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Abstract

Self-supervised learning of multi-modal, high-
frequency physiological signals is largely unex-
plored, despite its potential for critical care ap-
plications. We present PhysioJEPA, a Joint
Embedding Predictive Architecture (JEPA) de-
signed for multi-modal physiological signals
from critical care bedside monitoring devices.
PhysioJEPA learns representations from 30-
minute segments of physiological signals from
three channels: arterial blood pressure, elec-
trocardiography lead II, and photoplethysmog-
raphy. Trained on over 10.7 million minutes
of data from 4,282 intensive care unit stays
(N=2,631 patients) in the Medical Information
Mart for Intensive Care-IIT (MIMIC-III) Wave-
form Database, the learned, frozen representa-
tions of PhysioJEPA can be used to estimate
5-minute risk of hypotension (AUROC = 0.83
[Confidence Interval or CI 0.83-0.84]) and shock
index (AUROC = 0.95 [0.95-0.96]), with com-
parable performance to a self-supervised Patch
Time Series Transformer framework (AUROC
= 0.87 [0.86-0.87] and 0.96 [0.96-0.96]), better
performance compared to another JEPA phys-
iological signal model, ECG-JEPA (AUROC =
0.73 [0.72-74] and 0.92 [0.92-0.93]), and better
performance compared to a supervised convo-
lutional model (AUROC = 0.78 [0.78-0.78] and
0.95 [0.95-0.95]). Notably, it can generalize to
an independent healthcare system (AUROC =
0.78 [0.78-0.78] and 0.92 [0.92-0.93]) better than
all comparison models. These results suggest
that self-supervised JEPA representation learn-
ing is a promising approach for multi-modal
bedside monitoring signal data.

Keywords: self-supervision, transformer,
JEPA, physiological signals, multi-modal, mul-
tichannel, electrocardiography, photoplethys-
mography, critical care, hypotension, shock

Data and Code Availability The MIMIC-III
Waveform Database Matched Subset is publicly avail-
able upon request from https://physionet.org/
content/mimic3wdb-matched/1.0/. Code is avail-
able at https://github.com/benmfox/PhysioJEPA.
The Mount Sinai Bedmaster Dataset is not currently
available.

Institutional Review Board (IRB) The
MIMIC-IIT Waveform Database Matched Subset
is publicly available. The Mount Sinai Bedmas-
ter Dataset was approved for use under IRB by
the Icahn School of Medicine at Mount Sinai
(STUDY-20-00338).

1. Introduction

Physiological time series data contain information-
rich health data, capturing continuous measurements
of vital signs, organ function, and metabolic pro-
cesses that provide real-time insight (Orphanidou,
2019; Rooney and Clermont, 2023). From electrocar-
diograms (ECG) and electroencephalograms (EEG)
in hospital settings to continuous glucose monitor-
ing and wearable sensor data in ambulatory care,
these high-frequency signals contain complex tempo-
ral patterns that reflect underlying pathophysiolog-
ical processes. The ability to effectively model and
learn from such time series data is crucial for enabling
early detection of adverse events and supporting clin-

© 2025 B. Fox, D. Hoang, J. Jiang, P. Jayaraman, A. Parekh, G.N. Nadkarni & A. Sakhuja.

37

38

39

40

41

42

43

44

45

46

47

48

49

50

52

53

54

55

56

57

58

59

60

61

62

63

64

65

67


https://physionet.org/content/mimic3wdb-matched/1.0/
https://physionet.org/content/mimic3wdb-matched/1.0/
https://physionet.org/content/mimic3wdb-matched/1.0/
https://github.com/benmfox/PhysioJEPA

68

69

70

71

72

3

74

75

76

v

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

o

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

115

116

117

118

PHYSIOJEPA: JOINT EMBEDDING REPRESENTATIONS OF PHYSIOLOGICAL SIGNALS FOR REAL TIME RISK ESTIMATION IN THE INTENSIVE

ical decision-making (Orphanidou and Wong, 2017;
Rooney and Clermont, 2023).

Following the advancements of the attention
mechanism (Vaswani et al., 2017) and subsequent
work with bidirectional encoder representations from
transformers (BERT) (Devlin et al., 2019) and
chat generative pretrained transformers (ChatGPT)
(Brown et al., 2020), self-supervised representation
learning has transformed approaches to modeling
complex, high-dimensional data across domains. In
healthcare specifically, foundation models trained on
large-scale datasets have demonstrated remarkable
capabilities in medical imaging (Zhou et al., 2023),
cardiac magnetic resonance imaging videos (Kim
et al., 2024), clinical notes (Wornow et al., 2023;
Huang et al., 2019; Singhal et al., 2022), and multi-
modal medical data (Moor et al., 2023a,b). How-
ever, physiological time series present unique chal-
lenges that distinguish them from other medical data
modalities: they are inherently temporal and often
multivariate with complex interchannel dependen-
cies, characterized by high sampling frequencies that
generate massive datasets.

Recent developments in self-supervised learning
have demonstrated that Joint Embedding Predictive
Architectures (JEPA) can learn superior representa-
tions by predicting in the embedding space rather
than reconstructing raw input data, particularly in
imaging and video data (Assran et al., 2023; Bardes
et al., 2024). Unlike traditional masked autoen-
coding approaches that reconstruct values or con-
trastive approaches that compare augmented embed-
dings, JEPA uses a context encoder to embed ran-
dom parts of an input (i.e., patches of an image, in-
tervals of a time series). Then, a predictor network
uses these context embeddings to estimate other,
non-overlapping parts of the input in the embedding
space that have been encoded by a separate target
encoder. This target encoder, updated via exponen-
tial weighted moving average, generates ground-truth
embeddings for comparison. This embedding-space
prediction framework is hypothesized to avoid noisy
pixel reconstruction while learning higher-level repre-
sentations, leading to more robust and generalizable
features (Assran et al., 2023). For physiological time
series, this approach is especially compelling as it cir-
cumvents the reconstruction of inherently noisy sig-
nal data while potentially capturing complex tempo-
ral and cross-channel dependencies that are critical
for clinically relevant tasks. Thus, we hypothesize
that JEPA offers better representation learning for

multi-modal physiological signals by modeling pre-
dictive relationships within the embedding space and
across signal channels, rather than reconstructing in-
puts or contrasting samples’ embeddings.

In this work, we introduce PhysioJEPA, a JEPA-
based model for multi-modal physiological signals
from bedside monitoring devices in intensive care
units (ICU). PhysioJEPA learns representations from
30-minute segments of three-channel bedside moni-
toring data (arterial blood pressure [ABP], ECG lead
II, and photoplethysmography [PPG]) through self-
supervised training. This approach enables accurate
risk estimation of critical care outcomes via task-
specific linear probing (i.e., fitting a supervised clas-
sifier on top of frozen representations).

Our work makes the following key contributions:

e We present the first application of JEPA to bed-
side monitoring data, extending JEPA principles
to handle 30-minute segments of three-channel
physiological time series (ABP, ECG, PPG) sam-
pled at 125 Hz.

e We develop channel-specific mask token predic-
tion strategies, employ rotary positional embed-
dings, and use depthwise convolutions for tok-
enization, enabling the model to learn distinct
representations for each physiological signal type
over time while capturing cross-channel depen-
dencies.

e We show that PhysioJEPA is effective in criti-
cal care risk estimation for 5-minute hypotension
risk and 5-minute shock index risk, matching
or outperforming supervised and self-supervised
comparison models.

e We demonstrate that PhysioJEPA can robustly
generalize to an external dataset without retrain-
ing, outperforming performance of supervised
and self-supervised comparison models and es-
tablishing the potential for real-world ICU de-
ployment.

2. Related Work

2.1. Time Series Representation Learning

Self-supervised representation learning for time se-
ries has seen significant development, with frame-
works ranging from contrastive learning (Yue et al.,
2022) to masked autoregressive models like Patch
Time Series Transformer (PatchTST) (Nie et al.,
2023). In healthcare specifically, current approaches

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165



166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

PHYSIOJEPA: JOINT EMBEDDING REPRESENTATIONS OF PHYSIOLOGICAL SIGNALS FOR REAL TIME RISK ESTIMATION IN THE INTENSIVE

Depthwise
Convolutions
(1 second)

30 Minutes

Select Context
Per Channel

Context Encoder (PatchTST)

30 Minute Segment
Representation Space

Add & Norm qJS
™

Feed Forward

Rotary Encoding @

Multi-Head Attention

Add & Norm <«

Figure 1: PhysioJEPA Context Encoder. Bedside monitoring signal channels (ABP, ECG lead II, and PPG)
are extracted in 30-minute segments sampled at 125 Hz and tokenized into 1-second patches.
Random patches are selected by context and target masks, which are encoded using a Patch Time
Series Transformer (PatchTST) encoder (Nie et al., 2023).
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Figure 2: PhysioJEPA Predictive Architecture and Target Encoder. Channel specific mask tokens are added
to the context embeddings to indicate which patches the predictor must reconstruct, while the tar-
get encoder processes the full segment and subsets embeddings at the target locations. Prediction
is optimized by minimizing mean squared error between predicted and target embeddings.

for physiological signals have made important ad-
vances but still typically rely on shorter or lower
frequency input sequences, single-channel or single-
modality analysis, or domain-specific architectures
that limit their generalizability across different phys-
iological monitoring scenarios (Xu et al., 2024;
Foumani et al., 2024; Kotoge et al., 2024; Chien et al.,
2022; Ding et al., 2024; Zhang et al., 2022; Lutsker
et al., 2024). This is a limitation, given that many
clinically relevant patterns in physiological data man-
ifest over extended time horizons and require integra-
tion of information across multiple signal types.

More recent works including SleepFM (Thapa
et al., 2024), NormWear (Luo et al., 2024), PFTSleep
(Fox et al., 2025), and wearable work by Merrill and
Althoff (2022), Narayanswamy et al. (2024), and Xu
et al. (2025) build representation models for higher
frequency, multi-modal data streams in the sleep or

wearable domains; however, none have been devel-
oped for or applied to bedside monitoring data.

2.2. Joint Embedding Predictive
Architectures

Building on the foundational JEPA framework (As-
sran et al., 2023), recent work has explored ex-
tensions beyond the original image domain applica-
tions. Video-JEPA has demonstrated effectiveness
for temporal sequence understanding by adapting the
embedding-space prediction paradigm to handle tem-
poral dynamics in video data (Bardes et al., 2024). In
the physiological signal domain, studies have applied
JEPA principles to ECG analysis, showing promising
results on 10-second, 250-500Hz, 8 or 12-lead ECG
segments for feature prediction and downstream clas-
sification tasks (Kim, 2024; Weimann and Conrad,
2025). Further, Signal-JEPA applies dynamic spatial
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attention to improve generalization across datasets,
showing promise for spatially distributed signals such
as EEG (Guetschel et al., 2024). These applications
highlight JEPA’s particular advantages for noisy sig-
nal modalities; however, these applications to phys-
iological data have been limited to short-duration,
single-modality scenarios.

2.3. Physiological Signal Analysis for Critical
Care

Traditional approaches to ICU risk estimation have
relied heavily on aggregated features from electronic
health records, signals, or vital signs (Maheshwari
et al., 2021; Yoon et al., 2020; Moghadam et al., 2021;
Cherifa et al., 2021; Kapral et al., 2024; Hatib et al.,
2018; Jian et al., 2025). While these methods achieve
reasonable performance on single tasks, they fail to
leverage the rich temporal dynamics present in con-
tinuous bedside monitoring. Others have taken ad-
vantage of the continuous data for supervised clas-
sification tasks (Lee et al., 2021; Moon et al., 2024;
Jeong et al., 2024; Jo et al., 2022; Sundrani et al.,
2023). To our knowledge, our work is the first to
apply self-supervised learning to bedside monitoring
signal data for multi-outcome critical care risk esti-
mation.

3. Methods
3.1. Data Extraction

We used the Medical Information Mart for In-
tensive Care-IIT (MIMIC-III) Waveform Database
Matched Subset (Johnson et al., 2015, 2016). Wave-
form data with the ABP, ECG lead II, and PPG sig-
nal channels were extracted and stored in zarr (Miles
et al., 2024) format. Also, we extracted adult ICU
waveform signal data from an external institution for
evaluation provided by the Mount Sinai Health Sys-
tem. The MIMIC-III data was split into 95% training
and 5% validation for pretraining.

3.2. Data Segmentation and Normalization

3-channel signal data are segmented into 30-
minute, non-overlapping windows and resampled to
fs = 125 Hz. 30-minute segments are excluded from
training if 20% or more of a single channel’s values
are constant or null values. Following, null values are
linearly interpolated. Each channel x.(¢) is then nor-
malized with inter-quartile range normalization, as
described by Brink-Kjaer et al. (2022).

3.3. PhysioJEPA Architecture

The framework consists of three components:

1. Context encoder: A PatchTST transformer
(Nie et al., 2023) processes a masked subset of
input patches to produce context encodings h,.

2. Predictor: A smaller PatchTST transformer
predicts target encodings of masked tokens hy.

3. Target encoder: An exponential weighted
moving average copy of the context encoder pro-
duces target encodings h; from the full input,
the output of which is subset and compared to
that of the Predictor.

Context and target encoders use 3-layer PatchTST
encoders with 8 attention heads, dimension 512, and
feedforward sizes of 2048. The predictor implements
2 layers with 4 heads and a dimension of 256.

3.3.1. CHANNEL-SPECIFIC MASK TOKENS

For target token prediction using context en-
codings, channel-specific learnable mask tokens
ci, i=1,...,C arerepeated ¢ times (the number of
targets to predict), concatenated, and shuffled with
context tokens. The predictor then outputs flg? at
each masked position i for each channel ¢. This re-
sult is compared to the target encoder output and
optimized with a mean squared error loss function.

3.3.2. ParcH EMBEDDING WITH DEPTHWISE
CONVOLUTIONS

Each 30-minute segment is tokenized into 1-
second patches via a depthwise convolution per
channel, equivalent to PatchTST’s channel indepen-
dent patching and linear tokenization procedure (Nie
et al., 2023):

k—1
hpea= Y wealilze[p-k+1i] +bea, d=1,...,D.
=0
(1)

where z, € R'?5 is the channel ¢ indexed at patch
p of size k (the kernel size). Each channel ¢ has D
convolutional kernels w¢q € R¥ d = 1,...,D with
bias bcq. This helps learn patch-wise features into
an embedding vector Z € R*¥*P where d = 512
and p is the number of tokens. Following this, the
batch and channel dimensions are flattened together
prior to input into the transformer, creating a tensor
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of shape bs * ¢ x 1800 x 512, where 1800 is the num-
ber of tokenized 1-second patches from the 30-minute
segment.

3.3.3. RoTARY POSITIONAL EMBEDDINGS

For temporal encoding, rotary positional embed-
dings (RoPE) were applied (Su et al., 2021) to each
patch token. For token 7 with embedding dimension
d, each embedding vector Z € R? is split into two sub-
vectors hj = [h2j7h2j+1], j = 1,. .. ,g — 1. Each
even-odd pair in token ¢ is then rotated by an an-
gle §; = 10000™*/, This is applied independently to
each token ¢, ; = p - 6; with:

h cos(¢p,j) — sin(¢p,;)

v = |sin(y.,) + cos(gpy)| 20 (2

Effectively, this step captures relative and absolute
positional embeddings across and within patches.

3.3.4. MASKING AND TRAINING PARAMETERS

For training, target masks select 10-30% of patches
at random from each flattened batch-channel dimen-
sion. Context masks select 10%-40% of the re-
maining patches. The representation framework was
trained for 100 epochs with a one-cycle learning rate
scheduler and AdamW optimizer. After training, the
context encoder inputs tokenized signal data Z;, €
R*%P and generates representations Zy,; € REX4XT,
where r is the learned representation for channel c
with dimension d.

3.4. Linear Probing Architecture

After representation learning, linear probing clas-
sifiers are trained with learned, frozen representa-
tions for each task. The context embedding tensor
Z € Re¥™*4 is passed into an attentive classifier (As-
sran et al., 2023; Bardes et al., 2024) with flattened
batch and channel dimensions. A single learned query
vector ¢ € R? is utilized to extract relevant encod-
ing information from the context encoders represen-
tations Z. Queries, keys, and values are calculated
Q=qWy, K =2ZWy, and V = ZW, for each atten-
tion head. Following, attention scores and weights
are generated:

QKT
vd '’

A final, pooled representation vector is calculated Z =

QweightsV € R4, The pooled representation Z is

reshaped to bs X ¢-d and passed through a final linear
layer for binary classification.

Ascore — aweights = Softmax(ascore)~ (3)

Notably, the weights of the context encoder from
PhysioJEPA are frozen during this process. Atten-
tive classifiers used 4 attention heads. Classifiers are
trained for 20 epochs with a one-cycle learning rate
scheduler and the AdamW optimizer.

3.4.1. AUGMENTATION TECHNIQUES

During linear probing, common augmentation
techniques were employed to 30-minute input seg-
ments, including random noise, channel dropout, and
mixup (Zhang et al., 2018) to better handle class im-
balance.

3.5. Supervised and Self-Supervised
Comparison Models

For comparison to a supervised model, we trained
a fully supervised convolutional classifier presented
by Wang et al. (2016) for each task. Additionally, for
comparison to other representation learning frame-
works, we trained an equivalent PatchTST (Nie et al.,
2023) encoder via masked autoregression and another
JEPA based signal model, ECG-JEPA (Kim, 2024).
For implementation details, see Appendix A.1.

3.6. Clinical Tasks
3.6.1. 5-MINUTE HYPOTENSIVE RISK ESTIMATION

For the first task, we estimated risk of having a hy-
potensive event at a 5-minute forecast horizon. Hy-
potensive risk was chosen due to its common oc-
currence in ICU patients (60-75% develop hypoten-
sion (Terwindt et al., 2022)) and the critical need
for improved proactive monitoring. A hypotension
threshold was defined based on mean arterial pres-
sure (MAP) of < 65 mmHg or systolic blood pressure
(SBP) < 90 mmHg at each minute.

A positive hypotensive event was defined as five
consecutive minutes below the hypotension thresh-
olds. Thus, a hypotensive event at a 5 minute forecast
was derived with data from the 5 to 10 minute inter-
val ahead of the end of the input signal. MAP and
SAP were calculated using peak detection algorithms
adapted from PhysioNet’s wfdb package (Goldberger
et al., 2000; Moody et al., 2022). Hypotensive events
longer than 5 minutes were treated as a single event,
ensuring at least 5 minutes between multiple events
for the same patient. Non-hypotensive patients were
those with no hypotensive events throughout their
entire ICU stay. Data was split into training (80%),
validation (10%), and testing (10%) using a propor-
tional, subject-wise data splitter. Additionally, dur-
ing training a weighted sampler was used to present
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‘ Hypotension ‘ Shock Index

Data Split ‘ N ICU Stays N Patients Positive Events Negative Events ‘ N ICU Stays N Patients Positive Events Negative Events
MIMIC-IIT Train 3280 2060 44897 (0.04) 1015429 (0.96) 3264 2062 53897 (0.05) 1087321 (0.95)
MIMIC-III Validation 381 237 5601 (0.05) 116307 (0.95) 335 216 6882 (0.07) 96229 (0.93)
MIMIC-IIT Test 341 229 4435 (0.04) 106273 (0.96) 413 245 8526 (0.05) 149215 (0.95)
Mount Sinai Bedmaster Dataset | 99 99 2638 (0.03) 82626 (0.97) | 98 98 1952 (0.05) 37089 (0.95)

Table 1: Hypotension and shock index event statistics for training, validation, testing, and external test sets.
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the model with more positive cases, given the high
class imbalance.

3.6.2. 5-MINUTE SHOCK INDEX RISK ESTIMATION

For the second task, we estimated risk of elevated
shock index (SI) at a 5-minute forecast horizon. SI
was chosen as it serves as an important marker for
shock and mortality (Koch et al., 2019). SI was com-
puted as the ratio of heart rate to SBP:

Positive class if SI > 0.9 (4)
A shock index event was defined as five consecutive
minutes above the 0.9 threshold. Heart rate was de-
rived from the ABP signal channel using PhysioNet’s
peak detection algorithms (Goldberger et al., 2000;
Moody et al., 2022). Normal SI values range from
0.5 to 0.7, and higher values are more predictive of
adverse outcomes (Cannon et al., 2009). Data was
split into training (80%), validation (10%), and test-
ing (10%) using a proportional label, subject-wise
data splitter. Again, a weighted sampler was used
during training to account for class imbalance.

3.7. External Validation

To assess generalizability, we conducted external
validation on the Mount Sinai Bedmaster Dataset col-
lected from 100 randomly selected patient ICU stays
(per task) from 6 separate adult ICUs between 2019
and 2024.

3.8. Evaluation

We evaluated PhysioJEPA, PatchTST, ECG-
JEPA, and supervised convolutional models for es-
timating 5-minute risks of hypotension and shock in-
dex using the MIMIC-III test set and external Mount
Sinai Bedmaster Dataset. Performance metrics in-
cluded area under the receiver operating character-
istic curve (AUROC), average precision, F1, recall,
specificity, and sensitivity at 90% and 95% specificity
(Sens@90%Spec, Sens@95%Spec, respectively). The
latter two measures could be particularly valuable in
clinical settings, which require high specificity to re-
duce false alarms.

4. Results

Of the 5,660 stays from the MIMIC-IIT Waveform
Database with the required three signal channel data
(ABP, ECG lead II, PPG), 1,378 were not used for
representation learning due to 20% or more constant
or NaN values in a single channel (in each 30-minute
segment). We investigated this missingness further
and found that the majority of the removed samples
had > 75% missing or NaN values (total of 1,050
samples). Thus, our missingness threshold of 20%
was removing samples that were majority missing or
NaN values. Overall, PhysioJEPA was trained with
356,903 30-minute segments (total of 10,707,090 min-
utes) across 4,282 ICU stays (N=2,631 patients) with
3-channel signal data. Demographics are shown in
Appendix C Table 3. Training was stopped after 100
epochs, and the last model was used for linear prob-
ing. An overview of the architecture is shown in Fig-
ures 1 and 2.

4.1. Risk Estimation Results

Dataset statistics of both hypotension and SI are
reported in Table 1.

Performance of Supervised Convolutional
Models: Two fully supervised convolutional clas-
sifiers achieved AUROC scores of 0.778 (95% boot-
strapped confidence interval [CI]: 0.771-0.784) for 5-
minute hypotension (Figure 3A) and 0.950 (95% CI:
0.948-0.952) for 5-minute shock index risk estimation
on the held-out test set (Figure 4A).

Performance of ECG-JEPA Models: Linear
probing with frozen ECG-JEPA encoder represen-
tations achieved AUROC scores of 0.729 (95% CI:
0.721-0.738) for 5-minute hypotension (Figure 3A)
and 0.923 (95% CI: 0.921-0.925) for 5-minute shock
index risk estimation on the held-out test set (Figure
4A).

Performance of PatchTST Models: Linear
probing with frozen PatchTST encoder representa-
tions achieved AUROC scores of 0.867 (95% CI:
0.861-0.871) for 5-minute hypotension (Figure 3A)
and 0.956 (95% CI: 0.955-0.958) for 5-minute shock
index risk estimation on the held-out test set (Figure
4A).
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Figure 3: Receiver operating characteristic curves for 5-minute hypotension risk estimation for PhysioJEPA,
PatchTST, ECG-JEPA, and the fully supervised convolutional model for held-out (A) and external

(B) test sets.
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Figure 4: Receiver operating characteristic curves for 5-minute shock index risk estimation for PhysioJEPA,
PatchTST, ECG-JEPA, and the fully supervised convolutional model for held-out (A) and external

(B) test sets.

Performance of PhysioJEPA Models: Linear
probing with frozen PhysioJEPA encoder represen-
tations was similar to or outperformed comparison
models, achieving AUROC scores of 0.833 (95% CIL:
0.825-0.838) for 5-minute hypotension risk (Figure
3A) and 0.954 (95% CI: 0.952-0.955) for 5-minute
shock index risk estimation (Figure 4A). For details

of other performance metrics of all models, see Table
2.

At clinically relevant specificity thresholds, Phys-
ioJEPA achieved matched or superior performance
on the held-out test set (Table 2): 55.2% sensitivity
at 90% specificity and 40.7% at 95% specificity for
5-minute hypotension risk estimation, compared to
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PHYSIOJEPA:

Condition ~ Dataset Model AUROC Avg Precision Fl1 Recall Specificity Sens@90%Spec Sens@95%Spec
PhysioJEPA 0.833 (0.825- 0.838)  0.264 (0.254- 0.277)  0.122 (0.119 - 0.125)  0.924 (0.916 - 0.931)  0.446 (0.443 - 0.449)  0.552 (0.538 - 0.566)  0.407 (0.391 - 0.421)
Held-Ont PatchTST ~ 0.867 (0.861 - 0.871) 0.267 (0.257 - 0.282)  0.105 (0.102- 0.108)  0.979 (0.974- 0.984) 0304 (0.302- 0.307)  0.576 (0.565 - 0.616) 0.429 (0.416 - 0.442)
el ECG-JEPA 0.720 (0.721- 0.738)  0.110 (0.104- 0.116)  0.077 (0.075- 0.079)  1.000 (1.000 - 1.000)  0.000 (0.000 - 0.000)  0.322 (0.310- 0.335)  0.146 (0.135 - 0.157)
Hypotension Supervised Conv  0.778 (0.771- 0.784)  0.140 (0.133- 0.148)  0.082 (0.080 - 0.085)  0.998 (0.997 - 0.999)  0.073 (0.071 - 0.074)  0.422 (0.406 - 0.435)  0.296 (0.282 - 0.310)
PhysioJEPA  0.781 (0.773 - 0.788) 0.098 (0.093 - 0.104) 0.084 (0.081 - 0.086)  0.949 (0.939- 0.955)  0.340 (0.337 - 0.343) 0.339 (0.319 - 0.356) 0.204 (0.191 - 0.218)
Mount Sinai | PatehTST 0.761 (0.753 - 0.769)  0.085 (0.081 - 0.090)  0.075 (0.072- 0.078)  0.955 (0.947 - 0.963)  0.251 (0.248- 0.254)  0.303 (0.287- 0.324)  0.000 (0.000 - 0.000)
R ECG-JEPA 0.568 (0.560 - 0.577)  0.039 (0.037 - 0.041)  0.060 (0.058 - 0.062)  0.986 (0.981 - 0.991)  0.018 (0.017 - 0.019)  0.153 (0.059 - 0.168)  0.063 (0.056 - 0.072)
Supervised Conv  0.695 (0.686 - 0.705)  0.057 (0.054 - 0.060)  0.064 (0.062 - 0.067)  0.917 (0.908 - 0.927)  0.151 (0.149- 0.154)  0.213 (0.197 - 0.225)  0.069 (0.036 - 0.074)
PhysioJEPA 0954 (0.952- 0.955)  0.474 (0.465- 0.485)  0.308 (0.303- 0.313)  0.981 (0.978- 0.983)  0.749 (0.747 - 0.751)  0.881 (0.875 - 0.889)  0.706 (0.697 - 0.715)
Held-Ont PatchTST  0.956 (0.955 - 0.958) 0.595 (0.584 - 0.607) 0.391 (0.385 - 0.396)  0.941 (0.936 - 0.945)  0.836 (0.834 - 0.838)  0.873 (0.866 - 0.880)  0.743 (0.734 - 0.760)
’ ECG-JEPA 0923 (0.921-0.925)  0.364 (0.355- 0.370)  0.217 (0.213- 0.221)  0.986 (0.984 - 0.989)  0.595 (0.503 - 0.598)  0.726 (0.716 - 0.735)  0.437 (0.425 - 0.447)
Shock Indes Supervised Conv  0.950 (0.948 - 0.952) 0555 (0.546 - 0.565)  0.206 (0.292- 0.300)  0.978 (0.974- 0.980)  0.735 (0.733- 0.738)  0.852 (0.846 - 0.859)  0.676 (0.665 - 0.687)
PhysioJEPA  0.923 (0.917 - 0.927) 0.396 (0.381 - 0.410)  0.226 (0.219- 0.234)  0.969 (0.963- 0.976)  0.652 (0.643- 0.657)  0.716 (0.699 - 0.738)  0.356 (0.335 - 0.374)
Mount Sinai PatchTST 0.873 (0.864 - 0.882)  0.312 (0.205 - 0.333)  0.244 (0.235 - 0.254)  0.862 (0.847 - 0.877)  0.727 (0.723 - 0.731)  0.672 (0.642- 0.691)  0.501 (0.477 - 0.520)
i ECG-JEPA 0.888 (0.882- 0.894)  0.231 (0.218-0.242)  0.142 (0.137- 0.146)  0.988 (0.982 - 0.992)  0.371 (0.365 - 0.375)  0.584 (0.565 - 0.607)  0.000 (0.000 - 0.000)
Supervised Conv  0.782 (0.771- 0.794)  0.162 (0.152 - 0.171)  0.167 (0.160 - 0.174)  0.840 (0.828 - 0.853)  0.569 (0.564 - 0.572)  0.522 (0.498 - 0.548)  0.202 (0.185 - 0.218)

Table 2: Comprehensive performance comparison of

PhysioJEPA, PatchTST, ECG-JEPA, and the fully

supervised convolutional model on hypotension and shock index risk estimation tasks across the
held-out MIMIC-IIT test set and external Mount Sinai Bedmaster Dataset. Best performance for
each metric is shown in bold (95% bootstrapped confidence intervals).

PatchTST performance of 57.6% and 42.9%, ECG-
JEPA performance of 32.2% and 14.6%, and the su-
pervised convolutional model performance of 42.2%
and 29.6%, respectively. For shock index, Physio-
JEPA achieved 88.1% and 70.6% sensitivity at 90%
and 95% specificity thresholds, similar to PatchTST
results of 87.3% and 74.3%, and outperforming ECG-
JEPA results of 72.6% and 43.7% and supervised con-
volutional classifier results of 85.2% and 67.6%, re-
spectively.

4.2. External Validation Results

External wvalidation on 100 randomly selected
patient-ICU stays (for each task) from the Mount
Sinai Bedmaster Dataset demonstrated strong cross-
site generalizability without retraining. The exter-
nal test set comprised data from 6 different adult
ICUs. Demographics are shown in Appendix C Ta-
ble 4. 3 samples were excluded due to our miss-
ingness constraints as detailed in the Methods. 5-
minute hypotension risk estimation using the Phys-
ioJEPA architecture and classifier trained on MIMIC-
III data achieved an AUROC of 0.781 (95% CI: 0.773—
0.788), compared to 0.761 (95% CI: 0.753-0.769) for
PatchTST, 0.568 (95% CI: 0.560-0.577) for ECG-
JEPA, and 0.695 (95% CI: 0.686-0.705) for the su-
pervised convolutional classifier (Figure 3B). Simi-
larly, 5-minute shock index risk estimation achieved
an AUROC of 0.923 (95% CI: 0.917-0.927), compared
to 0.873 (95% CI: 0.864-0.882) for PatchTST, 0.888
(95% CI: 0.882-0.894) for ECG-JEPA, and 0.782
(95% CI: 0.771-0.794) for the supervised convolu-
tional classifier (Figure 4B).

At clinically relevant specificity thresholds, Phys-
ioJEPA achieved consistent high performance across
both tested thresholds, 33.9% and 20.4% sensitivity
at 90% and 95% specificity for 5-minute hypoten-
sion risk estimation, compared to PatchTST perfor-

mance of 30.3% and 0.00%, ECG-JEPA performance
of 15.3% and 6.30%, and the supervised convolutional
model performance of 21.3% and 6.90%, respectively.
For shock index, PhysioJEPA achieved 71.6% and
35.6% sensitivity at 90% and 95% specificity thresh-
olds, compared to PatchTST results of 67.2% and
50.1%, ECG-JEPA results of 58.4% and 0.00%, and
supervised convolutional model results of 52.2% and
20.2%, respectively (Table 2).

5. Discussion and Conclusion

PhysioJEPA demonstrates that JEPA-based self-
supervised learning effectively captures complex
multi-modal physiological signal relationships for
critical care risk estimation. The strong perfor-
mance on both tasks establishes the potential for
real-world ICU deployment and cross-site adaptabil-
ity. Compared to PatchTST, which has been es-
tablished as a multi-modal physiological signal rep-
resentation model (Fox et al., 2025), PhysioJEPA’s
primary advantage lies in improved performance on
the external test set in terms of AUROC and av-
erage precision across both tasks. For more clini-
cally relevant thresholds, PhysioJEPA outperforms
PatchTST for hypotension and shock index risk esti-
mation at 90% specificity. At 95% specificity, Phys-
ioJEPA outperforms PatchTST for hypotension risk
estimation, but under performs on the shock index
outcome. Compared to the supervised convolutional
model and ECG-JEPA, which has been established
as a single modality JEPA-based physiological sig-
nal representation model (Kim, 2024), PhysioJEPA
consistently matches or outperforms across both test
sets for hypotension and shock index risk estima-
tion. In general, PhysioJEPA maintains consistently
high performance across both risk estimation tasks,
in comparison to other supervised and self-supervised

JOINT EMBEDDING REPRESENTATIONS OF PHYSIOLOGICAL SIGNALS FOR REAL TIME RISK ESTIMATION IN THE INTENSIVI

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544



545

546

547

548

549

550

551

552

553

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

PHYSIOJEPA: JOINT EMBEDDING REPRESENTATIONS OF PHYSIOLOGICAL SIGNALS FOR REAL TIME RISK ESTIMATION IN THE INTENSIVE

models. This warrants further investigation into ad-
ditional risk estimation outcomes to distinguish how
performance across these models vary.

Clinical Impact: The 5-minute risk estimation
horizon provides actionable early warning capabil-
ities for preventing adverse events. PhysioJEPA’s
performance demonstrates the clinical value of self-
supervised representation learning. The model relies
solely on bedside monitoring data, enabling deploy-
ment across diverse ICU environments without re-
quiring electronic health record integration.

Technical Contributions: Our work extends
JEPA to long-duration, high frequency, multi-modal
physiological time series and adds improvements to
better handle signals independently (depthwise con-
volutions, rotary embeddings, per channel masked to-
kens, and flattened batch-channel dimensions for at-
tentive classification). This adds to other physiolog-
ical signal JEPA approaches to handle multi-modal
signals, instead of only ECG (Kim, 2024) or EEG
(Guetschel et al., 2024). Additionally, PhysioJEPA
is to our knowledge, the first self-supervised repre-
sentation learning model to be developed for ICU
bedside monitoring data. Our results show that the
embedding-space prediction method can learn rele-
vant features of physiological signal data and gener-
alize equally or better to unseen datasets for predic-
tive tasks, compared to PatchTST, ECG-JEPA, and
a fully supervised convolutional method. Further-
more, given that the representations are generated
without being fine-tuned to specific tasks, they may
be applicable to other critical care outcomes, which
merits further investigation.

Comparison to Existing Approaches: Our
work adds to the growing literature on hypoten-
sive risk estimation by introducing a self-supervised
framework that learns directly from raw bedside sig-
nals. Prior approaches using raw bedside signals
trained fully supervised models to estimate hypoten-
sive risk (Lee et al., 2021; Moon et al., 2024; Jeong
et al., 2024; Jo et al., 2022). Lee et al. (2021), Moon
et al. (2024), and Jo et al. (2022) used multi-modal
signals to estimate 3-, 5-, 10-, and/or 15-minute hy-
potensive risk on the VitalDB (https://vitaldb.net/)
database, without external validation. Jeong et al.
(2024) trained a fully supervised model using Vi-
talDB with ECG, PPG, capnography, bispectral in-
dex, and non-invasive ABP to estimate intraopera-
tive hypotension at a 5-minute forecast with good
performance on an external test set (AUROC: 0.833
(95% CI, 0.830-0.836)). In contrast, PhysioJEPA

learns task-agnostic features by learning representa-
tions directly from multi-modal bedside signals via
self-supervision and demonstrates competitive perfor-
mance across internal and external datasets. To our
knowledge, we are among the first to predict shock
index using a self-supervised representation learning
approach for raw multi-modal physiological data.

Limitations: First, the model currently requires
invasive ABP monitoring, which may not be avail-
able for all patients or institutions. Second, the eval-
uation was conducted on two specific critical care
outcomes; broader validation across additional clin-
ical endpoints is needed to establish general appli-
cability. Third, the 30-minute input window needs
to be investigated further along with the missing-
ness threshold of 20%, as the tradeoff between these
two elements could be optimized to reduce noise and
better represent longer-term physiological patterns.
Fourth, the external validation was conducted on a
relatively small subset of patients from a single ad-
ditional institution, and broader multi-site validation
would strengthen generalizability claims. Fifth, op-
timal masking ratios for context and targets was not
explored. Adding more context (like in PatchTST
or ECG-JEPA) could improve learned representa-
tions and performance on downstream tasks. Finally,
an additional transformer-based supervised classifier
method could be explored to better understand per-
formance, given both PhysioJEPA, PatchTST, and
ECG-JEPA encoded signals with a transformer back-
bone.

Future Work: Evaluating non-invasive risk es-
timation by removing the ABP channel would sig-
nificantly expand the patient population that could
benefit from this approach. Exploring longer fore-
cast horizons (10-15 minutes) and varying input seg-
ment lengths could optimize the balance between
early warning capability and prediction accuracy. Ex-
ploration of alternative preprocessing techniques, in-
tegration of additional physiological channels, mask-
ing ratios, and adoption of task-specific fine-tuning
strategies or different classifier heads could fur-
ther improve performance. Comparative evalua-
tion against other self-supervised learning paradigms,
such as a contrastive learning method, could further
validate the effectiveness of joint embedding predic-
tive architectures for physiological time series data.
Additionally, applying the learned representations to
other critical care outcomes such as sepsis onset, res-
piratory failure, or cardiac arrest would demonstrate
broader utility.
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Appendix A. Supplemental Methods

A.1. Supervised Classifier, PatchTST, and
ECG-JEPA Implementation Details

Two fully supervised convolutional classifiers were
trained to estimate the two outcomes for comparison
to PhysioJEPA. Each used a three-layer convolution
with standard parameters (dimensions: 128, 256, and
128; kernel sizes: 7, 5, and 3). Classifiers were trained
for 20 epochs with a one-cycle learning rate scheduler
and AdamW optimizer.

Two other representation learning frameworks
were also trained for comparison to PhysioJEPA.
PatchTST (Nie et al., 2023) has been utilized in other
multi-modal physiological signal representation mod-
els for Sleep (Fox et al., 2025), thus making it a good
self-supervised, multi-modal comparison. Like the
PhysioJEPA context encoder, PatchTST was built
with identical tokenization, positional encoding, and
encoder parameters. Contrary to PhysioJEPA, mask-
ing was performed prior to tokenization, as detailed in
the PatchTST architecture. A ”target” masking ratio
of 10% to 30%, equivalent to PhysioJEPA, was used
and the model was trained to recreate the values from
these masked out patches with a linear layer per chan-
nel and mean squared error loss function. This self-
supervised training technique is commonly known as
masked autoregression. PatchTST was trained for
100 epochs with a one-cycle learning rate scheduler,
and AdamW optimizer.

For comparison to a JEPA representation frame-
work, we trained ECG-JEPA (Kim, 2024) with our
multi-modal input signals. ECG-JEPA was origi-
nally designed for ECG signals (a single modality)
and employs a cross pattern attention mechanism to
learn relationships among channels. Encoder size and
number of heads were identical to PhysioJEPA with
sinusoidal positional encodings. A target mask ra-
tio of 10% to 30% of the total number of patches was
utilized, equivalent to PhysioJEPA. All other patches
not selected as targets were used as the context per
the original ECG-JEPA implementation. ECG-JEPA
was trained for 100 epochs with a one-cycle learning
rate scheduler and AdamW optimizer. A smooth L1
loss function was used for optimization similar to the
original implementation.

Following self-supervised learning, two additional
attentive classifiers were trained for each task for each
framework as described in the Methods section using
the representations generated from PatchTST and
ECG-JEPA.
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Appendix B. Compute Resources

Self-supervised models were trained with two
Nvidia H100 NVLink GPUs and 16 cores. Classifier
models were trained with one Nvidia H100 NVLink
GPU and 16 cores.

Appendix C. Demographic
Characteristics of
Datasets
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‘ Hypotension Non-hypotension Shock Index > 0.9 Shock Index < 0.9

Total Patients | 1634 892 1578 945

Gonder Female 715 (43.8%) 369 (41.4%) 700 (44.4%) 385 (40.7%)
Male 919 (56.2%) 523 (58.6%) 878 (55.6%) 560 (59.3%)

18-39 92 (5.6%) 112 (12.6%) 136 (8.6%) 68 (7.2%)

40-59 427 (26.1%) 321 (36.0%) 457 (29.0%) 295 (31.2%)

Age  60-79 769 (47.1%) 357 (40.0%) 712 (45.1%) 408 (43.2%)
80+ 276 (16.9%) 84 (9.4%) 221 (14.0%) 137 (14.5%)

Unknown 70 (4.3%) 18 (2.0%) 52 (3.3%) 37 (3.9%)

Table 3: Age and gender of patients from the MIMIC-IIT dataset separated by outcome.

‘ Hypotension Non-hypotension Shock Index > 0.9 Shock Index < 0.9

Total Patients ‘ 63 36 69 29

Gendep Female 36 (57.1%) 15 (41.7%) 38 (55.1%) 14 (48.3%)
e Male 27 (42.9%) 21 (58.3%) 31 (44.9%) 15 (51.7%)
18-39 10 (15.9%) 11 (30.6%) 12 (17.4%) 3 (10.3%)

40-59 18 (28.6%) 7 (19.4%) 17 (24.6%) 10 (34.5%)

Age  60-79 28 (44.4%) 13 (36.1%) 33 (47.8%) 10 (34.5%)
80+ 7 (11.1%) 5 (13.9%) 7 (10.1%) 6 (20.7%)

Table 4: Age and gender of patients from the Mount Sinai Bedmaster Dataset separated by outcome. Data
was collected across 6 different adult ICUs.
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