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A APPENDIX

A.1 PROOFS

Proof of Proposition 1 Denote the sampled u′t = ut+εt, where εt is the sampling error caused by
variation in the sampling points. Consider the propagation of the error in the output values {yk}Lk=1:

y′1
y′2
...
y′L

 =


CB 0 · · · 0
CAB CB · · · 0

...
...

. . .
...

CA
T−1

B CA
T−2

B · · · CB



u1 + ε1
u2 + ε2

...
uT + εt

 (29)

then
∥y′t − yt∥ =

∥∥∥CA
t−1

Bε1 +CA
t−2

Bε2 + · · ·+CBεt

∥∥∥
≤

∥∥∥At−1
∥∥∥∥∥B∥∥ |ε1|+ ∥∥∥At−2

∥∥∥∥∥B∥∥ |ε2|+ · · ·+
∥∥B∥∥ |εt|

≤ |λmax|t−1
bε1 + |λmax|t−2

bε2 + · · ·+ bεt

(30)

Note that if λmax ≥ 1, limt→∞ ∥y′t − yt∥ becomes unbounded. If |λmax| < 1, then we have

∥xt∥ =
∥∥∥AL−1

Bu1 +A
L−2

Bu2 + · · ·+But

∥∥∥
≤

∥∥∥AL−1
∥∥∥∥∥B∥∥ |u1|+ ∥∥∥AL−2

∥∥∥∥∥B∥∥ |u2|+ · · ·+
∥∥B∥∥ |ut|

≤ |λmax|L−1
bζ + |λmax|L−2

bζ + · · ·+ bζ,

(31)

thus

lim
t→∞

∥xt∥ ≤ lim
t→∞

(
|λmax|L−1

bζ + |λmax|L−2
bζ + · · ·+ bζ

)
=

bζ

1− |λmax|
< lim
t→∞

∥xt∥ (32)

contradicts the assumption, therefore there must be |λmax| >= 1, which also implies that
limt→∞ ∥y′t − yt∥ is unbounded.

Remark Note that imposing the constraint |λmax| < 1 on the state space model will cause the initial
input ut0 to tend to zero as it propagates (A

t−t0
But0 −→

t−t0→∞
0). This causes all previous states

to rapidly decay to 0 during the propagation, thus severely limits the long-term memory capacity of
the model.

Proof of Theorem1 Taking into account the error propagation in latent states of the S4 model,
the grid deviation error emerges from signal misalignment and can be considered as an additional
disturbance term. Assuming that the actual sampled value, denoted as u′, satisfies the relationship
u′t = ut + εt, where εt represents the error term, we can have

x1

x2

...
xT

 =


B 0 · · · 0
AB B · · · 0

...
...

. . .
...

A
T−1

B A
T−2

B · · · B



u1 + ε1
u2 + ε2

...
uT + εt

 (33)

observe that
xt = A

t−1
B(u1 + ε1) +A

t−2
B(u2 + ε2) + · · ·+B(ut + εt)

= A
t−1

Bu1 +A
t−2

Bu2 + · · ·+But + L(ε1, ε2, . . . , εt),
(34)

where L(ε1, ε2, . . . , εt) = A
t−1

Bε1 +A
t−2

Bε2 + · · · +Bεt. Consider its continuous form and
drawing upon the controller concept in EMC theory, we consider the following state propagation:

ẋ(t) = A

(
x(t) +

∫ t

0

k(t− l)ε(l)dl

)
+Bu(t), (35)

13



Under review as a conference paper at ICLR 2024

where k is a coefficient matrix that varies over time, and has the same shape as B. Owing to the
accumulation of errors in the time domain, we introduce a modifiable factor denoted as h([t− τ, t])
with backtracking capability to regulate the input. Specifically, the controlled input is defined as
uadj(t) = h([l − τ, l])u(t). then we have

ẋ(t) = A

(
x(t) +

∫ t

0

k(t− l)h([l − τ, l])ε(l)dl

)
+Bh([t− τ, t])u(t), (36)

then hτ (t) has the ability to adjust the errors with coefficients carrying temporal phases. Taking into
account the following observer used for sampling:

ż(t) = Az(t) +Bh([t− τ, t])(u(t) + ε(t)), (37)

denote e(t) = x(t)− z(t), we have

ė(t) = Ae(t) +A

∫ t

0

k(t− l)h([l − τ, l])ε(l)dl −Bh([t− τ, t])ε(t) (38)

Consider the Lyapunov function Le(t) = e⊤(t)Pe(t), where P is a positive definite symmetric
matrix, we can obtain

dLe(t)

dt
= 2e⊤(t)P ė(t)

= 2e⊤(t)P

(
Ae(t) +A

∫ t

0

k(t− l)h([l − τ, l])ε(l)dl −Bh([t− τ, t])ε(t)

)
= e⊤(t)

(
PA+ e⊤(t)A⊤P

)
e(t) + Λ(t)

= e⊤(t)
(
PA+A⊤P

)
e(t) + Λ(t),

(39)

where

Λ(t) = e⊤(t)A

∫ t

0

k(t− l)h([l − τ, l])ε(l)dl − e⊤(t)Bh([t− τ, t])ε(t)

= ∥e(t)∥ ∥A∥
∫ t

0

∥k(t− l)∥ |h([l − τ, l])| |ε(l)| dl + ∥e(t)∥ ∥B∥ |h([t− τ, t])| |ε(t)|

≤ ∥hτ∥ ∥e(t)∥
(∫ t

0

∥k(t− l)∥ |ε(l)| dl + ∥B∥ |ε(t)|
) (40)

Hence, selecting a value of |h([t− τ, t])| < 1 strengthens the stability of the system, while h([t −
τ, t]) ≡ 1 corresponds to the case without a controller. Additionally, choosing a larger τ value can
further enhance the control performance.

A.2 NSS IN 5-LAYERS S4

Due to space constraints, we present the analysis of the deep S4 model here. Specifically, we con-
ducted an experiment on a 5-layer S4 model, extending from the experiment described in Section
2.3. We plotted the results of the hidden states in the first layer and observed the presence of the NSS
issue in the 5-layer S4 model, as depicted in Figure 8.2. Notably, the S4 model without Memory
Replay exhibited a significant NSS phenomenon. In contrast, the S4+ model with Memory Replay
demonstrated highly stable hidden states, as illustrated in Figure 8.4. The sum of absolute values of
the states at each time step decreased from 102 to 101, and the output error under perturbation was
also reduced (Figure 8.2).

A.3 EXPERIMENT DETAILS
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Figure 6: Comparative results for Memory Reply.

Table 5: Detailed training settings used in our experiments.

Autoregressive language modelling Bidirectional language modelling

Data used Wikitext-103 Wikitext-103
Tokenizer method BPE BPE

Vocab size 50265 50265
Sequence length 512 512

Batch size 64 64
Total updates 50,000 50,000
Warmup steps 3,000 3,000

Peak learning rate 5e-4 5e-4
Lr scheduler Inverse sqrt Polynomial decay
Optimizer Adam Adam
Adam ϵ 1e-8 1e-6

Adam (β1, β2) (0.9, 0.98) (0.9, 0.98)
Weight decay 0.2 for TNN, 0.1 for others 0.2 for TNN, 0.1 for others

Gradient clip norm 1.0 1.0
Dropout 0.1 0.1

Table 6: Detailed training settings used in LRA tasks.

Retrieval ListOps Text Image Pathfinder

Num blocks 6 6 4 8 4
Embedding dimension 128 80 128 128 128

Max length 4000 2048 4096 1024 1024
Batch size 20 50 16 64 64

Total epochs 20 40 32 200 200
Learning rate 1e-3 1e-4 1e-3 4e-3 2e-4
Weight decay 0.1 0.0 5e-2 5e-2 0.0

Dropout 0.1 0.0 0.1 0.1 0.1
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