
A Proofs

Proof of Proposition 1. Due to Jensen’s inequality and the fact that, by assumption, the distribution
of human predictions P (h |x) is not a point-mass, it holds that Eh[`(h(x), y) |x ] > `(µh(x), y).
Hence,

Ex,y,h [(1− π(x)) `(m(x), y) + π(x) `(h(x), y)] > Ex,y [(1− π(x)) `(m(x), y) + π(x) `(µh(x), y)] .
(12)

Proof of Proposition 2. Let π(x) = I(x ∈ V). Then, we have:

L(π,m∗0) =

∫
x∈X\V

Ey|x [`(m∗0(x), y)] dP +

∫
x∈V

Ey,h|x [`(h, y)] dP

(i)
<

∫
x∈X\V

Ey|x [`(m∗0(x), y)] dP +

∫
x∈V

Ey|x [`(m∗0(x), y)] dP

=

∫
x∈X

Ey|x [`(m∗0(x), y)] dP

(ii)
= L(π0,m

∗
0),

where inequality (i) holds by assumption and equality (ii) holds by the definition of π0(x).

Proof of Theorem 3. We first provide the proof of the unconstrained case. First, we note that,

L(π,m) = Ex,h

[
(1− π(x))Ey|x[`(m(x), y)] + π(x)Ey|x[`(h, y)]

]
= Ex

[
(1− π(x))Ey|x[`(m(x), y)] + π(x)Ey,h|x[`(h, y)]

]
= Ex

[
π(x)

[
Ey,h|x[`(h, y)]− Ey|x[`(m(x), y)]

]]
+ Ex,y[`(m(x), y)]

Since the second term in the above equation does not depend on π, we can find the optimal policy π
by solving the following optimization problem:

minimize
π

Ex

[
π(x)

[
Ey,h|x[`(h, y)]− Ey|x[`(m(x), y)]

]]
subject to 0 ≤ π(x) ≤ 1 ∀ x ∈ X .

Note that the above problem is a linear program and it decouples with respect to x. Therefore, for
each x, the optimal solution is clearly given by:

π∗m(d = 1 |x) =

{
1 if Ey|x[`(m(x), y)− Eh|x[`(h, y)]] > 0

0 otherwise

Next, we provide the proof of the constrained case. Here, we need to solve the following optimization
problem:

minimize
π

Ex

[
π(x)

[
Ey,h|x[`(h, y)]− Ey|x[`(m(x), y)]

]]
subject to Ex[π(x)] ≤ b,

0 ≤ π(x) ≤ 1 ∀ x ∈ X .

To this aim, we consider the dual formulation of the optimization problem, where we only introduce
a Lagrangian multiplier τP,b for the first constraint, i.e.,

maximize
τP,b≥0

minimize
π

Ex

[
π(x)

[
Ey,h|x[`(h, y)]− Ey|x[`(m(x), y)]

]]
+ Ex [τP,b (π(x)− b)] (13)

subject to 0 ≤ π(x) ≤ 1 ∀ x ∈ X . (14)
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The inner minimization problem can be solved using the similar argument for the unconstrained case.
Therefore, we have:

πm∗,b(d = 1 |x) =

{
1 if Ey|x[`(m(x), y)− Eh|x[`(h, y)]] > tP,b,m
0 otherwise

where
tP,b = argmax

τP,b≥0
Ex

[
min

(
Ey|x[Eh|x[`(h, y)]− `(m(x), y)]] + τP,b, 0

)
− τP,b b

]
Proof of Proposition 4. The optimal predictive model mθ∗0

under full automation within a parame-
terized hypothesis class of predictive modelsM(Θ) satisfies that

∇θ L(π0,mθ)|θ=θ∗0 = Ex,y

[
∇θ `(mθ(x), y)|θ=θ∗0

]
= 0 (15)

and the optimal predictive model mθ∗ under π∗mθ∗ ,b satisfies that

∇θ L(π∗mθ,b,mθ)
∣∣
θ=θ∗

= 0. (16)

Now we have that
∇θ L(π∗mθ,b,mθ)

∣∣
θ=θ∗0

= ∇θ L(π0,mθ)|θ=θ∗0
−∇θ Ex

[
THREStP,b,m

(
Ey|x

[
`(m(x), y)− Eh|x[`(h, y)]

]
, 0
)]∣∣

θ=θ∗0

= 0−
∫
x∈V

Ey|x
[
∇θ`(mθ(x), y)|θ=θ∗0

]
dP −

∫
x∈X\V

0 dP 6= 0. (17)

where we have used that

∇xTHREStP,b,m(f(x), 0) =

{
∇xf(x) if f(x) > tP,b,m
0 if f(x) < tP,b,m.

Hence, we can immediately conclude that L(π∗mθ∗0 ,b
,mθ∗0

) > minθ∈Θ L(π∗mθ,b,mθ).

Proof of Proposition 5. Under triage policy π∗mθ′ ,b, we have that:

∇θ L(π∗mθ′ ,b,mθ)
∣∣∣
θ=θ′

= ∇θ Ex

[
(1− π∗mθ′ (x))Ey|x[`(mθ(x), y)] + π∗mθ′ ,b(x)Ey,h|x [`(h, y)]

]∣∣∣
θ=θ′

= Ex

[
(1− π∗mθ′ ,b(x))Ey|x[∇θ `(mθ(x), y)|θ=θ′ ]

]
=

∫
x∈V

Ey|x [∇θ`(mθ(x), y)|θ=θ′ ] 6= 0,

where V = {x |πmθ′ ,b(x) = 0}. Hence, we can immediately conclude that L(π∗mθb,mθ′) >
minθ∈Θ L(π∗mθ,b,mθ).

Proof of Proposition 6. Since π∗mθt ,b = argminπ L(π,mθt), we have that:

L(π∗mθt ,b,mθt) ≤ L(π∗mθt−1
,b,mθt) (18)

Then, if θ(i)
t is computed from θ

(i−1)
t using Eq. 8, then we have that [39, Eq. 9.17]:

L(π∗mθt−1
,b,mθ

(i)
t

) ≤ L(π∗mθt−1
,b,mθ

(i−1)
t

)

+∇θL(π∗mθt−1
,b,mθ

(i−1)
t

)>(θ
(i)
t − θ

(i−1)
t ) +

Λ

2

∥∥∥θ(i−1)
t − θ(i)

t

∥∥∥2

(a)
= L(π∗mθt−1

,b,mθ
(i−1)
t

)− α(i−1)∇θL(π∗mθt−1
,b,mθ

(i−1)
t

)>∇θL(π∗mθt−1
,b,mθ

(i−1)
t

)

+ (α(i−1))2 Λ

2

∥∥∥∇θL(π∗mθt−1
,m

θ
(i−1)
t

)
∥∥∥2

=L(π∗mθt−1
,b,mθ

(i−1)
t

)−
(
α(i−1) − (α(i−1))2 Λ

2

)∥∥∥∇θL(π∗mθt−1
,b,mθ

(i−1)
t

)
∥∥∥2

(b)
< L(π∗mθt−1

,b,mθ
(i−1)
t

)− α(i−1)

2

∥∥∥∇θL(π∗mθt−1
,b,mθ

(i−1)
t

)
∥∥∥2

<L(π∗mθt−1
,b,mθ

(i−1)
t

), (19)
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where equality (a) follows from the fact that

θ
(i)
t − θ

(i−1)
t = −α(i−1)∇θ L(π∗mθt−1

,b,mθ)
∣∣∣
θ=θ

(i−1)
t

(20)

and inequality (b) follows by assumption, i.e., α(i−1)Λ < 1.

Eq. 19 directly implies that

L(π∗mθt−1
,b,mθt) < L(π∗mθt−1

,b,mθ
(0)
t

) = L(π∗mθt−1
,b,mθt−1

),

where the last equality follows by assumption, i.e., θ(0)
t = θt−1. This result, together with Eq. 18,

proves the proposition.

Proof of Theorem 7. Let Πb := {π ∈ Π |Ex [π(x)] ≤ b} and Φt = L(π∗mθt ,b
,mθt) −

L(π∗mθ∗ ,b,mθ∗). Then, note that, for all π ∈ Πb, we have that

∇2
θ L(π,mθ) = Ex,y

[
(1− π(x))∇2

θ `(mθ(x), y)
]

=⇒ Λmin(1− b)I 4 ∇2
θ L(π,mθ) 4 ΛmaxI

(21)
Moreover, we also have that

Φt+1 = L(π∗mθt+1
,b,mθt+1

)− L(π∗mθ∗ ,b,mθ∗)
(i)

≤ L(π∗mθ∗ ,b,mθt+1
)− L(π∗mθ∗ ,b,mθ∗)

(ii)

≤ Λmax

2
‖θt+1 − θ∗‖2 , (22)

where (i) follows from the fact that argminπ∈Πb
L(π,mθt+1) = π∗mθt+1

,b and (ii) follows from the
Taylor series expansion of L(π∗mθ∗ ,b,mθ) around θ = θ∗ and Eq. 21, i.e.,

L(π∗mθ∗ ,b,mθt+1
) ≤ L(π∗mθ∗ ,b,mθ∗)+∇θL(π∗mθ∗ ,b,mθ)

>∣∣
θ=θ∗︸ ︷︷ ︸

=0

(θt+1−θ∗)+
Λmax

2
‖θt+1 − θ∗‖2 .

Next, we have that

L(π∗mθt ,b,mθt)
(i)

≥ L(π∗mθt ,b,mθt+1
) +

(1− b)Λmin

2
‖θt+1 − θt‖2

(ii)

≥ L(π∗mθt+1
,b,mθt+1

) +
(1− b)Λmin

2
‖θt+1 − θt‖2 , (23)

where (i) follows from the fact that θt+1 = argminθ L(π∗mθt ,mθ), the Taylor series expansion of
L(π∗mθt ,b

,mθ) around θ = θt+1, and Eq. 21, i.e.,

L(π∗mθt ,b,mθt) ≥ L(π∗mθt ,b,mθt+1) +∇θL(π∗mθt ,b,mθ)
>∣∣
θ=θt+1︸ ︷︷ ︸

=0

(θt − θt+1)

+
Λmin(1− b)

2
‖θt − θt+1‖2 ,

and (ii) follows from the fact that argminπ∈Πb
L(π,mθt+1

) = π∗mθt+1
,b. Then, from Eq. 23, it readily

follows that

Φt − Φt+1 ≥
(1− b)Λmin

2
‖θt+1 − θt‖2 . (24)

Now, combining Eq. 22 and Eq. 24, we have that

Φt+1 ≤
Λmax

2
‖θt+1 − θ∗‖2 ≤ Λmax

[
‖θt+1 − θt‖2 + ‖θt − θ∗‖2

]
(i)

≤ 2Λmax

(1− b)Λmin
(Φt − Φt+1) +

4H2Λmax

Λ2
min(1− b)2

. (25)

where we have used Proposition 8 in (i). Finally, from Eq. 25, it readily follows that

lim
t→∞

Φt+1 ≤
4H2Λmax

Λ2
min(1− b)2

.

This concludes the proof.
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Proposition 8 Let `(·) be convex with respect to θ and thus the output of the SGD algorithm θt =

argminθ L(π∗mθt−1
,mθ). Moreover, assume that∇2

θ `(mθ(x), y) < Λmin, with Λmin > 0, and `()̇ be

H-Lipschitz, i.e., `(mθ(x), y)−`(mθ′(x), y) ≤ H ·‖θ − θ′‖. Then, we have ‖θt − θ∗‖ ≤ 2H
Λmin(1−b) .

Proof We have that

Λmin(1− b)
2

‖θt − θ∗‖2
(i)

≤ L(π∗mθ∗ ,b,mθt)− L(π∗mθ∗ ,b,mθ∗) ≤ H ‖θt − θ∗‖ , (26)

where (i) follows from the Taylor series expansion of L(π∗mθ∗,b ,mθ) around θ = θ∗. Then, from
Eq. 26, it readily follows

‖θt − θ∗‖ ≤
2H

Λmin(1− b)
(27)

B Scalability Analysis of Algorithm 1

In comparison with vanilla SGD, our algorithm just needs to additionally call the function TRIAGE be-
fore each iteration. This function first sorts the samples in the corresponding minibatch in decreasing
order of the model loss minus the human loss and then returns the first max(d(1− b)|D|e, p) samples.
Overall, this adds O(T |D| logB) to the overall complexity of the training procedure with respect
to vanilla SGD, where B is the size of the minibatch used during training, D is the training dataset,
and T is the number of steps. Furthermore, note that the function APPROXIMATETRIAGEPOLICY
is called only once and use SGD to train the approximate triage policy of the last predictive model.
Therefore, it does not increase the computational complexity of the overall algorithm.

C Additional Details About the Experiments on Real Data

In what follows, we provide additional details regarding the implementation of our method as well as
the baselines for the experiments on real data:

— Our method: During training, it runs Algorithm 1. During test, it lets the humans predict any
sample for which π̂γ(x) ≥ p̂b, where the threshold p̂b is found using cross validation.

— Confidence-based triage [5]: During training, it first estimates the probability P (h = y) that
humans predict the true label. Then, it proceeds sequentially and, at each step t, it uses
SGD to train a predictive model mθt . However, in each iteration of SGD, it only uses the
min(bb|D|c, nc) training samples with the lowest value of P (h = y)−maxy′∈Y P (mθ(x) =
y′) in the corresponding mini batch, where nc is the number of training samples in the mini
batch for which P (h = y) > maxy′∈Y P (mθ(x) = y′). During test, it first sorts all the
samples in increasing order of maxy′∈Y P (mθ(x) = y′) and then lets the humans predict the
first min(bb|D|c, nc) samples11, where nc is the number of test samples for which P (h = y) >
maxy′∈Y P (mθ(x) = y′).

— Score-based triage [1]: During training, it uses SGD to train a predictive model mθ using
all the training samples. During test, it first sorts all the samples in increasing order of
maxy′∈Y P (mθ(x) = y′) and then lets the humans predict the first bb|D|c samples. Here, note
that the method always lets the humans predict bb|D|c samples because its triage policy does
not depend on the human loss.

— Surrogate-based triage [6]: During training, it trains a predictive model mθ, where π(x) = 1 is
just an extra label value ydefer, by minimizing a surrogate of the true loss function defined in
Eq. 2. During test, it first sorts all the samples in increasing order of maxy′∈Y P (mθ(x) = y′)−
P (mθ(x) = ydefer) and then lets the human predict the first min(bb|D|c, nc) samples where
nc is the number of test samples for which P (mθ(x) = ydefer) > maxy′∈Y P (mθ(x) = y′).

11Here, note that the method assumes that the humans are uniformly accurate across samples, i.e., P (h = y |x) = P (h = y), both
during training and test.
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— Full automation triage: During training, it uses SGD to both train a predictive model mθ using
all training samples and an approximate triage policy π̂γ that approximates the optimal triage
policy π∗mθ,b. During test, it lets the humans predict any sample for which π̂γ(x) ≥ p̂b, where
the threshold p̂b is found using cross validation.

In our experiments, our method and all the baselines use the hypothesis class of parameterized
predictive modelsM(Θ) parameterized by softmax distributions, i.e.,

mθ(x) ∼ pθ;x = Multinomial
(

[exp (φy,θ(x))]y∈Y

)
,

where, for the nonlinearities φ•,θ, we use the following network architectures:

— Hatespeech dataset: we use the convolutional neural network (CNN) developed by Kim [36] for
text classification, which consists of 3 convolutional layers with filter sizes {3, 4, 5}, respectively
and with 300 neurons per layer. Moreover, each layer is followed by a ReLU non-linearity and
a max pooling layer.

— Galaxy Zoo: we use the deep residual network developed by He et al. [37]. To this end, we
first downsample each RGB channel of each of the images to size 224× 224 and standardize
its values12. The wide residual network consists of 50 convolutional layers. The first layer is a
7× 7 convolutional layer followed by a 3× 3 max pooling layer. The next 48 convolutional
layers have filter sizes of 1× 1 or 3× 3 which are followed by an average pooling layer. The
last layer is a fully connected layer. Each convolution layer is followed by ReLU nonlinearity.

In our method and all the baselines except surrogate-based triage, we use the cross-entropy loss
and implement SGD using Adam optimizer [40] with initial learning rate set by cross validation
independently for each method and level of triage b. In surrogate-based triage, we use the loss and
optimization method used by the authors in their public implementation. Moreover, we use early
stopping with the patience parameter ep = 10, i.e., we stop the training process if no reduction of
cross entropy loss is observed on the validation set. Finally, to avoid that the cross entropy loss
`(ŷ, y) becomes unbounded whenever an instance is assigned to a human expert and all human
experts predicted the same label for that instance in our dataset, we do add/substract an ε value to the
estimated values of the conditional probabilities P (h |x).

12https://pytorch.org/hub/pytorch_vision_resnet/
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Figure 5: Ratio of model and human losses for test samples predicted by the model and test samples
predicted by the humans, as dictated by the approximate triage policy π̂γ , for different values of the
maximum level of triage b. In each panel, the threshold p̂b is found using cross validation. Boxes
indicate 25% and 75% quantiles and the horizontal lines indicate median values.

D Additional Evaluation of the Approximate Triage Policy

Figure 5 shows the ratio of model and human losses for those test samples predicted by the model and
test samples predicted by the humans, as dictated by the approximate triage policy π̂γ , for different
values of the maximum level of triage b. We find several interesting insights. We observe that the
approximate triage policy π̂γ lets the humans predict those samples whose ratio of model and human
losses is higher, as one could have expected. Moreover, in the Hatespeech dataset, we find that the
triage policy lets humans predict (almost) all the samples whenever b = 1 (b = 0.8), i.e., the budget
constraint in the optimization problem defined by Eq. 1 is active. This suggests that the humans
are more accurate than the predictive model throughout the entire feature space. In contrast, in the
Galaxy zoo dataset, the triage policy does not rely on the human predictions for all samples for b = 1.
This suggests that the humans are less accurate than the predictive model in some regions of the
feature space.
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