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Abstract1

Self-supervised learning of multi-modal, high-2

frequency physiological signals is largely unex-3

plored, despite its potential for critical care ap-4

plications. We present PhysioJEPA, a Joint5

Embedding Predictive Architecture (JEPA) de-6

signed for multi-modal physiological signals7

from critical care bedside monitoring devices.8

PhysioJEPA learns representations from 30-9

minute segments of physiological signals from10

three channels: arterial blood pressure, elec-11

trocardiography lead II, and photoplethysmog-12

raphy. Trained on over 10.7 million minutes13

of data from 4,282 intensive care unit stays14

(N=2,631 patients) in the Medical Information15

Mart for Intensive Care-III (MIMIC-III) Wave-16

form Database, the learned, frozen representa-17

tions of PhysioJEPA can be used to estimate18

5-minute risk of hypotension (AUROC = 0.8319

[Confidence Interval or CI 0.83-0.84]) and shock20

index (AUROC = 0.95 [0.95-0.96]), with com-21

parable performance to a self-supervised Patch22

Time Series Transformer framework (AUROC23

= 0.87 [0.86-0.87] and 0.96 [0.96-0.96]), better24

performance compared to another JEPA phys-25

iological signal model, ECG-JEPA (AUROC =26

0.73 [0.72-74] and 0.92 [0.92-0.93]), and better27

performance compared to a supervised convo-28

lutional model (AUROC = 0.78 [0.78-0.78] and29

0.95 [0.95-0.95]). Notably, it can generalize to30

an independent healthcare system (AUROC =31

0.78 [0.78-0.78] and 0.92 [0.92-0.93]) better than32

all comparison models. These results suggest33

that self-supervised JEPA representation learn-34

ing is a promising approach for multi-modal35

bedside monitoring signal data.36

Keywords: self-supervision, transformer, 37

JEPA, physiological signals, multi-modal, mul- 38

tichannel, electrocardiography, photoplethys- 39

mography, critical care, hypotension, shock 40

Data and Code Availability The MIMIC-III 41

Waveform Database Matched Subset is publicly avail- 42

able upon request from https://physionet.org/ 43

content/mimic3wdb-matched/1.0/. Code is avail- 44

able at https://github.com/benmfox/PhysioJEPA. 45

The Mount Sinai Bedmaster Dataset is not currently 46

available. 47

Institutional Review Board (IRB) The 48

MIMIC-III Waveform Database Matched Subset 49

is publicly available. The Mount Sinai Bedmas- 50

ter Dataset was approved for use under IRB by 51

the Icahn School of Medicine at Mount Sinai 52

(STUDY-20-00338). 53

1. Introduction 54

Physiological time series data contain information- 55

rich health data, capturing continuous measurements 56

of vital signs, organ function, and metabolic pro- 57

cesses that provide real-time insight (Orphanidou, 58

2019; Rooney and Clermont, 2023). From electrocar- 59

diograms (ECG) and electroencephalograms (EEG) 60

in hospital settings to continuous glucose monitor- 61

ing and wearable sensor data in ambulatory care, 62

these high-frequency signals contain complex tempo- 63

ral patterns that reflect underlying pathophysiolog- 64

ical processes. The ability to effectively model and 65

learn from such time series data is crucial for enabling 66

early detection of adverse events and supporting clin- 67
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ical decision-making (Orphanidou and Wong, 2017;68

Rooney and Clermont, 2023).69

Following the advancements of the attention70

mechanism (Vaswani et al., 2017) and subsequent71

work with bidirectional encoder representations from72

transformers (BERT) (Devlin et al., 2019) and73

chat generative pretrained transformers (ChatGPT)74

(Brown et al., 2020), self-supervised representation75

learning has transformed approaches to modeling76

complex, high-dimensional data across domains. In77

healthcare specifically, foundation models trained on78

large-scale datasets have demonstrated remarkable79

capabilities in medical imaging (Zhou et al., 2023),80

cardiac magnetic resonance imaging videos (Kim81

et al., 2024), clinical notes (Wornow et al., 2023;82

Huang et al., 2019; Singhal et al., 2022), and multi-83

modal medical data (Moor et al., 2023a,b). How-84

ever, physiological time series present unique chal-85

lenges that distinguish them from other medical data86

modalities: they are inherently temporal and often87

multivariate with complex interchannel dependen-88

cies, characterized by high sampling frequencies that89

generate massive datasets.90

Recent developments in self-supervised learning91

have demonstrated that Joint Embedding Predictive92

Architectures (JEPA) can learn superior representa-93

tions by predicting in the embedding space rather94

than reconstructing raw input data, particularly in95

imaging and video data (Assran et al., 2023; Bardes96

et al., 2024). Unlike traditional masked autoen-97

coding approaches that reconstruct values or con-98

trastive approaches that compare augmented embed-99

dings, JEPA uses a context encoder to embed ran-100

dom parts of an input (i.e., patches of an image, in-101

tervals of a time series). Then, a predictor network102

uses these context embeddings to estimate other,103

non-overlapping parts of the input in the embedding104

space that have been encoded by a separate target105

encoder. This target encoder, updated via exponen-106

tial weighted moving average, generates ground-truth107

embeddings for comparison. This embedding-space108

prediction framework is hypothesized to avoid noisy109

pixel reconstruction while learning higher-level repre-110

sentations, leading to more robust and generalizable111

features (Assran et al., 2023). For physiological time112

series, this approach is especially compelling as it cir-113

cumvents the reconstruction of inherently noisy sig-114

nal data while potentially capturing complex tempo-115

ral and cross-channel dependencies that are critical116

for clinically relevant tasks. Thus, we hypothesize117

that JEPA offers better representation learning for118

multi-modal physiological signals by modeling pre- 119

dictive relationships within the embedding space and 120

across signal channels, rather than reconstructing in- 121

puts or contrasting samples’ embeddings. 122

In this work, we introduce PhysioJEPA, a JEPA- 123

based model for multi-modal physiological signals 124

from bedside monitoring devices in intensive care 125

units (ICU). PhysioJEPA learns representations from 126

30-minute segments of three-channel bedside moni- 127

toring data (arterial blood pressure [ABP], ECG lead 128

II, and photoplethysmography [PPG]) through self- 129

supervised training. This approach enables accurate 130

risk estimation of critical care outcomes via task- 131

specific linear probing (i.e., fitting a supervised clas- 132

sifier on top of frozen representations). 133

Our work makes the following key contributions: 134

• We present the first application of JEPA to bed- 135

side monitoring data, extending JEPA principles 136

to handle 30-minute segments of three-channel 137

physiological time series (ABP, ECG, PPG) sam- 138

pled at 125 Hz. 139

• We develop channel-specific mask token predic- 140

tion strategies, employ rotary positional embed- 141

dings, and use depthwise convolutions for tok- 142

enization, enabling the model to learn distinct 143

representations for each physiological signal type 144

over time while capturing cross-channel depen- 145

dencies. 146

• We show that PhysioJEPA is effective in criti- 147

cal care risk estimation for 5-minute hypotension 148

risk and 5-minute shock index risk, matching 149

or outperforming supervised and self-supervised 150

comparison models. 151

• We demonstrate that PhysioJEPA can robustly 152

generalize to an external dataset without retrain- 153

ing, outperforming performance of supervised 154

and self-supervised comparison models and es- 155

tablishing the potential for real-world ICU de- 156

ployment. 157

2. Related Work 158

2.1. Time Series Representation Learning 159

Self-supervised representation learning for time se- 160

ries has seen significant development, with frame- 161

works ranging from contrastive learning (Yue et al., 162

2022) to masked autoregressive models like Patch 163

Time Series Transformer (PatchTST) (Nie et al., 164

2023). In healthcare specifically, current approaches 165

2



PhysioJEPA: Joint Embedding Representations of Physiological Signals for Real Time Risk Estimation in the Intensive Care Unit

Figure 1: PhysioJEPA Context Encoder. Bedside monitoring signal channels (ABP, ECG lead II, and PPG)
are extracted in 30-minute segments sampled at 125 Hz and tokenized into 1-second patches.
Random patches are selected by context and target masks, which are encoded using a Patch Time
Series Transformer (PatchTST) encoder (Nie et al., 2023).

Figure 2: PhysioJEPA Predictive Architecture and Target Encoder. Channel specific mask tokens are added
to the context embeddings to indicate which patches the predictor must reconstruct, while the tar-
get encoder processes the full segment and subsets embeddings at the target locations. Prediction
is optimized by minimizing mean squared error between predicted and target embeddings.

for physiological signals have made important ad-166

vances but still typically rely on shorter or lower167

frequency input sequences, single-channel or single-168

modality analysis, or domain-specific architectures169

that limit their generalizability across different phys-170

iological monitoring scenarios (Xu et al., 2024;171

Foumani et al., 2024; Kotoge et al., 2024; Chien et al.,172

2022; Ding et al., 2024; Zhang et al., 2022; Lutsker173

et al., 2024). This is a limitation, given that many174

clinically relevant patterns in physiological data man-175

ifest over extended time horizons and require integra-176

tion of information across multiple signal types.177

More recent works including SleepFM (Thapa178

et al., 2024), NormWear (Luo et al., 2024), PFTSleep179

(Fox et al., 2025), and wearable work by Merrill and180

Althoff (2022), Narayanswamy et al. (2024), and Xu181

et al. (2025) build representation models for higher182

frequency, multi-modal data streams in the sleep or183

wearable domains; however, none have been devel- 184

oped for or applied to bedside monitoring data. 185

2.2. Joint Embedding Predictive 186

Architectures 187

Building on the foundational JEPA framework (As- 188

sran et al., 2023), recent work has explored ex- 189

tensions beyond the original image domain applica- 190

tions. Video-JEPA has demonstrated effectiveness 191

for temporal sequence understanding by adapting the 192

embedding-space prediction paradigm to handle tem- 193

poral dynamics in video data (Bardes et al., 2024). In 194

the physiological signal domain, studies have applied 195

JEPA principles to ECG analysis, showing promising 196

results on 10-second, 250-500Hz, 8 or 12-lead ECG 197

segments for feature prediction and downstream clas- 198

sification tasks (Kim, 2024; Weimann and Conrad, 199

2025). Further, Signal-JEPA applies dynamic spatial 200
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attention to improve generalization across datasets,201

showing promise for spatially distributed signals such202

as EEG (Guetschel et al., 2024). These applications203

highlight JEPA’s particular advantages for noisy sig-204

nal modalities; however, these applications to phys-205

iological data have been limited to short-duration,206

single-modality scenarios.207

2.3. Physiological Signal Analysis for Critical208

Care209

Traditional approaches to ICU risk estimation have210

relied heavily on aggregated features from electronic211

health records, signals, or vital signs (Maheshwari212

et al., 2021; Yoon et al., 2020; Moghadam et al., 2021;213

Cherifa et al., 2021; Kapral et al., 2024; Hatib et al.,214

2018; Jian et al., 2025). While these methods achieve215

reasonable performance on single tasks, they fail to216

leverage the rich temporal dynamics present in con-217

tinuous bedside monitoring. Others have taken ad-218

vantage of the continuous data for supervised clas-219

sification tasks (Lee et al., 2021; Moon et al., 2024;220

Jeong et al., 2024; Jo et al., 2022; Sundrani et al.,221

2023). To our knowledge, our work is the first to222

apply self-supervised learning to bedside monitoring223

signal data for multi-outcome critical care risk esti-224

mation.225

3. Methods226

3.1. Data Extraction227

We used the Medical Information Mart for In-228

tensive Care-III (MIMIC-III) Waveform Database229

Matched Subset (Johnson et al., 2015, 2016). Wave-230

form data with the ABP, ECG lead II, and PPG sig-231

nal channels were extracted and stored in zarr (Miles232

et al., 2024) format. Also, we extracted adult ICU233

waveform signal data from an external institution for234

evaluation provided by the Mount Sinai Health Sys-235

tem. The MIMIC-III data was split into 95% training236

and 5% validation for pretraining.237

3.2. Data Segmentation and Normalization238

3-channel signal data are segmented into 30-239

minute, non-overlapping windows and resampled to240

fs = 125Hz. 30-minute segments are excluded from241

training if 20% or more of a single channel’s values242

are constant or null values. Following, null values are243

linearly interpolated. Each channel xc(t) is then nor-244

malized with inter-quartile range normalization, as245

described by Brink-Kjaer et al. (2022).246

3.3. PhysioJEPA Architecture 247

The framework consists of three components: 248

1. Context encoder: A PatchTST transformer 249

(Nie et al., 2023) processes a masked subset of 250

input patches to produce context encodings hc. 251

2. Predictor: A smaller PatchTST transformer 252

predicts target encodings of masked tokens ĥt. 253

3. Target encoder: An exponential weighted 254

moving average copy of the context encoder pro- 255

duces target encodings ht from the full input, 256

the output of which is subset and compared to 257

that of the Predictor. 258

Context and target encoders use 3-layer PatchTST 259

encoders with 8 attention heads, dimension 512, and 260

feedforward sizes of 2048. The predictor implements 261

2 layers with 4 heads and a dimension of 256. 262

3.3.1. Channel-Specific Mask Tokens 263

For target token prediction using context en- 264

codings, channel-specific learnable mask tokens 265

ci, i = 1, . . . , C are repeated t times (the number of 266

targets to predict), concatenated, and shuffled with 267

context tokens. The predictor then outputs ĥ
(c)
t,i at 268

each masked position i for each channel c. This re- 269

sult is compared to the target encoder output and 270

optimized with a mean squared error loss function. 271

3.3.2. Patch Embedding with Depthwise 272

Convolutions 273

Each 30-minute segment is tokenized into 1- 274

second patches via a depthwise convolution per 275

channel, equivalent to PatchTST’s channel indepen- 276

dent patching and linear tokenization procedure (Nie 277

et al., 2023): 278

hp,c,d =

k−1∑
i=0

wc,d[i]xc[p · k+ i] + bc,d, d = 1, . . . , D.

(1)
where xc ∈ R125 is the channel c indexed at patch 279

p of size k (the kernel size). Each channel c has D 280

convolutional kernels wc,d ∈ Rk, d = 1, . . . , D with 281

bias bc,d. This helps learn patch-wise features into 282

an embedding vector Z ∈ Rc×d×p where d = 512 283

and p is the number of tokens. Following this, the 284

batch and channel dimensions are flattened together 285

prior to input into the transformer, creating a tensor 286
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of shape bs ∗ c× 1800× 512, where 1800 is the num-287

ber of tokenized 1-second patches from the 30-minute288

segment.289

3.3.3. Rotary Positional Embeddings290

For temporal encoding, rotary positional embed-291

dings (RoPE) were applied (Su et al., 2021) to each292

patch token. For token i with embedding dimension293

d, each embedding vector Z ∈ Rd is split into two sub-294

vectors hj = [h2j , h2j+1], j = 1, . . . , d
2 − 1. Each295

even-odd pair in token i is then rotated by an an-296

gle θj = 10000−2j/d. This is applied independently to297

each token ϕp,j = p · θj with:298

h̃p,j =

[
cos(ϕp,j)− sin(ϕp,j)
sin(ϕp,j) + cos(ϕp,j)

]
hp,j . (2)

Effectively, this step captures relative and absolute299

positional embeddings across and within patches.300

3.3.4. Masking and Training Parameters301

For training, target masks select 10–30% of patches302

at random from each flattened batch-channel dimen-303

sion. Context masks select 10%–40% of the re-304

maining patches. The representation framework was305

trained for 100 epochs with a one-cycle learning rate306

scheduler and AdamW optimizer. After training, the307

context encoder inputs tokenized signal data Zin ∈308

Rc×d×p and generates representations Zout ∈ Rc×d×r,309

where r is the learned representation for channel c310

with dimension d.311

3.4. Linear Probing Architecture312

After representation learning, linear probing clas-313

sifiers are trained with learned, frozen representa-314

tions for each task. The context embedding tensor315

Z ∈ Rc×r×d is passed into an attentive classifier (As-316

sran et al., 2023; Bardes et al., 2024) with flattened317

batch and channel dimensions. A single learned query318

vector q ∈ Rd is utilized to extract relevant encod-319

ing information from the context encoders represen-320

tations Z. Queries, keys, and values are calculated321

Q = qWq, K = ZWk, and V = ZWv for each atten-322

tion head. Following, attention scores and weights323

are generated:324

ascore =
QKT

√
d

, aweights = softmax(ascore). (3)

A final, pooled representation vector is calculated z̃ =325

aweightsV ∈ R1×d. The pooled representation z̃ is326

reshaped to bs×c ·d and passed through a final linear327

layer for binary classification.328

Notably, the weights of the context encoder from 329

PhysioJEPA are frozen during this process. Atten- 330

tive classifiers used 4 attention heads. Classifiers are 331

trained for 20 epochs with a one-cycle learning rate 332

scheduler and the AdamW optimizer. 333

3.4.1. Augmentation Techniques 334

During linear probing, common augmentation 335

techniques were employed to 30-minute input seg- 336

ments, including random noise, channel dropout, and 337

mixup (Zhang et al., 2018) to better handle class im- 338

balance. 339

3.5. Supervised and Self-Supervised 340

Comparison Models 341

For comparison to a supervised model, we trained 342

a fully supervised convolutional classifier presented 343

by Wang et al. (2016) for each task. Additionally, for 344

comparison to other representation learning frame- 345

works, we trained an equivalent PatchTST (Nie et al., 346

2023) encoder via masked autoregression and another 347

JEPA based signal model, ECG-JEPA (Kim, 2024). 348

For implementation details, see Appendix A.1. 349

3.6. Clinical Tasks 350

3.6.1. 5-Minute Hypotensive Risk Estimation 351

For the first task, we estimated risk of having a hy- 352

potensive event at a 5-minute forecast horizon. Hy- 353

potensive risk was chosen due to its common oc- 354

currence in ICU patients (60-75% develop hypoten- 355

sion (Terwindt et al., 2022)) and the critical need 356

for improved proactive monitoring. A hypotension 357

threshold was defined based on mean arterial pres- 358

sure (MAP) of ≤ 65mmHg or systolic blood pressure 359

(SBP) ≤ 90mmHg at each minute. 360

A positive hypotensive event was defined as five 361

consecutive minutes below the hypotension thresh- 362

olds. Thus, a hypotensive event at a 5 minute forecast 363

was derived with data from the 5 to 10 minute inter- 364

val ahead of the end of the input signal. MAP and 365

SAP were calculated using peak detection algorithms 366

adapted from PhysioNet’s wfdb package (Goldberger 367

et al., 2000; Moody et al., 2022). Hypotensive events 368

longer than 5 minutes were treated as a single event, 369

ensuring at least 5 minutes between multiple events 370

for the same patient. Non-hypotensive patients were 371

those with no hypotensive events throughout their 372

entire ICU stay. Data was split into training (80%), 373

validation (10%), and testing (10%) using a propor- 374

tional, subject-wise data splitter. Additionally, dur- 375

ing training a weighted sampler was used to present 376
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Hypotension Shock Index

Data Split N ICU Stays N Patients Positive Events Negative Events N ICU Stays N Patients Positive Events Negative Events

MIMIC-III Train 3280 2060 44897 (0.04) 1015429 (0.96) 3264 2062 53897 (0.05) 1087321 (0.95)
MIMIC-III Validation 381 237 5601 (0.05) 116307 (0.95) 335 216 6882 (0.07) 96229 (0.93)
MIMIC-III Test 341 229 4435 (0.04) 106273 (0.96) 413 245 8526 (0.05) 149215 (0.95)

Mount Sinai Bedmaster Dataset 99 99 2638 (0.03) 82626 (0.97) 98 98 1952 (0.05) 37089 (0.95)

Table 1: Hypotension and shock index event statistics for training, validation, testing, and external test sets.

the model with more positive cases, given the high377

class imbalance.378

3.6.2. 5-Minute Shock Index Risk Estimation379

For the second task, we estimated risk of elevated380

shock index (SI) at a 5-minute forecast horizon. SI381

was chosen as it serves as an important marker for382

shock and mortality (Koch et al., 2019). SI was com-383

puted as the ratio of heart rate to SBP:384

SI =
HR

SBP
, Positive class if SI ≥ 0.9 (4)

A shock index event was defined as five consecutive385

minutes above the 0.9 threshold. Heart rate was de-386

rived from the ABP signal channel using PhysioNet’s387

peak detection algorithms (Goldberger et al., 2000;388

Moody et al., 2022). Normal SI values range from389

0.5 to 0.7, and higher values are more predictive of390

adverse outcomes (Cannon et al., 2009). Data was391

split into training (80%), validation (10%), and test-392

ing (10%) using a proportional label, subject-wise393

data splitter. Again, a weighted sampler was used394

during training to account for class imbalance.395

3.7. External Validation396

To assess generalizability, we conducted external397

validation on the Mount Sinai Bedmaster Dataset col-398

lected from 100 randomly selected patient ICU stays399

(per task) from 6 separate adult ICUs between 2019400

and 2024.401

3.8. Evaluation402

We evaluated PhysioJEPA, PatchTST, ECG-403

JEPA, and supervised convolutional models for es-404

timating 5-minute risks of hypotension and shock in-405

dex using the MIMIC-III test set and external Mount406

Sinai Bedmaster Dataset. Performance metrics in-407

cluded area under the receiver operating character-408

istic curve (AUROC), average precision, F1, recall,409

specificity, and sensitivity at 90% and 95% specificity410

(Sens@90%Spec, Sens@95%Spec, respectively). The411

latter two measures could be particularly valuable in412

clinical settings, which require high specificity to re-413

duce false alarms.414

4. Results 415

Of the 5,660 stays from the MIMIC-III Waveform 416

Database with the required three signal channel data 417

(ABP, ECG lead II, PPG), 1,378 were not used for 418

representation learning due to 20% or more constant 419

or NaN values in a single channel (in each 30-minute 420

segment). We investigated this missingness further 421

and found that the majority of the removed samples 422

had ≥ 75% missing or NaN values (total of 1,050 423

samples). Thus, our missingness threshold of 20% 424

was removing samples that were majority missing or 425

NaN values. Overall, PhysioJEPA was trained with 426

356,903 30-minute segments (total of 10,707,090 min- 427

utes) across 4,282 ICU stays (N=2,631 patients) with 428

3-channel signal data. Demographics are shown in 429

Appendix C Table 3. Training was stopped after 100 430

epochs, and the last model was used for linear prob- 431

ing. An overview of the architecture is shown in Fig- 432

ures 1 and 2. 433

4.1. Risk Estimation Results 434

Dataset statistics of both hypotension and SI are 435

reported in Table 1. 436

Performance of Supervised Convolutional 437

Models: Two fully supervised convolutional clas- 438

sifiers achieved AUROC scores of 0.778 (95% boot- 439

strapped confidence interval [CI]: 0.771–0.784) for 5- 440

minute hypotension (Figure 3A) and 0.950 (95% CI: 441

0.948–0.952) for 5-minute shock index risk estimation 442

on the held-out test set (Figure 4A). 443

Performance of ECG-JEPA Models: Linear 444

probing with frozen ECG-JEPA encoder represen- 445

tations achieved AUROC scores of 0.729 (95% CI: 446

0.721–0.738) for 5-minute hypotension (Figure 3A) 447

and 0.923 (95% CI: 0.921–0.925) for 5-minute shock 448

index risk estimation on the held-out test set (Figure 449

4A). 450

Performance of PatchTST Models: Linear 451

probing with frozen PatchTST encoder representa- 452

tions achieved AUROC scores of 0.867 (95% CI: 453

0.861–0.871) for 5-minute hypotension (Figure 3A) 454

and 0.956 (95% CI: 0.955–0.958) for 5-minute shock 455

index risk estimation on the held-out test set (Figure 456

4A). 457
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Figure 3: Receiver operating characteristic curves for 5-minute hypotension risk estimation for PhysioJEPA,
PatchTST, ECG-JEPA, and the fully supervised convolutional model for held-out (A) and external
(B) test sets.

Figure 4: Receiver operating characteristic curves for 5-minute shock index risk estimation for PhysioJEPA,
PatchTST, ECG-JEPA, and the fully supervised convolutional model for held-out (A) and external
(B) test sets.

.Performance of PhysioJEPA Models: Linear458

probing with frozen PhysioJEPA encoder represen-459

tations was similar to or outperformed comparison460

models, achieving AUROC scores of 0.833 (95% CI:461

0.825–0.838) for 5-minute hypotension risk (Figure462

3A) and 0.954 (95% CI: 0.952–0.955) for 5-minute463

shock index risk estimation (Figure 4A). For details464

of other performance metrics of all models, see Table 465

2. 466

At clinically relevant specificity thresholds, Phys- 467

ioJEPA achieved matched or superior performance 468

on the held-out test set (Table 2): 55.2% sensitivity 469

at 90% specificity and 40.7% at 95% specificity for 470

5-minute hypotension risk estimation, compared to 471
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Condition Dataset Model AUROC Avg Precision F1 Recall Specificity Sens@90%Spec Sens@95%Spec

Hypotension

Held-Out

PhysioJEPA 0.833 (0.825 - 0.838) 0.264 (0.254 - 0.277) 0.122 (0.119 - 0.125) 0.924 (0.916 - 0.931) 0.446 (0.443 - 0.449) 0.552 (0.538 - 0.566) 0.407 (0.391 - 0.421)
PatchTST 0.867 (0.861 - 0.871) 0.267 (0.257 - 0.282) 0.105 (0.102 - 0.108) 0.979 (0.974 - 0.984) 0.304 (0.302 - 0.307) 0.576 (0.565 - 0.616) 0.429 (0.416 - 0.442)
ECG-JEPA 0.729 (0.721 - 0.738) 0.110 (0.104 - 0.116) 0.077 (0.075 - 0.079) 1.000 (1.000 - 1.000) 0.000 (0.000 - 0.000) 0.322 (0.310 - 0.335) 0.146 (0.135 - 0.157)

Supervised Conv 0.778 (0.771 - 0.784) 0.140 (0.133 - 0.148) 0.082 (0.080 - 0.085) 0.998 (0.997 - 0.999) 0.073 (0.071 - 0.074) 0.422 (0.406 - 0.435) 0.296 (0.282 - 0.310)

Mount Sinai

PhysioJEPA 0.781 (0.773 - 0.788) 0.098 (0.093 - 0.104) 0.084 (0.081 - 0.086) 0.949 (0.939 - 0.956) 0.340 (0.337 - 0.343) 0.339 (0.319 - 0.356) 0.204 (0.191 - 0.218)
PatchTST 0.761 (0.753 - 0.769) 0.085 (0.081 - 0.090) 0.075 (0.072 - 0.078) 0.955 (0.947 - 0.963) 0.251 (0.248 - 0.254) 0.303 (0.287 - 0.324) 0.000 (0.000 - 0.000)
ECG-JEPA 0.568 (0.560 - 0.577) 0.039 (0.037 - 0.041) 0.060 (0.058 - 0.062) 0.986 (0.981 - 0.991) 0.018 (0.017 - 0.019) 0.153 (0.059 - 0.168) 0.063 (0.056 - 0.072)

Supervised Conv 0.695 (0.686 - 0.705) 0.057 (0.054 - 0.060) 0.064 (0.062 - 0.067) 0.917 (0.908 - 0.927) 0.151 (0.149 - 0.154) 0.213 (0.197 - 0.225) 0.069 (0.056 - 0.074)

Shock Index

Held-Out

PhysioJEPA 0.954 (0.952 - 0.955) 0.474 (0.465 - 0.485) 0.308 (0.303 - 0.313) 0.981 (0.978 - 0.983) 0.749 (0.747 - 0.751) 0.881 (0.875 - 0.889) 0.706 (0.697 - 0.715)
PatchTST 0.956 (0.955 - 0.958) 0.595 (0.584 - 0.607) 0.391 (0.385 - 0.396) 0.941 (0.936 - 0.945) 0.836 (0.834 - 0.838) 0.873 (0.866 - 0.880) 0.743 (0.734 - 0.760)
ECG-JEPA 0.923 (0.921 - 0.925) 0.364 (0.355 - 0.370) 0.217 (0.213 - 0.221) 0.986 (0.984 - 0.989) 0.595 (0.593 - 0.598) 0.726 (0.716 - 0.735) 0.437 (0.425 - 0.447)

Supervised Conv 0.950 (0.948 - 0.952) 0.555 (0.546 - 0.565) 0.296 (0.292 - 0.300) 0.978 (0.974 - 0.980) 0.735 (0.733 - 0.738) 0.852 (0.846 - 0.859) 0.676 (0.665 - 0.687)

Mount Sinai

PhysioJEPA 0.923 (0.917 - 0.927) 0.396 (0.381 - 0.410) 0.226 (0.219 - 0.234) 0.969 (0.963 - 0.976) 0.652 (0.648 - 0.657) 0.716 (0.699 - 0.738) 0.356 (0.335 - 0.374)
PatchTST 0.873 (0.864 - 0.882) 0.312 (0.295 - 0.333) 0.244 (0.235 - 0.254) 0.862 (0.847 - 0.877) 0.727 (0.723 - 0.731) 0.672 (0.642 - 0.691) 0.501 (0.477 - 0.520)
ECG-JEPA 0.888 (0.882 - 0.894) 0.231 (0.218 - 0.242) 0.142 (0.137 - 0.146) 0.988 (0.982 - 0.992) 0.371 (0.365 - 0.375) 0.584 (0.565 - 0.607) 0.000 (0.000 - 0.000)

Supervised Conv 0.782 (0.771 - 0.794) 0.162 (0.152 - 0.171) 0.167 (0.160 - 0.174) 0.840 (0.828 - 0.853) 0.569 (0.564 - 0.572) 0.522 (0.498 - 0.548) 0.202 (0.185 - 0.218)

Table 2: Comprehensive performance comparison of PhysioJEPA, PatchTST, ECG-JEPA, and the fully
supervised convolutional model on hypotension and shock index risk estimation tasks across the
held-out MIMIC-III test set and external Mount Sinai Bedmaster Dataset. Best performance for
each metric is shown in bold (95% bootstrapped confidence intervals).

PatchTST performance of 57.6% and 42.9%, ECG-472

JEPA performance of 32.2% and 14.6%, and the su-473

pervised convolutional model performance of 42.2%474

and 29.6%, respectively. For shock index, Physio-475

JEPA achieved 88.1% and 70.6% sensitivity at 90%476

and 95% specificity thresholds, similar to PatchTST477

results of 87.3% and 74.3%, and outperforming ECG-478

JEPA results of 72.6% and 43.7% and supervised con-479

volutional classifier results of 85.2% and 67.6%, re-480

spectively.481

4.2. External Validation Results482

External validation on 100 randomly selected483

patient-ICU stays (for each task) from the Mount484

Sinai Bedmaster Dataset demonstrated strong cross-485

site generalizability without retraining. The exter-486

nal test set comprised data from 6 different adult487

ICUs. Demographics are shown in Appendix C Ta-488

ble 4. 3 samples were excluded due to our miss-489

ingness constraints as detailed in the Methods. 5-490

minute hypotension risk estimation using the Phys-491

ioJEPA architecture and classifier trained on MIMIC-492

III data achieved an AUROC of 0.781 (95% CI: 0.773–493

0.788), compared to 0.761 (95% CI: 0.753–0.769) for494

PatchTST, 0.568 (95% CI: 0.560–0.577) for ECG-495

JEPA, and 0.695 (95% CI: 0.686–0.705) for the su-496

pervised convolutional classifier (Figure 3B). Simi-497

larly, 5-minute shock index risk estimation achieved498

an AUROC of 0.923 (95% CI: 0.917–0.927), compared499

to 0.873 (95% CI: 0.864–0.882) for PatchTST, 0.888500

(95% CI: 0.882–0.894) for ECG-JEPA, and 0.782501

(95% CI: 0.771–0.794) for the supervised convolu-502

tional classifier (Figure 4B).503

At clinically relevant specificity thresholds, Phys-504

ioJEPA achieved consistent high performance across505

both tested thresholds, 33.9% and 20.4% sensitivity506

at 90% and 95% specificity for 5-minute hypoten-507

sion risk estimation, compared to PatchTST perfor-508

mance of 30.3% and 0.00%, ECG-JEPA performance 509

of 15.3% and 6.30%, and the supervised convolutional 510

model performance of 21.3% and 6.90%, respectively. 511

For shock index, PhysioJEPA achieved 71.6% and 512

35.6% sensitivity at 90% and 95% specificity thresh- 513

olds, compared to PatchTST results of 67.2% and 514

50.1%, ECG-JEPA results of 58.4% and 0.00%, and 515

supervised convolutional model results of 52.2% and 516

20.2%, respectively (Table 2). 517

5. Discussion and Conclusion 518

PhysioJEPA demonstrates that JEPA-based self- 519

supervised learning effectively captures complex 520

multi-modal physiological signal relationships for 521

critical care risk estimation. The strong perfor- 522

mance on both tasks establishes the potential for 523

real-world ICU deployment and cross-site adaptabil- 524

ity. Compared to PatchTST, which has been es- 525

tablished as a multi-modal physiological signal rep- 526

resentation model (Fox et al., 2025), PhysioJEPA’s 527

primary advantage lies in improved performance on 528

the external test set in terms of AUROC and av- 529

erage precision across both tasks. For more clini- 530

cally relevant thresholds, PhysioJEPA outperforms 531

PatchTST for hypotension and shock index risk esti- 532

mation at 90% specificity. At 95% specificity, Phys- 533

ioJEPA outperforms PatchTST for hypotension risk 534

estimation, but under performs on the shock index 535

outcome. Compared to the supervised convolutional 536

model and ECG-JEPA, which has been established 537

as a single modality JEPA-based physiological sig- 538

nal representation model (Kim, 2024), PhysioJEPA 539

consistently matches or outperforms across both test 540

sets for hypotension and shock index risk estima- 541

tion. In general, PhysioJEPA maintains consistently 542

high performance across both risk estimation tasks, 543

in comparison to other supervised and self-supervised 544
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models. This warrants further investigation into ad-545

ditional risk estimation outcomes to distinguish how546

performance across these models vary.547

Clinical Impact: The 5-minute risk estimation548

horizon provides actionable early warning capabil-549

ities for preventing adverse events. PhysioJEPA’s550

performance demonstrates the clinical value of self-551

supervised representation learning. The model relies552

solely on bedside monitoring data, enabling deploy-553

ment across diverse ICU environments without re-554

quiring electronic health record integration.555

Technical Contributions: Our work extends556

JEPA to long-duration, high frequency, multi-modal557

physiological time series and adds improvements to558

better handle signals independently (depthwise con-559

volutions, rotary embeddings, per channel masked to-560

kens, and flattened batch-channel dimensions for at-561

tentive classification). This adds to other physiolog-562

ical signal JEPA approaches to handle multi-modal563

signals, instead of only ECG (Kim, 2024) or EEG564

(Guetschel et al., 2024). Additionally, PhysioJEPA565

is to our knowledge, the first self-supervised repre-566

sentation learning model to be developed for ICU567

bedside monitoring data. Our results show that the568

embedding-space prediction method can learn rele-569

vant features of physiological signal data and gener-570

alize equally or better to unseen datasets for predic-571

tive tasks, compared to PatchTST, ECG-JEPA, and572

a fully supervised convolutional method. Further-573

more, given that the representations are generated574

without being fine-tuned to specific tasks, they may575

be applicable to other critical care outcomes, which576

merits further investigation.577

Comparison to Existing Approaches: Our578

work adds to the growing literature on hypoten-579

sive risk estimation by introducing a self-supervised580

framework that learns directly from raw bedside sig-581

nals. Prior approaches using raw bedside signals582

trained fully supervised models to estimate hypoten-583

sive risk (Lee et al., 2021; Moon et al., 2024; Jeong584

et al., 2024; Jo et al., 2022). Lee et al. (2021), Moon585

et al. (2024), and Jo et al. (2022) used multi-modal586

signals to estimate 3-, 5-, 10-, and/or 15-minute hy-587

potensive risk on the VitalDB (https://vitaldb.net/)588

database, without external validation. Jeong et al.589

(2024) trained a fully supervised model using Vi-590

talDB with ECG, PPG, capnography, bispectral in-591

dex, and non-invasive ABP to estimate intraopera-592

tive hypotension at a 5-minute forecast with good593

performance on an external test set (AUROC: 0.833594

(95% CI, 0.830–0.836)). In contrast, PhysioJEPA595

learns task-agnostic features by learning representa- 596

tions directly from multi-modal bedside signals via 597

self-supervision and demonstrates competitive perfor- 598

mance across internal and external datasets. To our 599

knowledge, we are among the first to predict shock 600

index using a self-supervised representation learning 601

approach for raw multi-modal physiological data. 602

Limitations: First, the model currently requires 603

invasive ABP monitoring, which may not be avail- 604

able for all patients or institutions. Second, the eval- 605

uation was conducted on two specific critical care 606

outcomes; broader validation across additional clin- 607

ical endpoints is needed to establish general appli- 608

cability. Third, the 30-minute input window needs 609

to be investigated further along with the missing- 610

ness threshold of 20%, as the tradeoff between these 611

two elements could be optimized to reduce noise and 612

better represent longer-term physiological patterns. 613

Fourth, the external validation was conducted on a 614

relatively small subset of patients from a single ad- 615

ditional institution, and broader multi-site validation 616

would strengthen generalizability claims. Fifth, op- 617

timal masking ratios for context and targets was not 618

explored. Adding more context (like in PatchTST 619

or ECG-JEPA) could improve learned representa- 620

tions and performance on downstream tasks. Finally, 621

an additional transformer-based supervised classifier 622

method could be explored to better understand per- 623

formance, given both PhysioJEPA, PatchTST, and 624

ECG-JEPA encoded signals with a transformer back- 625

bone. 626

Future Work: Evaluating non-invasive risk es- 627

timation by removing the ABP channel would sig- 628

nificantly expand the patient population that could 629

benefit from this approach. Exploring longer fore- 630

cast horizons (10-15 minutes) and varying input seg- 631

ment lengths could optimize the balance between 632

early warning capability and prediction accuracy. Ex- 633

ploration of alternative preprocessing techniques, in- 634

tegration of additional physiological channels, mask- 635

ing ratios, and adoption of task-specific fine-tuning 636

strategies or different classifier heads could fur- 637

ther improve performance. Comparative evalua- 638

tion against other self-supervised learning paradigms, 639

such as a contrastive learning method, could further 640

validate the effectiveness of joint embedding predic- 641

tive architectures for physiological time series data. 642

Additionally, applying the learned representations to 643

other critical care outcomes such as sepsis onset, res- 644

piratory failure, or cardiac arrest would demonstrate 645

broader utility. 646
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Appendix A. Supplemental Methods1081

A.1. Supervised Classifier, PatchTST, and1082

ECG-JEPA Implementation Details1083

Two fully supervised convolutional classifiers were1084

trained to estimate the two outcomes for comparison1085

to PhysioJEPA. Each used a three-layer convolution1086

with standard parameters (dimensions: 128, 256, and1087

128; kernel sizes: 7, 5, and 3). Classifiers were trained1088

for 20 epochs with a one-cycle learning rate scheduler1089

and AdamW optimizer.1090

Two other representation learning frameworks1091

were also trained for comparison to PhysioJEPA.1092

PatchTST (Nie et al., 2023) has been utilized in other1093

multi-modal physiological signal representation mod-1094

els for Sleep (Fox et al., 2025), thus making it a good1095

self-supervised, multi-modal comparison. Like the1096

PhysioJEPA context encoder, PatchTST was built1097

with identical tokenization, positional encoding, and1098

encoder parameters. Contrary to PhysioJEPA, mask-1099

ing was performed prior to tokenization, as detailed in1100

the PatchTST architecture. A ”target” masking ratio1101

of 10% to 30%, equivalent to PhysioJEPA, was used1102

and the model was trained to recreate the values from1103

these masked out patches with a linear layer per chan-1104

nel and mean squared error loss function. This self-1105

supervised training technique is commonly known as1106

masked autoregression. PatchTST was trained for1107

100 epochs with a one-cycle learning rate scheduler,1108

and AdamW optimizer.1109

For comparison to a JEPA representation frame-1110

work, we trained ECG-JEPA (Kim, 2024) with our1111

multi-modal input signals. ECG-JEPA was origi-1112

nally designed for ECG signals (a single modality)1113

and employs a cross pattern attention mechanism to1114

learn relationships among channels. Encoder size and1115

number of heads were identical to PhysioJEPA with1116

sinusoidal positional encodings. A target mask ra-1117

tio of 10% to 30% of the total number of patches was1118

utilized, equivalent to PhysioJEPA. All other patches1119

not selected as targets were used as the context per1120

the original ECG-JEPA implementation. ECG-JEPA1121

was trained for 100 epochs with a one-cycle learning1122

rate scheduler and AdamW optimizer. A smooth L11123

loss function was used for optimization similar to the1124

original implementation.1125

Following self-supervised learning, two additional1126

attentive classifiers were trained for each task for each1127

framework as described in the Methods section using1128

the representations generated from PatchTST and1129

ECG-JEPA.1130

Appendix B. Compute Resources 1131

Self-supervised models were trained with two 1132

Nvidia H100 NVLink GPUs and 16 cores. Classifier 1133

models were trained with one Nvidia H100 NVLink 1134

GPU and 16 cores. 1135

Appendix C. Demographic 1136

Characteristics of 1137

Datasets 1138
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Hypotension Non-hypotension Shock Index ≥ 0.9 Shock Index < 0.9

Total Patients 1634 892 1578 945

Gender
Female 715 (43.8%) 369 (41.4%) 700 (44.4%) 385 (40.7%)
Male 919 (56.2%) 523 (58.6%) 878 (55.6%) 560 (59.3%)

Age

18-39 92 (5.6%) 112 (12.6%) 136 (8.6%) 68 (7.2%)
40-59 427 (26.1%) 321 (36.0%) 457 (29.0%) 295 (31.2%)
60-79 769 (47.1%) 357 (40.0%) 712 (45.1%) 408 (43.2%)
80+ 276 (16.9%) 84 (9.4%) 221 (14.0%) 137 (14.5%)
Unknown 70 (4.3%) 18 (2.0%) 52 (3.3%) 37 (3.9%)

Table 3: Age and gender of patients from the MIMIC-III dataset separated by outcome.

Hypotension Non-hypotension Shock Index ≥ 0.9 Shock Index < 0.9

Total Patients 63 36 69 29

Gender
Female 36 (57.1%) 15 (41.7%) 38 (55.1%) 14 (48.3%)
Male 27 (42.9%) 21 (58.3%) 31 (44.9%) 15 (51.7%)

Age

18-39 10 (15.9%) 11 (30.6%) 12 (17.4%) 3 (10.3%)
40-59 18 (28.6%) 7 (19.4%) 17 (24.6%) 10 (34.5%)
60-79 28 (44.4%) 13 (36.1%) 33 (47.8%) 10 (34.5%)
80+ 7 (11.1%) 5 (13.9%) 7 (10.1%) 6 (20.7%)

Table 4: Age and gender of patients from the Mount Sinai Bedmaster Dataset separated by outcome. Data
was collected across 6 different adult ICUs.
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