.0 200.2 12.9 40.7
Quail (Rogers et al., 2020) 560 16.2 332.7 8.7 4.9

MS MARCO (Bajaj et al., 2018) 4832 16.5 1152.1 6.0 14.0

In-context Learning MetaICL (Min et al., 2022) 11888 3.5 1776.8 84.3 2.9

Instruction Following BookSum (Kryscinski et al., 2022) 2914 1.0 1158.6 7.0 205.3
PwC (Ge et al., 2024) 13102 12.4 348.1 10.3 23.3

D ADDITIONAL RESULTS

This section presents extra results for document-based question answering and in-context learning
evaluation.

D.1 DOCUMENT-BASED QA

In Section 4.1, we evaluate the knowledge recall capability of Generative Adapter and baseline
models. The complete numerical results are provided in Table 5.

We also assess the performance of Ultragist (Zhang et al., 2024) on document QA. Since Ultragist
requires a predefined compression rate for token reduction, a direct comparison with our method is
not easy. To address this, we report results for compression ratios of 2, 8, and 32, as shown in Table 7
and Figure 8. As expected, Ultragist’s performance degrades significantly as the compression ratio
increases.

Unlike Ultragist, Generative Adapter modifies the model parameters directly, ensuring that its infer-
ence time remains identical to that of the base model after contextualization. In contrast, Ultragist’s
inference and storage costs depend on the number of gist tokens, which is approximately equal to the
original context length divided by the compression ratio. Given its efficient inference, Generative
Adapter is particularly suitable for scenarios where the model undergoes contextualization once and
is then reused multiple times, making it an effective solution for resource-constrained environments
such as edge computing.

D.2 IN-CONTEXT LEARNING

Expanding on Section 4.2, we further evaluate Ultragist on MetaICL, with results summarized in
Table 8. Ultragist performs worse than in-context prompting on classification tasks but shows a slight
improvement on non-classification tasks. In contrast, Generative Adapter consistently outperforms
both Ultragist and in-context prompting across various tasks, demonstrating its effectiveness.

D.3 RETRIEVAL-AUGMENTED GENERATION

Generative Adapter can be combined with prompting techniques or other prompt compression meth-
ods to provide complementary benefits. To illustrate this, we integrate Generative Adapter with
Retrieval-Augmented Generation (RAG). In this hybrid approach, the contextualization phase re-
mains unchanged, and at inference, we prepend the most relevant 100-token chunk (retrieved using
BM25) to the query. Additionally, for comparison, we report results where the entire context is
prepended to the query (denoted as ”Generative Adapter + Context”). The results are presented in
Table 6.
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Table 4: Training and test datasets of MetaICL.

Train piqa, hate speech offensive, google wellformed query, social i qa, circa, quoref,
glue-sst2, scitail, emo, cosmos qa, freebase qa, ag news, art, paws, kilt ay2, glue-qnli,

quail, ade corpus v2-classification, sciq, hatexplain, emotion, glue-qqp, kilt fever,
kilt nq, dbpedia 14, kilt zsre, hellaswag, squadwith context, hotpot qa, glue-mnli,
ropes, squad-no context, kilt hotpotqa, discovery, superglue-record, race-middle,

race-high, lama-trex, swag, gigaword, amazon polarity, biomrc, tab fact,
tweet eval-emoji, tweet eval-offensive, tweet eval-sentiment, tweet qa, imdb,

lama-conceptnet, liar, anli, wiki qa, kilt trex, wikisql, wino grande, wiqa, search qa,
xsum, yahoo answers topics, yelp polarity, yelp review full

Test quarel, financial phrasebank, openbookqa, codah, qasc, glue-mrpc, dream, sick,
commonsense qa, medical questions pairs, quartz-with knowledge, poem sentiment,

quartz-no knowledge, glue-wnli, climate fever, ethos-national origin, ethos-race,
ethos-religion, ai2 arc, hate speech18, glue-rte, supergluecb, superglue-copa,

tweet eval-hate, tweet eval-stance atheism, tweet eval-stance feminist
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Figure 5: In-context learning evaluation of Generative Adapter, based on Llama2-7B-Chat, across
26 test datasets from MetaICL.
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Figure 6: In-context learning evaluation of Generative Adapter, based on Mistral-7B-Instruct, across
26 test datasets from MetaICL.
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F1
Model Dataset Methods 512 1K 2K 4K 8K 16K 32K

Zero-Shot Prompting 10.8

Supervised Fine-tuning 20.7

Continuous Pretraining 30.0

In-context Prompting 45.4 44.9 43.6 42.6 42.5 38.6 35.1SQuAD

GenerativeAdapter 48.8 43.0 39.9 35.9 33.8 30.3 28.0

Zero-Shot Prompting 13.6

Supervised Fine-tuning 19.5

Continuous Pretraining 22.2

In-context Prompting 47.2 48.7 48.1 48.7 48.0 46.0 39.3

Mistral

StreamingQA

GenerativeAdapter 51.5 49.3 44.7 40.9 36.7 32.7 32.0

Zero-Shot Prompting 14.6

Supervised Fine-tuning 20.7

Continuous Pretraining 23.9

In-context Prompting 64.8 60.6 55.4 44.9 25.2 9.6 6.4SQuAD

GenerativeAdapter 36.2 32.5 31.0 28.9 28.2 24.9 23.6

Zero-Shot Prompting 18.0

Supervised Fine-tuning 18.9

Continuous Pretraining 20.5

In-context Prompting 61.2 61.3 58.0 46.8 27.8 17.5 11.6

LLama2

StreamingQA

GenerativeAdapter 42.9 37.8 34.4 32.6 28.7 26.0 25.7

Table 5: All results of the QA accuracy on SQuAD and StreamingQA.

Prompting for Document-based Question Answering

{Context}

## Instruction: Answer the question based on the context above. Respond with a short phrase only.
Keep the answer short and concise, without any explanation or additional words

Question: {Question}
Answer:

Prompting for MetaICL

Input: {demo input}
Output: {demo output}
{ . . . k-shot demonstrations . . . }

## Instruction: Based on the demonstration above, provide a short and concise answer, with-
out any explanation or additional words.

Input: {input}
Output:

Figure 7: Prompts used in the document-based QA and in-context learning evaluation.
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Table 6: The F1 scores (along with the number of gist tokens in parentheses) on the StreamingQA
dataset to show complementary benefits on top of RAG.

Context Length 512 1K 2K 4K 8K 16K 32K

GenerativeAdapter 51.5 (0K) 49.3 (0K) 44.7 (0K) 40.9 (0K) 36.7 (0K) 32.7 (0K) 32.0 (0K)
GenerativeAdapter + Context 67.8 (0.5K) 67.8 (1K) 61.1 (2K) / / / /
GenerativeAdapter + RAG 61.9 (0.1K) 63.6 (0.1K) 60.8 (0.1K) 60.9 (0.1K) 60.1 (0.1K) 59.1 (0.1K) 56.5 (0.1K)

Table 7: The F1 scores (along with the number of gist tokens in parentheses) on the StreamingQA
dataset for Ultragist with different compression ratios.

Context Length 512 1K 2K 4K 8K 16K 32K

Ultragist (Compression Ratio=2) 63.5 (0.3K) 63.6 (0.5K) 62.3 (1K) 61.9 (2K) 61.8 (4K) 62.1 (8K) 51.0 (16K)
Ultragist (Compression Ratio=8) 57.6 (0.1K) 55.7 (0.1K) 55.4 (0.3K) 55.7 (0.5K) 54.0 (1K) 53.0 (2K) 51.1 (4K)
Ultragist (Compression Ratio=32) 32.5 (0.1K) 31.1 (0.1K) 30.1 (0.1K) 32.8 (0.1K) 33.0 (0.3K) 32.0 (0.5K) 31.4 (1K)
GenerativeAdapter 51.5 (0K) 49.3 (0K) 44.7 (0K) 40.9 (0K) 36.7 (0K) 32.7 (0K) 32.0 (0K)

Table 8: Comparison between Generative Adapter and Ultragist on MetaICL.

Method Classification Non-classification

Ultragist (256 tokens) 41.1 7.5
In-context prompting 60.5 6.7
Finetune 71.8 10.5
GenerativeAdapter 63.7 14.9
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Figure 8: Inference computation and storage requirements for Generative Adapter and baseline
methods on StreamingQA.
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