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ABSTRACT

Predictive applications of machine learning often rely on small (sub 1 Bn parameter)
specialized models tuned to particular domains or modalities. Such models often achieve
excellent performance, but lack flexibility. LLMs and VLMs offer versatility, but typically
underperform specialized predictors, especially on non-traditional modalities and long-tail
domains, and introduce risks of data exposure. We propose MARVIS (Modality Adaptive
Reasoning over VISualizations), a training-free method that enables small vision-language
models to solve predictive tasks on any data modality with high accuracy, and without
exposing private data to the VLM. MARVIS transforms latent embedding spaces into visual
representations and then leverages the spatial and fine-grained reasoning skills of VLMs to
interpret the visualizations and utilize them for predictions successfully. MARVIS achieves
competitive performance across vision, audio, biological, and tabular domains using a single
3B parameter model, yielding results that beat Gemini 2.0 by 16% on average. MARVIS
drastically reduces the gap between LLM/VLMs approaches and specialized domain-
specific methods, without exposing sensitive data or requiring any domain-specific training.
We open source our code and datasets at https://anonymous.4open.science/r/marvis-6F54
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Figure 1: MARVIS transforms VLMs into frontier predictors. Using a standard 3B parameter QwenVL
model zero-shot without reasoning, MARVIS (colored line) achieves competitive performance compared
to specialized baselines (dashed line) across modalities and domains, far exceeding the best existing LLM /
VLM predictors (dotted line).
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1 INTRODUCTION

Much of the progress in the field of machine learning in recent years has been on classification and regression
tasks (which, in this work, we sometimes collectively refer to as predictive tasks). These have historically been
addressed either using classical machine learning methods or, more recently, with deep learning. In the latter
case, the best performance has generally been achieved using specialized models with less than one billion
parameters tuned for a particular task and/or knowledge domain (Prokhorenkova et al., 2018; He et al., 2015;
Hollmann et al., 2025). These models often learn to compress a high-dimensional input space into a simplified
embedded space; these embeddings can then be used for prediction without any fine-tuned classification stage
via classical nonparametric methods like KNN (Oquab et al., 2023) or parametric fine-tuning. What these
models gain in precision, however, they sacrifice in flexibility. Narrow experts are often inapplicable to other
domains without additional fine-tuning (Devlin et al., 2019).

LLM and VLMs introduced an exciting new paradigm: in-context learning (ICL) over text and images,
which allowed these models to adapt to new tasks without weight updates (Brown et al., 2020). Gemini,
GPT-4V and LLaVA (Liu et al., 2023a) seek to optimally align language models with specialist embeddings
for vision, and in some cases, other modalities as well. Unlike specialists, LLMs are extremely flexible; users
can ask almost anything in natural language, and in many cases, receive a reasonable response. However,
recent research has demonstrated that even state-of-the-art VLMs from OpenAl and Google consistently
underperform as predictors when compared to specialist classifiers, especially on non-traditional modalities
and in long-tail domains (Zhang et al., 2024). For some modalities, such as audio, there is no obvious way to
natively utilize a traditional LLM / VLM for predictive tasks.

But perhaps the most significant weakness of LLMs and VLMs, especially those which can only be used via
API endpoints, is the practical and regulatory threat of sensitive data exposure. API providers frequently train
on user data, and the models themselves can be prompted to regurgitate sensitive training data verbatim (Kand-
pal et al., 2024; Nasr et al., 2023). Even when inference providers offer guarantees that user data will not be
included in training corpora, trust or regulatory gaps impede many businesses interested in adopting GenAl
Existing solutions, such as locally hosting LLMs and automatically detecting P.I.I., may sacrifice model
quality, require extensive infrastructure, or be limited in scope and precision. These challenges motivate our
core research question:

@ Research Question

How can we combine the reasoning capabilities of LLMs with the representational power of special-
ized models without requiring modality-specific fine-tuning or exposing sensitive data?

In this work, we posit that visual reasoning, coupled with specialized low-dimensional embedding models, is
a skeleton key that unlocks the power of in-context learning and reasoning for arbitrary data modalities and
domains, including data that is sensitive.

1. We propose MARVIS, an efficient, modality-agnostic system for transforming a VLM into a
performant predictor. Without access to P.IL. or direct data leakage, using a QwenVL model with
no specialized reasoning training, MARVIS achieves competitive performance across vision, audio,
and tabular modalities, and across a wide range of scientific domains, on both classification and
regression tasks.
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2. We demonstrate empirically that MARVIS does more than simply copy predictions; it reasons
over the available information sources, implicitly analyzing and balancing them to improve its
own predictive power. It can rationalize its decisions post-hoc and suggest next steps, unlike the
specialist models it adapts.

3. We also introduce numerous valuable secondary contributions to facilitate future research in this
area, including the first large-scale standardized tabular classification and regression datasets with
complete semantic information (see Appendix H), a strong FFT baseline for tabular data (see
Appendix D), comprehensive ablations, and a well-documented Github repository.

(2 ()
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Embedding Plotting Prediction

Figure 2: The four-stage MARVIS pipeline. We start with raw input data, capture key patterns using
specialist embedding generating models, determine an appropriate strategy for plotting the data, and prompt a
VLM with visual context, as well as (optionally) metadata and semantic context, then extract predictions.

2 MARVIS

Core Insight: Vision is a Skeleton Key. Relying solely on text to ingest data is limited and does not align
with how humans operate. For predictive tasks, it is not usually the raw data that we want the model to reason
over; rather, it is a distilled view of that data, for the purposes of answering specific questions or rendering
judgments. Human scholars tend to reason more effectively with data visualizations, simplified views of
complex data (Unwin, 2020; de Bodt et al., 2025). VLMs, which are pretrained on web-scraped data, can
understand and interpret a wide range of scientific imagery and visualizations of specialized embedding
spaces. Thus, we posit that embedding visualizations are skeleton keys, enabling us to reason about any kind of
data with vision-language models without modality-specific training beyond vision. Moreover, visualizations
can be easily generated at inference time with standard packages, such as scikit-learn (Pedregosa et al., 2011).

MARVIS operates through the following pipeline:

1. Embedding Generation: Use specialized embedding models to create vector representations.

2. Dimensionality Reduction: Apply t-SNE to create 2D visualizations optimized for VLM processing.
3. Visual Reasoning: Query the VLM with the visualization and query point for a prediction.

4. Response Processing: Extract the prediction from VLM’s reasoning.
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We present a visual overview of MARVIS in Fig. 2, and in Appendix K, we also provide complete visual
examples extracted from our study.

2.1 DESIGN CHALLENGES IN VISUAL PREDICTIVE SYSTEMS

Although the principles of MARVIS are extremely simple, in order to apply them in practice, we had to
overcome significant technical hurdles.

Challenges: architecture. The first is choosing an appropriate VLM architecture; many older architectures
either cannot localize what they see” effectively, or cannot “’see” clearly enough to take advantage of
visualizations. After some trial and error, we choose the 3B parameter Qwen 2.5 VL model from Alibaba (Bai
et al., 2025). This model has several key advantages for our purposes; firstly, it uses 14x14 patches with sliding
window attention in some layers, emphasizing local patch interaction. This is important for distance-based
visualizations, where proximity matters. Second, it allows images of arbitrary aspect ratios to be processed
effectively, without distorting distances during ingestion. This allows us to effectively compose and read
multi-visualization layouts with MARVIS. Third, the Qwen 2.5 VL series has been specifically trained to work
with long context and scientific imagery. We validate this choice in section E.2, showing that MARVIS-3B
matches the performance of GPT-40-mini and outperforms a much larger recent thinking model from Kimi.

Challenges: resolution. Even Qwen 2.5 VL does not ”see” as well as humans; the particular patch dimensions
and the limited range of its local attention mean that Qwen performs best when DPI is optimized and scaling
is utilized to enhance the region of interest. We find that the amount required varies substantially depending
on the benchmark, but can usually be set once for each benchmark; this avoids costly hyperparameter search,
although this value could conceivably be optimized further in the future. Ideally, the scaling factor is such that
the target point and its neighbors are captured within the 14x14 patches from the sliding window, significantly
enhancing spatial understanding.

Challenges: context composition strategy. One key design decision in MARVIS is which context to include,
and how much of it. In Appendix E.1, we name and ablate over 25 different configurations. Ultimately, for
our main experiments in this paper, we exclusively use the “tsne_knn” setting, as we find it offers the best
speed / quality tradeoff. Because KNN operates on the embeddings without dimensionality reduction, it is
sometimes able to discover relationships that visualizations miss; however, we consider this an important area
for future research, as we believe we have only begun to document the possibilities here. We find that fixing
the nearest neighbors hyperparameter at min(30, 10% of the training data) works well for a wide range of
dataset sizes and modalities.

Challenges: classname extraction. In order to avoid the common failure mode in which answers are correct
but not detected by the parser, we introduce consistent color schemes and consistent naming across the
legends for all visualizations, ensuring clear visual separation for VLM interpretation. The parser is made
aware of both the class names and the color names, and is given a mapping between them. Classnames in
legends are limited to the classes which actually appear in that visualization, in order to control the size of the
legend for large datasets.

3 EXPERIMENTS

Overview. Our main experiments assess MARVIS across four distinct modalities using domain-appropriate
embedding models and established benchmarks; we compare against both specialized baselines and alternative
LLM/VLM approaches.

Table 1 presents MARVIS performance across all modalities compared to 5 specialized baselines and 4
alternative LLM/VLM approaches. For each benchmark, we conduct a single MARVIS run. We use a
QwenVL 2.5 3B Instruct backbone. For each benchmark, we tune T-SNe zoom factor and KNN neighbor
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Table 1: Domain-specific embeddings, benchmarks, and detailed results. Results are boldfaced when
statistically tied for best performance within 95% confidence intervals (normal approximation). MARVIS
demonstrates competitive or superior performance on most individual benchmarks, achieving average results
within 2.5% of an ensemble of specialized methods while providing universal applicability. Benchmark
acronyms: C10 = CIFAR-10, C100 = CIFAR-100, ESC = ESC-50, RAV = RAVDESS, US8 = UrbanSound8K,
FSH = FishNet, AWA = AWA2, PLD = PlantDoc, CC18 = OpenML CC18, R25 = Regression 2025. We show
the best results of specialized models and traditional LLM/VLM approaches. For all benchmarks except R25,
the metric is Accuracy. For R25, it is R2 Score (with a minimum score of 0). The number reported is the
mean over all sub-tasks for multi-task benchmarks.

Domain Embeddings Benchmark Size (K) MARVIS Specialized Model LLM/VLM 95% CI
. C10 60 98.0 99.0 (DINOV2) 85.7 (Gemini) +0.1
Vision  DINOV2 9 60 880 916 (DINOV2) 64.3 (Gemini) 03
ESC 2 91.3 90.5 (CLAP) - +1.2
Audio CLAP RAV 1.4 38.4 47.9 (Whisper) - +2.5
US8 8.7 79.8 77.1 (CLAP) - +0.8
FSH 94 80.2 83.7 (BioCLIP) 59.5 (Gemini) +0.3
Biological BioCLIP2 AWA 37 95.7 97.1 (BioCLIP) 96.5 (Gemini) +0.2
PLD 2.5 67.4 72.0 (BioCLIP) 74.2 (Gemini) +1.8
Tabular TabPFNv2 CC18 155 84.5 87.8 (TabPFNv2) 50.1 (TabLLM-Gemini) +0.2
R25 35 66.0 67.0 (TabPENv2)  05.1 JOLT-Qwen-2.5-3B) +0.5

(Score, # Models) - (78.9, 1) (81.4,5) (62.2,4)

count via a grid search. The LLM / VLM baseline results in the paper are reported using the best performing
LLM / VLM in the class (we consider QwenVL 2.5 3B Instruct and Gemini-Flash-2.0 via the Gemini API).
All MARVIS results are zero-shot in the sense that we do not give examples of the task to the VLM at
inference time; they are full-shot in the sense that the embedding-generating models have access to the entire
test set without labels. For the LLM / VLM baselines, image classification is performed zero-shot. Tabular
classification and regression uses the JOLT (Shysheya et al., 2025) and TabLLM (Hegselmann et al., 2023)
strategies with k-shot computed dynamically based on the maximum context length. We report the best result
in the table. Specialist models are full-shot, and we report the best overall result in the table. For extended
results, a detailed description of the method we use to generate our novel tabular benchmarks CC18-Semantic
and Regression2025-Semantic, and a deeper dive into tabular data, including balanced metrics, please refer to
Appendix G.

Specialized model baselines. For vision, the best performing specialist was the large DinoV2 model with a
registry and KNN classification (Oquab et al., 2023). For audio, the CLAP model with contrastive zero-shot
classification from Microsoft and OpenAI’s Whisper-V2-Large model with KNN classification perform the
best (Radford et al., 2022; Elizalde et al., 2023; Ma et al., 2024a). For biological data, BioCLIPv2 with KNN
classification performs the best (Gu et al., 2025). For tabular data, TabPFNv2 with standard forward pass
classification and regression is a strong baseline; we also consider classical baselines such as CatBoost and
linear models in Appendix G (Prokhorenkova et al., 2018; Hollmann et al., 2025).

LLM / VLM baselines. For vision, we use the standard strategy of zero-shot prompting and exact match
extraction described in works such as (Zhang et al., 2024). For audio, we are unable to compare to public API-
based models, as to the best of our knowledge, no generalist exists capable of performing audio classification.

LLM tabular baselines. In the tabular domain, as a secondary contribution, we generate the first large-scale
standardized benchmarks for tabular classification and regression that include semantic class names, feature
names and metadata; CC18-Semantic and Regression 2025 Semantic. We also re-implement two prominent
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LLM-tabular methods, TabLLM and JOLT (Hegselmann et al., 2023; Shysheya et al., 2025), which lack
general-purpose implementations. For more details on this, please refer to Appendix G.

Additional details. For more analysis on the embedding models and baselines, please refer to Appendix B.
For more explanation of the benchmarks we use, please refer to Appendix A.

3.1 FINDINGS

MARVIS is competitive with SOTA specialist predictors. Across a wide range of modalities, we observe
that MARVIS strongly conserves predictive performance — across most tasks we consider, it is able to match
the best specialist model in the cohort. By comparison, the best existing LLM / VLM methods, tailored
for each domain, achieve 77% of specialist performance on average. Remarkably, we find that MARVIS
is a more accurate image classifier than Gemini Flash 2.0, despite never actually having seen the images.
MARVIS also sometimes improves on specialists; it outperforms CLAP, a specialist contrastive predictor,
using its own embeddings.

MARVIS-3B achieves competitive performance across four distinct modalities, approaching and
occasionally exceeding the best specialist predictors, and improving on LLM / VLM-only methods by
16.7%.

MARVIS outperforms direct fine-tuning of its base model. In section D, we describe a novel method for
fine-tuning an LLM directly on the embeddings of an upstream model such as TabPFNv2. We test this method
(Qwen-FFT) at inference time and find that it is highly accurate, far outperforming previously published
strategies such as JOLT and TabLLM for general-case tabular inference with LLMs; however, in section E.2,
we show that MARVIS-3B outperforms even this strong baseline on average.

VLMs reason over their input data and condition their behavior based on the context provided. One
core research question, from our perspective, was whether a VLM was simply copying learned patterns or
utilizing simple heuristics to achieve this strong performance. Systematic analysis of VLM reasoning in
Fig. 3 demonstrates clear correlations between reasoning quality and metric gains, on average, across three
tabular classification datasets (two with meaningful semantic features, one without).

Further analysis of disagreement patterns reveals that only 35% of methods agree on all test cases, with 65%
showing partial disagreement. Furthermore, in Table 2, we show that different visualization methods elicit
systematically different reasoning approaches, providing strong evidence that VLMs adapt their analysis
based on visual information content. Still more evidence can be found in Appendix I.1. We observe that
different visualization methods elicit systematically different reasoning approaches, providing strong evidence
that VLMs adapt their analysis based on the available visual information. tsne_knn produces quantitative
neighbor analysis with explicit distance calculations (average 48.0 words), tsne_semantic_axes integrates
semantic class information with spatial reasoning (304.9 character responses) and tsne_perturbation_axes
generates the longest, most detailed responses (310.6 characters) with sophisticated uncertainty analysis.
These patterns suggest that VLMs engage in more thorough spatial analysis when the visual information
supports accurate classification, indicating genuine reasoning rather than pattern matching.

The systematic variation in reasoning style directly correlates with the information content of each visualiza-
tion method, demonstrating that VLMs genuinely process and respond to different types of visual information.
Detailed analysis of these reasoning patterns and their implications for VLM spatial understanding is provided
in Appendix L.
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Figure 3: The selection of context strongly influences MARVIS performance. We ablate over twenty
different context composition strategies, and find that perturbation-based approaches with uncertainty analysis
achieve the highest performance, followed by semantic axes with meaningful class labels. The majority of the
experiments in the paper are conducted using TSNe + KNN, because it exposes less information about the

Mean Accuracy by Configuration

0.1 0.2 0.3 0.4 0.5
Accuracy

underlying data and therefore better reflects real-world use.

The flexibility of MARVIS allows for more complex use cases. In Fig. 4, we demonstrate one such use
case — open-ended chat about a particular predictive result. In this example, the user asks MARVIS to assess

its own performance and recommend strategies to improve results in the future.
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Table 2: Method-Specific Reasoning Patterns. Each visualization method elicits distinct reasoning behaviors:
k-NN methods trigger quantitative distance analysis, perturbation methods generate longer responses, and
basic methods rely heavily on proximity heuristics. Here, Resp. Length refers to the token count of responses,
distance mentions to the rate at which the response mentions distance between points in embedded space, and
closest usage refers to how often MARVIS uses the word closest” in its response.

Method | Resp. Length | Distance Mentions | Closest Usage
tsne_3d_perturbation 365.3 0.000 0.433
tsne_perturbation_axes 310.6 0.000 0.650
tsne_semantic_axes 304.9 0.000 0.683
tsne_knn 279.0 0.650 0.883
basic_tsne 268.3 0.000 1.000

L1 3 exchanges * Generated by MARVIS

MARVIS How, well/didthe\ model performon thetest data?

MARVIS What patterns did you observe!in thelvisualization?

MARVIS How/could welimprove theclassification results?

Figure 4: MARVIS extends traditional predictive capabilities. Because it requires no fine-tuning, and
because it exposes the VLM’s classification process to the VLM itself, MARVIS enables VLMs to reason
over, and converse about, their predictive performance.
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4 RELATED WORK

MARVIS builds on extensive prior work in vision-language models (VLMs) which has followed two primary
evolutionary tracks: maximalist approaches from industry labs focusing on peak performance, and minimalist
open-source approaches prioritizing efficiency and accessibility; in Appendix F, we trace the history of this
evolution in greater detail.

The use of embedding spaces for cross-modal understanding has roots in representation learning (Bengio
et al., 2013) and dimensionality reduction techniques (Van der Maaten & Hinton, 2008). Recent work
has explored the geometric properties of embedding spaces (Ethayarajh, 2019) and their visualization for
interpretability (Liu et al., 2017). t-SNE and UMAP have been widely used for visualizing high-dimensional
data (McInnes et al., 2018), but their application to VLM reasoning represents a novel paradigm. Previous
work on visual reasoning has focused on spatial relationships in natural images (Johnson et al., 2017), but
MARVIS extends this to abstract embedding spaces across arbitrary modalities.

MARVIS distinguishes itself from existing approaches through several key innovations: (1) Training-free
adaptation: Unlike approaches requiring extensive fine-tuning, MARVIS leverages pre-trained components
without modification; (2) Universal modality support: A single architecture handles any data type through
embedding visualization; (3) Privacy preservation: Visualization of embeddings avoids raw data exposure;
(4) Computational efficiency: Achieves competitive performance with a 3B parameter model versus much
larger specialized systems.

5 CONCLUSION

We introduce MARVIS, a training-free method that enables small VLMs to predict across any data modality
through embedding visualization. By transforming embedding spaces into visual representations optimized
for VLM spatial reasoning, MARVIS achieves competitive performance across diverse domains.

MARVIS addresses key limitations in existing approaches: it requires no domain-specific training, preserves
data privacy through visualization rather than serialization, and maintains competitive performance. The
approach demonstrates that visual reasoning can serve as a universal interface for foundation models across
any data modality.

Based on this, we propose several key principles for designing effective VLM interfaces:

 Information density matters: Richer visualizations elicit more sophisticated reasoning
* Method-purpose alignment: Different visualization approaches suit different reasoning tasks
¢ Adaptive interface design: VLMs can effectively utilize different types of visual information

Future work includes further investigation of the optimal mix of visualizations and embeddings to boost
performance and fine-tuning strategies which may improve the performance of base VLMs for reasoning over
scientific imagery, including reasoning post-training.

REPRODUCIBILITY STATEMENT

We have, to the best of our ability, ensured that all experiments described in this paper are reproducible in
principle. In order to facilitate this, we provide an anonymized source code repository containing the exact
training/evaluation orchestration used in our experiments, including the OpenML CC18 runner, evaluation
harness, baseline integrations, and analysis scripts. All datasets, splits, and preprocessing steps for CC18
are clearly documented (including feature selection choices and filters). Exact hyperparameters, seeds, and
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evaluation metrics are summarized in our Appendix. Finally, we will release archives of raw predictions and
per-dataset metrics for post hoc verification.

ETHICS STATEMENT

MARVIS enhances privacy preservation in machine learning by avoiding raw data serialization, instead using
anonymized embedding visualizations. This approach reduces risks of data exposure while maintaining model
performance. The method’s universal applicability could democratize access to advanced ML capabilities
across diverse scientific domains.

LLM USE STATEMENT

In accordance with ICLR policy, the authors acknowledge the limited use of LLMs for generating code and
LaTeX, rendering visualizations, polishing writing, and related work retrieval and discovery.
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A APPENDIX: BENCHMARK DATASET DESCRIPTIONS

A.1 VISION BENCHMARKS

CIFAR-10: One of the most widely used datasets for computer vision research: contains 60,000 32x32 color
images in 10 classes (airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, trucks) with 6,000 images
per class. Split into 50,000 training and 10,000 test images Krizhevsky (2009).

CIFAR-100: Similar to CIFAR-10 but with 100 classes containing 600 images each (500 training, 100 test
per class). The 100 classes are grouped into 20 superclasses, making this a more challenging classification
benchmark.

A.2 AUDIO BENCHMARKS

ESC-50 (Environmental Sound Classification): Contains 2,000 environmental audio recordings with 50
classes and 40 clips per class. Each clip is 5 seconds long at 44.1 kHz, single channel, extracted from public
field recordings through Freesound.org Piczak (2015).

RAVDESS (Ryerson Audio-Visual Database of Emotional Speech and Song): Audio dataset focus-
ing on emotion recognition tasks, commonly used for evaluating emotional speech and song recognition
capabilities Livingstone & Russo (2018).

UrbanSound8K: Contains 8,732 labeled sound excerpts with 10 classes of outdoor/urban sounds, specifically
designed for benchmarking sound classification models in urban environments.

A.3 BIOLOGICAL/SCIENTIFIC VISION BENCHMARKS

FishNet: Large-scale dataset with 94,532 images from 17,357 aquatic species, organized by biological
taxonomy (8 classes, 83 orders, 463 families, 3,826 genera). Includes bounding box annotations and supports
classification, detection, and functional trait prediction tasks Khan et al. (2023). We treat FishNet as a
classification problem over families.

AWA?2 (Animals with Attributes 2): Animal classification dataset used for zero-shot learning tasks, focusing
on learning representations with animal attributes. Part of challenging benchmarks alongside CUB and SUN
datasets Xian et al. (2019). We treat AWA?2 as a 50-class classification problem with no holdout classes.

PlantDoc: Contains 2,569 images across 13 plant species and 30 classes (diseased and healthy) with 8,851
total labels. Split into 2,328 training and 237 test images, with unbalanced classes ranging from 50-180
images per class Singh et al. (2020).

A.4 TABULAR BENCHMARKS

OpenML CC18: Curated benchmark suite of 72 classification datasets from OpenML 69 of which we utilize),
selected based on strict criteria:

¢ Size: 500-100,000 observations, < 5,000 features

* Quality: No artificial data, minority/majority class ratio >0.05

* Usability: Compatible with multiple algorithms, representing commonly used ML datasets
See Bischl et al. (2021) for more on this benchmark, including the complete specification of tasks.

Regression 2025: Custom benchmark of 43 regression tasks from 2015-2025 sourced from OpenML, evalu-
ated using R? scores on a 0-100 scale for consistent comparison across tasks; introduced onto the OpenML plat-
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form in March 2025 at openml.org/search?type=benchmark&sort=tasks_included&study _type=task&id=455.
Please follow the link for the complete list and specification of tasks. After discarding tasks on which all
models fail, we compute our scores on a subset of 33.

B IMPLEMENTATION DETAILS
This section contains additional experimental details from the paper.

B.1 EMBEDDING MODELS

Vision: DINO-v2-ViT-L-14-reg provides robust visual representations trained through self-supervised learning
on large-scale image datasets Oquab et al. (2023).

Audio: Microsoft CLAP employs contrastive audio-language pre-training to create joint embeddings for
audio and text modalities Elizalde et al. (2023).

Biological: BioCLIP2 specializes in scientific vision understanding, trained on biological image-text pairs for
enhanced performance on scientific datasets. It is the latest in a series of foundation models for biological
applications, initiated by BioCLIP, which incorporated taxonomic labels in the vision-language contrastive
training, yielding promising species classification accuracy Stevens et al. (2024). Follow-up work scaled
data to 162M images (BioTrove, Yang et al., 2024), specialized the data to camera traps (CATALOG and
WildCLIP, Gabeff et al., 2024; Santamaria et al., 2025), and added additional model modalities (TaxaBind,
Sastry et al., 2025).

Tabular: Tabular machine learning has traditionally relied on specialized approaches including tree-based
methods (Random Forest Breiman (2001), XGBoost Chen & Guestrin (2016), CatBoost Prokhorenkova et al.
(2018)) and specialized neural architectures (TabNet Arik & Pfister (2021), TabTransformer Huang et al.
(2020)). TabPFN Hollmann et al. (2022) employed transformer-based in-context learning, and was later
extended to support larger datasets Feuer et al. (2024); Hollmann et al. (2025); Miiller et al. (2025). In this
work, we use TabPFNV2 as our embedding generating model.

B.2 HYPERPARAMETERS

In this section, we document the hyperparameters used for our main experiments section.
t-SNE Configuration:

* Perplexity: 15 (optimized through ablation studies)

* Iterations: 1000 for stable convergence

* Learning rate: 200 (default)
* Random state: Fixed for reproducibility

KNN Configuration

* nn =30
* metric = ’euclidean’ (general), ’cosine’ (embeddings)
» weights = ’distance’

Tabular Baseline Models Configuration:

CatBoost (Classification & Regression)
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* iterations: 1000

¢ depth: 6

* learning_rate: 0.03

e random_seed: 42

* verbose: False

e Categorical features: Auto-detected and preserved

TabPFN v2 (Classification & Regression)

* n_estimators: 8

¢ device: Auto-detected (CUDA if available)

e ignore_pretraining_limits: True

* Target preprocessing: Quantile binning for regression
e Max quantiles: min(n_samples // 2, 1000)

e NaN/INF imputation: Median strategy

Random Forest (Classification & Regression)

* n_estimators: 100

* max_depth: None (unlimited)
e random_state: 42

* n_jobs: -1 (all cores)

Gradient Boosting (Classification & Regression)

* n_estimators: 100
e learning_rate: 0.1
e random_state: 42
¢ Feature selection: Max 500 features (SelectKBest)

Logistic/Linear Regression

» max_.iter: 1000 (Logistic only)

¢ C: 1.0 (Logistic regularization)

* random_state: 42

* n_jobs: -1 (all cores)

* Preprocessing: StandardScaler applied

C COMPUTATIONAL EFFICIENCY

Model Size: MARVIS uses Qwen2.5-VL (3B parameters).

Inference Time: Average processing time per sample ranges from 0.5-2.0 seconds depending on visualization
complexity and VLM reasoning depth.
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Memory Requirements: All experiments are conducted using 1xH100 80GB GPUs on a hosted Lambda
cluster. Peak memory usage remains under 8§GB GPU memory for batch processing, enabling deployment on
standard hardware.

GPU Utilization: For development and testing combined, we estimate 1,500 H100-hours were used during
the creation of this paper.

D FULL FINETUNING EXPERIMENTS

As a strong baseline for MARVIS, we introduce a novel approach to LLM fine-tuning, projecting a sequence
of positionally encoded TabPFNv2 embeddings and learned label tokens into the model’s token space. At
inference time, we project the test element embedding from TabPFNvV2 into the model’s token space and
conduct standard autoregressive inference to acquire the predicted label.

D.1 BALANCED PREFIX CONSTRUCTION

We  construct a  balanced, few-shot  prefix  from  training embeddings  using
prepare_tabpfn_embeddings_for_prefix. Given class labels y and train embeddings £ € RV <4
(after robust scaling and optional resizing), we select a total of num_few_shot_examples examples across
classes, distributing as evenly as possible; short classes are repeated to meet demand. The resulting prefix
tensor P € RM>* (with class labels ¢ € {0, ..., K —1}M)issaved to prefix_data.npz.

D.2 SpPECIAL TOKENS AND CLASS TOKENS

We extend the tokenizer with two sentinel tokens <PREFIX_START> and <PREFIX_END> and with up
to 10 class tokens <CLASS_1i>. The underlying embedding matrix is resized accordingly. These token IDs
delimit the region where external embeddings will be injected and provide stable referents for class-conditional
evidence tokens.

D.3 POSITION-WISE PROJECTION INTO TOKEN SPACE

Implementation. The core mechanism is implemented via QwenWithPrefixEmbedding:

¢ A learnable projector is defined as Linear (d, H), mapping TabPFNv2 embedding dimension d to the
LLM hidden size H.

* During forward, we build inputs_embeds from input_ids and locate the span between
<PREFIX_START> and <PREFIX_END>. Let the number of available positions be 7.

o If embeddings and class labels are provided, we compute P = PW + b € RM*H and interleave
with class token embeddings: even positions receive projected vectors, odd positions the embeddings of
<CLASS_{c_7j}>, truncated to 7. ~

* If only embeddings are provided, we fill the T" positions with P contiguously.

* The modified inputs_embeds are passed to the base model with input_ids=None.

Rationale and soundness.

1. Representation Alignment. A learned affine map is the minimal adapter aligning TabPFN geometry to
the LLM token manifold, akin to prefix/prompt-tuning adapters.

2. Token-Sequential Semantics. Injecting a bounded token span leverages positional mixing and attention
for fusion with the downstream textual prompt; class-token interleaving ties directions in P to discrete
label anchors.
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Figure 5: Projection and interleaving of TabPFNv2 embeddings into the LLM token space.

3. Identifiability. With only the projector and last k layers unfrozen, gradients supervise a compact subspace,
preserving language priors while enabling consistent task adaptation. Another parameter-efficient approach
which we do not consider in this draft, LORA, would likely produce similar outcomes.

D.4 BACKBONE AND HOOKS

The default backbone is Qwen/Qwen2.5-3B-Instruct (configurable via --model_id).
MARVIS prepares the model with prefix-embedding tokens and class tokens using
prepare_gwen_with prefix_embedding. Optional Vector Quantization (VQ) is available via
prepare_gwen.with vg prefix_embedding.

D.5 LABEL ENCODING

We encode labels with a LabelEncoder fitted on train+val+test labels per task; IDs index into the class
token set. For float labels near-integral, we cast to integers; otherwise, regression handling is separate.

D.6 FFT TRAINING CONFIGURATION

We train using train_llm with_tabpfn_embeddings. Key elements:

* Backbone freezing: Unfreeze the last k layers (default k=1) and the projector; other layers frozen.

* Loss: Cross-entropy over class-token targets in the output; attention integrates projected evidence with the
prompt.

e Optimization: Defaults: batch_size=8, grad.accum_steps=1, total_steps=2000,
save_steps=500, lr=1e-4,mixup_-alpha=0. 0, early stopping (patience 30, threshold 0.4).

 Prefix length: Template ensures enough positions between <PREFIX_«>; excess prefix entries are
truncated.

* W&B: Enabled with dated project names for versioning; run names encode task/split.

D.7 FFT EVALUATION PROTOCOL

Evaluation is handled by examples/tabular/evaluate_on_dataset_tabular.py with the uni-
fied ——models interface. The orchestrator passes the saved model directory and, unless ——no_baselines
is set, appends all baselines.

* Test size limit: We commonly use ——max_test_samples 200 to cap test evaluation for rapid iteration.

» Feature selection threshold: --feature_selection_threshold can be forwarded for high-
dimensional datasets.

* Metrics and artifacts: Saved under each task/split evaluation directory and logged to W&B.
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D.8 FFT LIMITATIONS AND DISCUSSION

While, for the sake of having strong reasonable baselines, we include this approach, we believe that in practice,
it is not a suitable general-purpose substitute for MARVIS.

* Fine-tuning degrades chat performance. By changing the VLM’s vocabulary and last k layers,
we necessarily degrade chat performance somewhat; this weakens one of the major use cases for
MARVIS.

* Fine-tuning degrades interpretability. Because the VLM does not “know” it was fine-tuned on
the data, nor does it "know” what it learned during fine-tuning, it cannot reason nearly as effectively
about its own decision-making process, weakening another major use case for MARVIS.

¢ Fine-tuning must be done again for every new dataset. This is an inconvenience as it requires
the end user to maintain suitable training infrastructure on top of their pure inference infrastructure,
which is generally more flexible.

E EXTENDED RESULTS

E.1 ABLATION STUDY ON CONTEXT CHOICE DETAILS

For a list of the methods we consider, please refer to Table 3.

Extended ablation studies reveal optimal configurations across different visualization strategies. We systemat-
ically evaluated four key approaches to understand how different types of information affect VLM spatial
reasoning performance.

The configuration performance hierarchy demonstrates clear patterns:

* tsne_perturbation_axes: 51.7% accuracy with uncertainty analysis
* tsne_semantic_axes: 50.0% accuracy with meaningful class labels
e tsne_knn: 48.3% accuracy with explicit neighbor information

* basic_tsne: 45.0% accuracy as baseline approach

E.1.1 ANALYSIS OF CONFIGURATION EFFECTS

The ablation results reveal several key insights about VLM spatial reasoning:

Perturbation-based Enhancement: The tsne_perturbation_axes configuration achieves the highest perfor-
mance by incorporating uncertainty information through small perturbations around the query point. This
provides the VLM with richer spatial context about decision boundaries and confidence regions.

Semantic Information Value: The tsne_semantic_axes approach shows strong performance by providing
meaningful class labels within the visualization. This allows the VLM to leverage both spatial relationships
and semantic understanding simultaneously.

Neighbor Information Benefits: The tsne_knn configuration demonstrates moderate improvements over the
baseline by explicitly highlighting nearest neighbors, helping the VLM focus on locally relevant information.

Baseline Robustness: Even the basic_tsne approach achieves reasonable performance (45%), validating the
fundamental effectiveness of the visual reasoning paradigm across modalities.
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Category | Method | Description

basic_tsne Standard t-SNE visualization with default parame-
Basic Visualizations ters

tsne_3d Three-dimensional t-SNE visualization for en-

tsne_high_dpi

tsne_high_perplexity

hanced spatial understanding

High-resolution t-SNE with increased image qual-
ity

t-SNE with modified perplexity parameter for dif-
ferent clustering

Enhanced Single Methods

tsne_knn
tsne_perturbation_axes

tsne_semantic_axes
tsne_3d_knn

tsne_3d_perturbation

t-SNE with k-nearest neighbor information overlay
t-SNE with perturbation analysis for uncertainty
quantification

t-SNE with semantic class labels and axes descrip-
tions

3D t-SNE visualization with k-NN connections
displayed

3D t-SNE with perturbation analysis for spatial
uncertainty

Multi-Visualization Methods

multi_comprehensive

multi_pca_tsne
multi_pca_tsne_spectral

multi_linear_nonlinear
multi_local_global

multi_with_umap
multi_grid_layout

PCA + t-SNE + Spectral + Isomap comprehensive
view

Combined PCA and t-SNE dual visualization
Triple visualization: PCA + t-SNE + Spectral em-
bedding

Linear and nonlinear dimensionality reduction
comparison

Local and global structure preservation methods
Multi-method visualization including UMAP
Grid-based layout for systematic method compari-
son

Specialized Methods

decision_regions_svm
frequent_patterns

metadata_comprehensive

SVM decision boundary visualization with regions
Pattern mining visualization for feature relation-
ships

Metadata-enhanced comprehensive visualization
approach

Table 3: MARVIS Method Variants Overview. Comprehensive summary of visualization approaches
evaluated in ablation studies, categorized by methodology type and complexity level.

E.2 ABLATION ON MARVIS BACKEND AND FFT

This ablation (tabular classification on a subset of the entire OpenML CC-18 Semantic benchmark) indicates
that MARVIS’s base performance depends considerably more on the choice of embedding generating model
than on the choice of VLM backend; a small QwenVL 2.5 3B model (MARVIS_3B) outperforms a more
recent thinking model (moonshotai/Kimi-VL-A3B-Thinking-2506 referenced as MARVIS _kimi) and matches
GPT-40-mini (MARVIS_gpt40). MARVIS-3B also outperforms the full fine-tuning solution described in
section D by a substantial margin (Qwen-FFT in the figure); although the FFT solution generally is able
to reduce loss to near-zero on the training data, it sometimes fails to generalize well, particularly when the

training dataset size is small.
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Accuracy Heatmap: Configuration vs Test ID
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Figure 6: Configuration Performance Heatmap. Detailed breakdown showing performance variations
across different parameter combinations and visualization strategies. Darker regions indicate higher accuracy,
with perturbation-based methods consistently showing superior performance across various settings.

F EXTENDED RELATED WORKS

Early VLM architectures explored complex fusion mechanisms to achieve deep integration between vision
and language. Flamingo (Alayrac et al., 2022) introduced gated cross-attention layers interleaved within
frozen LLMs, enabling few-shot learning across diverse multimodal tasks without task-specific fine-tuning.
BLIP (Li et al., 2022) and its successor BLIP-2 (Li et al., 2023b) pioneered the Multimodal Mixture of
Encoder-Decoder (MED) architecture and introduced the Q-Former as a lightweight bridge between frozen
vision encoders and language models. PaLI (Chen et al., 2022) established the principle of joint scaling,
demonstrating that optimal VLM performance requires balanced scaling of all components: vision models,
language models, and training data.

LLaVA (Liu et al., 2023a) democratized VLM research by establishing an efficient, open-source blueprint. Its
three-component architecture—frozen vision encoder, lightweight MLP projector, and frozen LLM—with
two-stage training (feature alignment followed by instruction tuning) proved that simple architectures could
achieve impressive multimodal capabilities. LLaVA-NeXT (Liu et al., 2024) introduced dynamic high
resolution through intelligent image partitioning, while mPLUG-OwI2 (Ye et al., 2023) developed Modality-
Adaptive Modules to foster positive cross-modal collaboration while mitigating interference. POINTS (Ma
et al., 2024b) exemplified sophisticated data curation through perplexity-based filtering.
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Algorithm Performance Matrix (Accuracy (All Models, Common Datasets)) - Sorted by Mean Score
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Figure 7: Accuracy matrix for MARVIS backend variants and FFT. Our ablation shows that MARVIS’s
base performance depends considerably more on the choice of embedding generating model than on the
choice of VLM backend; a small QwenVL 2.5 3B model outperforms a more recent thinking model and
matches GPT-40-mini.

Recent work has pushed beyond conversational capabilities toward precise, spatially-grounded understanding,
key to understanding the gains in MARVIS. Grounding DINO (Liu et al., 2023b) achieved open-set object
detection through text-conditioned spatial understanding, while KOSMOS-2 (Peng et al., 2023) integrated
coordinate tokens directly into the LLM vocabulary for grounded text generation. OtterHD (Li et al.,
2023a) pioneered an encoder-less architecture, processing raw pixel patches directly in the LLM to eliminate
resolution constraints. SleighVL (Liu et al., 2025) refined high-resolution processing through attention-based
sub-image weighting via Global Semantic-guided Weight Allocation. Emu3 (Wang et al., 2024) unifies
vision and language modalities under next-token prediction, tokenizing images, videos, and text into a shared
vocabulary space. Molmo (Deitke et al., 2024) champions fully open ecosystems with human-annotated
data, breaking dependence on proprietary synthetic datasets. Early cross-modal strategies used feature
concatenation, attention mechanisms, or late fusion strategies, requiring extensive retraining for each new
modality (Baltrusaitis et al., 2018). Modern paradigms include contrastive learning (CLIP-style) (Radford
et al., 2021), generative modeling (Ramesh et al., 2022), and instruction tuning (Wei et al., 2022). However,
these approaches typically require substantial computational resources and domain-specific training data for
each new modality.

G DEEP DIVE: TABULAR MODALITY ANALYSIS

This section provides a comprehensive analysis of MARVIS performance on tabular data, evaluating both
classification and regression tasks against established baselines. The analysis includes detailed performance
metrics, correlation studies with TabPFN v2, and critical difference plots for statistical comparison.

G.1 BASELINES: JOLT AND TABLLM

One challenge we faced during the creation of this paper is that prior work which utilized LLMs for tabular
classification and regression lacked both standard benchmarks and consistent, easy to implement methods.
As a secondary contribution, we release comprehensive full-size tabular benchmarks which include semantic
information (see H), and modern, feature-complete implementations of TabLLM and JOLT.
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Dual Implementation Architecture: We developed a sophisticated dual-path architecture that supports both
legacy compatibility and modern framework integration. Our implementation includes:

* Legacy Integration: Direct incorporation of original JOLT codebase with automatic fallback
mechanisms

* Modern Implementation: Complete HuggingFace transformers integration with VLLM backend
support

 Unified Model Loader: Centralized model management supporting multiple backends (Hugging-
Face, VLLM, OpenAl, Gemini)

Memory Optimization and Scalability: Critical for production deployment, our implementation includes:

* Gradient checkpointing with KV cache disabling for memory efficiency
* Dynamic batch sizing with automatic Out-of-Memory (OOM) recovery
* Aggressive memory limits for regression tasks (512MB default)

* Feature dropping with retry mechanisms for large datasets
Enhanced Task Support: Beyond the original classification focus, we extended JOLT to support:

* Full regression pipeline with intelligent binning strategies
* Automatic task type detection and configuration
» Balanced few-shot example selection algorithms

» Context-aware prompt truncation for varying model context lengths
Configuration Management: We developed a comprehensive metadata system:

* Automatic JOLT configuration discovery by OpenML task ID
* Feature count validation ensuring dataset-configuration alignment
» Semantic feature mapping from original to descriptive names

* Graceful degradation when configurations are unavailable

TabLLM Implementation

Real-time Note Generation: Our TabLLM implementation eliminates the need for pre-generated note banks
through:

* On-the-fly natural language description generation
* Dynamic semantic feature expansion matching actual dataset characteristics
» Template-based prompt generation with YAML configuration support

* Automatic feature alignment verification post-preprocessing
Multi-Backend API Support: We created a unified interface supporting:
e OpenAl API integration (GPT-4, GPT-3.5-turbo, GPT-40)

* Google Gemini API support with automatic model selection

27



Under review as a conference paper at ICLR 2026

* Local model deployment via HuggingFace transformers

* Automatic backend detection based on model naming conventions
Quality Assurance Mechanisms: To ensure generation quality, we implemented:

* Inspection system saving sample generated notes for manual review
* N-gram analysis for content validation and diversity assessment
» Context truncation with intelligent few-shot example selection

» Template validation ensuring prompt completeness

HuggingFace Ecosystem Compatibility

Both implementations leverage the complete HuggingFace ecosystem:

* AutoModelForCausallM and AutoTokenizer for model loading
 Trust remote code support for cutting-edge models

» Automatic device placement and memory optimization

* Support for quantized models (8-bit, 4-bit) through BitsAndBytes

VLLM Integration
For production deployments requiring high throughput:

* Automatic VLLM backend selection for compatible models
* Tensor parallelism configuration for multi-GPU deployment
* Optimized sampling parameters with fallback to transformers

* Unified generation interface across backends

Benchmark Integration

Our implementations integrate seamlessly with standard evaluation frameworks:

¢ Direct OpenML dataset loading and preprocessing

» Standardized evaluation interface compatible with scikit-learn

* Comprehensive metrics calculation (accuracy, F1, ROC-AUC, R2, MAE, MSE)
* Weights & Biases integration for experiment tracking

Usage and Accessibility
Our implementations provide simple, unified interfaces:

# JOLT evaluation with local model

python examples/tabular/evaluate_llm_baselines_tabular.py \
—--models Jjolt \
——dataset_ids 23 \
--jolt_model Qwen/Qwen2.5-7B-Instruct

# TabLLM evaluation with API backend
python examples/tabular/evaluate_llm_baselines_tabular.py \

28



Under review as a conference paper at ICLR 2026

-—-models tabllm \
——dataset_ids 1590 \
——-openai_model gpt-4o

This unified interface abstracts away implementation complexity while providing extensive configuration
options for advanced users.

G.2 CLASSIFICATION PERFORMANCE ON OPENML CC18

The OpenML CC18 benchmark represents one of the most comprehensive evaluation suites for tabular
classification, consisting of 72 carefully curated datasets Bischl et al. (2021).

Model | Mean Acc. | Balanced Acc. | F1 Macro | Datasets
MARVIS 84.5% 80.2% 79.9% 69
TabPFN v2 87.8% 82.2% 82.3% 66
CatBoost 87.0% 81.5% 81.8% 70
Random Forest 86.5% 80.3% 81.0% 70
Gradient Boosting 85.4% 79.5% 79.9% 70
Logistic Regression 82.5% 74.8% 75.0% 70
TabLLM (Gemini) 50.1% 44.3% 40.2% 69
TabLLM (Qwen) 42.9% 36.5% 30.9% 69
JOLT 41.0% 33.9% 27.3% 67

Table 4: Classification Performance on OpenML CC18. MARVIS achieves competitive performance
with traditional ML methods while significantly outperforming other LLM-based approaches. Performance
metrics include mean accuracy, balanced accuracy for handling class imbalance, and F1 macro for multi-class
evaluation.

Key insights from classification analysis:

* MARVIS achieves 84.5% mean accuracy, placing it competitively among traditional ML methods

» Strong performance on balanced accuracy (80.2%) demonstrates effective handling of class imbal-
ance

¢ Significantly outperforms other LLM-based approaches (TabLLM, JOLT) by 34-44 percentage
points

 Consistent performance across diverse dataset types with low variance (0 = 15.1%)
G.3 REGRESSION PERFORMANCE ANALYSIS

For regression tasks, MARVIS was evaluated on a custom benchmark of 43 regression datasets spanning
diverse domains and characteristics.

G.4 CORRELATION ANALYSIS WITH TABPFN v2

A detailed correlation analysis between MARVIS and TabPFN v2 reveals interesting patterns in their
complementary strengths and failure modes.

Key correlation insights:

29



Under review as a conference paper at ICLR 2026

Critical Difference Diagram - Balanced Accuracy Performance
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Figure 8: Critical Difference Plot for Classification Performance. Statistical analysis using balanced
accuracy across OpenML CC18 datasets. Connected algorithms have no statistically significant difference (p
> 0.05) using the Nemenyi post-hoc test. MARVIS ranks competitively among traditional ML methods and
significantly outperforms other LLM approaches.

Algorithm Performance Matrix (Balanced Accuracy) - Sorted by Mean Score
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Figure 9: Classification Performance Matrix Heatmap. Dataset-wise performance comparison showing

MARVIS consistency across different types of tabular classification tasks. Each row represents a dataset, and
each column represents an algorithm. Darker colors indicate higher balanced accuracy scores.

¢ High Classification Alignment: 0.978 Pearson correlation indicates both methods excel on similar
classification tasks
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Algorithm | Mean R? | Median R? | MAE | RMSE
Random Forest 0.586 0.644 0.184 | 0.298
TabPFN v2 0.585 0.623 0.187 | 0.301
Gradient Boosting 0.564 0.615 0.191 | 0.304
Linear Regression 0.538 0.588 0.203 | 0.318
MARVIS 0.532 0.576 0.198 | 0.312
LightGBM 0.519 0.567 0.201 | 0.321
XGBoost 0.487 0.534 0.218 | 0.342

Table 5: Regression Performance Summary. MARVIS achieves competitive R? scores (0.532 mean, 0.576
median) ranking Sth among 7 algorithms. While R? scores are moderate, MARVIS shows strong performance
in error metrics (MAE, RMSE), indicating consistent prediction quality.

Critical Difference Diagram - R2 Performance
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catboost (2.59
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tabpfn_v2 (3.26)—— MARVIS (3.98)

Figure 10: Critical Difference Plot for Regression Performance. Statistical comparison using R? scores
across 43 regression datasets. MARVIS demonstrates statistically competitive performance with traditional
methods, ranking in the middle tier without significant differences from top performers.

¢ Moderate Regression Correlation: 0.884 correlation suggests more divergent strengths in regres-
sion domain

¢ Complementary Performance: Datasets where one method fails often correspond to failures in the
other, suggesting systematic challenges rather than method-specific weaknesses

¢ Consistent Rankings: High Spearman correlations (0.945 classification, 0.867 regression) show
similar relative performance orderings
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Algorithm Performance Matrix (R?) - Sorted by Mean Score

Algorithm

Figure 11: Regression Performance Matrix Heatmap. Dataset-wise R2 score comparison showing MARVIS
performance patterns across different regression tasks. The visualization reveals strengths in certain problem
types while highlighting areas for potential improvement.

Task Type | Pearsonr | Spearmanp | Kendall 7 | Datasets
0.978 ‘ 0.945 ‘ 0.823 ‘ 65

Classification

Regression 0.884 0.867 0.698 41

Table 6: MARVIS-TabPFN v2 Correlation Summary. Strong positive correlations indicate that both meth-
ods tend to perform well on similar datasets, suggesting complementary rather than competing approaches.
The high classification correlation (0.978) demonstrates particularly aligned performance patterns.

G.5 ANALYSIS AND DISCUSSION

The comprehensive tabular analysis reveals several important findings about MARVIS performance in
structured data domains:

Competitive Classification Performance: MARVIS achieves strong results on OpenML CC18, demonstrat-
ing that visual reasoning approaches can effectively handle tabular classification tasks. The 84.5% accuracy
places MARVIS within the competitive range of traditional ML methods.

Moderate Regression Capabilities: With 0.532 mean R? on regression tasks, MARVIS shows reasonable
but not exceptional regression performance. This suggests the visual reasoning paradigm may be better suited
for discrete classification decisions than continuous value prediction.

Strong LLM Baseline Performance: MARVIS significantly outperforms other LLM-based tabular methods
(TabLLM, JOLT), validating the effectiveness of the visual reasoning approach compared to direct tabular-to-
text conversion strategies.

Complementary Method Profile: The high correlation with TabPFN v2 suggests MARVIS and traditional
tabular methods have similar strengths and weaknesses, making MARVIS a viable alternative rather than a
replacement for existing approaches.

Scalability Considerations: MARVIS maintains consistent performance across the diverse OpenML CC18
collection, suggesting good generalization properties across different tabular data characteristics and domains.
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MARUVIS vs TabPFN v2: Classification Performance Correlation
Pearson r =0.978 (p = 0.0000), Spearman p = 0.975
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Figure 12: MARVIS vs TabPFN v2 Classification Correlation. Scatter plot showing strong positive
correlation (r = 0.978) between MARVIS and TabPFN v2 balanced accuracy scores across OpenML CC18
datasets. Points above the diagonal line indicate datasets where MARVIS outperforms TabPFN v2.

H CC18-SEMANTIC AND REGRESSION2025-SEMANTIC: SEMANTIC METADATA
GENERATION FOR ENHANCED DATASET UNDERSTANDING

A key component of our tabular analysis involved the creation of comprehensive semantic metadata for
both classification (cc18_semantic) and regression (regression_semantic) datasets. This process, conducted
using Claude Research from Anthropic with human review, represents a significant advancement in dataset
documentation and understanding.

H.1 MOTIVATION AND SCOPE

Traditional machine learning benchmarks often lack rich semantic context about feature meanings, target
interpretations, and domain-specific knowledge. To address this limitation, we developed a systematic
approach to generate comprehensive semantic metadata for:

¢ CC18 Classification Tasks: 72 datasets from the OpenML CC18 benchmark suite
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MARVIS vs TabPFN v2: Regression Performance Correlation
Pearson r = 0.884 (p = 0.0000), Spearman p = 0.863
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Figure 13: MARVIS vs TabPFN v2 Regression Correlation. Scatter plot showing moderate positive
correlation (r = 0.884) between MARVIS and TabPFN v2 R? scores across regression datasets. The correlation
suggests similar strengths but with more divergent performance patterns compared to classification tasks.

* Regression Tasks: 41 carefully selected regression datasets from OpenML
» Total Coverage: 113 datasets with comprehensive semantic enrichment
H.2 SEMANTIC METADATA GENERATION ALGORITHM

The semantic metadata generation process follows a multi-stage pipeline designed to ensure accuracy,
comprehensiveness, and consistency across all datasets.

H.3 SEMANTIC ENRICHMENT STRUCTURE

The generated metadata follows a standardized schema that captures multiple dimensions of dataset under-
standing:

Feature-Level Enrichment: Each feature receives comprehensive semantic description including domain
context, technical interpretation, data type classification, and relationship analysis to the prediction task.
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Algorithm 1 Semantic Metadata Generation Pipeline

1:

v

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34
35:
36:
37:

Input: OpenML dataset ID, basic task information
QOutput: Comprehensive semantic metadata JSON

Stage 1: Data Source Integration

Query OpenML API for basic dataset information

Extract feature names, data types, target variables, and statistics
Collect dataset provenance and publication information

Stage 2: Claude Research Process
Initialize Claude 3.5 Sonnet with domain expertise prompt
Instruct comprehensive multi-source research covering:

* Original dataset publications and creators

* Domain-specific knowledge bases

* Academic literature and citations

* UCI ML Repository and similar sources

Stage 3: Structured Semantic Analysis

for each feature in dataset do
Generate semantic description with domain context
Classify data type and measurement characteristics
Explain relationship to prediction task

end for

Stage 4: Target Variable Enhancement
if classification task then
Describe meaning of each class label
Provide real-world interpretation guidelines
else
Explain target variable units and ranges
Describe practical significance of values
end if

Stage 5: Quality Assurance

Apply low temperature (0.1) for factual consistency
Include uncertainty acknowledgments where appropriate
Validate JSON structure and completeness

Enable human review and verification process

Target Variable Analysis: For classification tasks, detailed explanations of class meanings and real-world
interpretation. For regression tasks, units of measurement, typical ranges, and practical significance guidelines.

Historical and Methodological Context: Dataset provenance including original creators, institutions,
collection methodology, domain applications, and ethical considerations.

Example Semantic Enhancement:

Feature: "bkblk” (Chess Kr-vs-Kp dataset)
Basic metadata: Binary feature (t/f)

Semantic enhancement: “Whether the black king is blocked from moving to certain
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squares. In chess endgame analysis, this represents a critical positional constraint that
affects the feasibility of defensive strategies and directly influences whether White can
force a win from the current position.”

H.4 MULTI-SOURCE RESEARCH METHODOLOGY

The Claude Research process integrates information from multiple authoritative sources to ensure accuracy
and comprehensiveness:

» Primary Sources: Original dataset publications, creator documentation, and institutional repositories
* Academic Literature: Peer-reviewed papers utilizing the datasets, domain-specific research

* Repository Documentation: UCI ML Repository, OpenML detailed descriptions, Kaggle dataset
pages
* Domain Databases: Specialized knowledge bases relevant to specific application areas

* Cross-Validation: Multiple source verification to ensure factual accuracy

H.5 QUALITY ASSURANCE AND VALIDATION

The semantic metadata generation incorporates multiple layers of quality control:

Algorithmic Validation: Automated scripts verify JSON structure completeness, field presence patterns, and
schema compliance across all datasets.

Coverage Analysis: Systematic review ensures all required metadata fields are populated and coverage gaps
are identified for remediation.

Human Review Integration: The process includes explicit uncertainty acknowledgment when information
sources are limited, enabling targeted human verification.

Standardization Pipeline: Automated standardization scripts consolidate different metadata formats into a
universal schema while preserving original information and implementing backup systems.

H.6 COMPREHENSIVE DATASET CHARACTERIZATION

This section provides detailed characterization of the datasets used in our tabular modality analysis, covering
both the OpenML CC18 classification benchmark and the Regression 2025 benchmark suite.

H.6.1 DOMAIN DISTRIBUTION ANALYSIS

The benchmark collections span diverse application domains, providing comprehensive coverage of real-world
machine learning challenges.

H.6.2 REPRESENTATIVE DATASET EXAMPLES

OpenML CC18 Classification Tasks. Please refer to Table 8.
Regression 2025 Tasks. Please refer to Table 9.

H.6.3 DATASET COMPLEXITY ANALYSIS

The benchmark collections exhibit significant diversity in complexity characteristics:
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Domain | CC18 Count | Regression Count | Total
Vision 27 4 31
Medical 7 7 14
Biology 5 2 7
Finance 4 3 7
Games 4 1 5
NLP 3 3 6
Science/Engineering 0 2 2
Social 0 1 1
Other 22 18 40
Total \ 72 \ 41 | 113

Table 7: Domain Distribution Across Benchmark Collections. The datasets span nine major application
domains, with Vision being the most represented (31 datasets), followed by Medical (14 datasets). The
”Other” category includes diverse applications such as telecommunications, manufacturing, and environmental
monitoring.

Dataset | Domain | Features | Classes | Description

MiceProtein Biology 77 8 Mouse protein expression levels for Down syndrome study
dna Biology 1 3 Molecular biology DNA sequence classification
splice Biology 1 3 Primate splice-junction gene sequences analysis
bank-marketing Finance 16 2 Portuguese banking institution marketing campaigns
credit-g Finance 20 2 German credit risk assessment dataset

adult Finance 14 2 Census income prediction (>50K annual income)
connect-4 Games 3 3 Connect-4 game position evaluation

kr-vs-kp Games 36 2 Chess King+Rook vs King+Pawn endgame positions
tic-tac-toe Games 9 2 Tic-tac-toe game board position analysis

breast-w Medical 9 2 Wisconsin breast cancer diagnosis

heart-statlog Medical 13 2 Heart disease diagnosis from clinical parameters
diabetes Medical 8 2 Pima Indian diabetes onset prediction
Devnagari-Script | Vision 1024 46 Handwritten Devanagari character recognition
mnist_784 Vision 784 10 Handwritten digit recognition benchmark
Fashion-MNIST Vision 784 10 Fashion article classification from images

Table 8: Representative CC18 Classification Datasets. Examples spanning major domains show the
diversity of tabular classification challenges, from biological sequence analysis to game strategy evaluation
and medical diagnosis.

Feature Dimensionality Range:

¢ Low-dimensional (< 10 features): 29 datasets (25.7%)
¢ Medium-dimensional (11-50 features): 51 datasets (45.1%)
¢ High-dimensional (> 50 features): 33 datasets (29.2%)

Classification Complexity:

* Binary classification: 48 datasets (66.7% of CC18)
¢ Multi-class (3-10 classes): 21 datasets (29.2% of CC18)
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Dataset | Domain | Features | Target Description

QSAR _Bioconcentration Biology 13 Bioconcentration factor for environmental chemistry
SGEMM _GPU kernel Biology 10 GPU kernel performance optimization metrics
climate_change_impact Finance 15 Agricultural productivity under climate change
world_food_wealth Finance 6 Global food security and economic indicators
Violent_Crime_County Finance 6 County-level violent crime rates (1975-2016)
medical_charges Medical 4 Healthcare insurance charges prediction
heart_failure_records Medical 13 Clinical parameters for heart failure prediction
particulate-matter Medical 7 Air quality PM2.5 concentration levels
UCC_Comments Medical 7 Health impact assessment from social media
housing_prices_2020 Other 9 Real estate price prediction modeling
cpu_performance Other 7 Computer hardware performance benchmarking
auto_mpg Other 8 Vehicle fuel efficiency prediction

wine_quality Other 11 Wine quality assessment from chemical properties
concrete_strength Science/Eng 8 Concrete compressive strength from mixture
sulfur_recovery Science/Eng 6 Industrial sulfur recovery process optimization

Table 9: Representative Regression Datasets. Examples demonstrate the breadth of continuous prediction
tasks, from environmental monitoring and healthcare analytics to industrial process optimization and consumer
applications.

¢ High-class (> 10 classes): 3 datasets (4.1% of CC18)
Domain-Specific Characteristics:

* Vision datasets: Typically high-dimensional (784-1024 features) with balanced class distributions

* Medical datasets: Often feature moderate dimensionality (8-20 features) with clinical interpretabil-
ity requirements

 Financial datasets: Characterized by mixed data types and class imbalance considerations
* Game datasets: Show discrete feature spaces with strategic decision-making patterns

* Biology datasets: Range from sequence data (low-dimensional) to protein expression (high-
dimensional)

I VLM REASONING ANALYSIS

This section provides detailed evidence that Vision-Language Models engage in genuine adaptive reasoning
when processing MARVIS visualizations, rather than relying solely on learned patterns or simple heuristics.
Our analysis examines reasoning traces, disagreement patterns, and method-specific behavioral signatures to
demonstrate that VLMs condition their responses on the visual information provided.

I.1 COMPREHENSIVE REASONING PATTERN ANALYSIS

Several findings argue against simple pattern matching explanations:

* Method-specific reasoning adaptation: Different visualization types elicit systematically different
reasoning approaches
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* Performance-quality correlation: Better reasoning correlates with higher accuracy across diverse

test cases

* Quantitative analysis emergence: Numerical reasoning appears precisely when relevant informa-

tion is provided

* Logical consistency within methods: Each approach maintains internal logical coherence while

differing from others

The evidence suggests VLMs possess genuine spatial reasoning capabilities that can be effectively leveraged

through appropriate visualization design:

* Color-space integration: Systematic use of color information for class identification

* Distance relationship understanding: Quantitative analysis of spatial proximity when information

is available

* Cluster structure recognition: Identification of grouping patterns in embedding spaces

¢ Multi-modal information synthesis: Integration of spatial, semantic, and quantitative information

I.1.1

PERFORMANCE-DRIVEN FEATURES

Analysis of 83 experimental configurations across multiple test cases reveals systematic differences between
correct and incorrect predictions, indicating that reasoning quality correlates with classification accuracy.

Reasoning Feature | Correct | Incorrect | Difference
Response Length 281.2 chars | 268.3 chars +12.9
Word Count 43.8 words | 42.4 words +1.4
Color Mentions 1.85 1.52 +0.33
Distance Reasoning 0.074 0.057 +0.018
”Closest” Heuristics 0.56 0.77 -0.21
”Majority” Heuristics 0.05 0.25 -0.20
”Cluster” Reasoning 0.59 0.73 -0.13

Table 10: Reasoning Quality Correlation with Accuracy. Correct predictions exhibit longer, more
sophisticated responses with increased spatial analysis and reduced reliance on simple heuristics. This
pattern suggests VLMs engage in more thorough reasoning when visual information supports accurate

classification.

1.2 ADAPTIVE REASONING EVIDENCE

1.2.1

DISAGREEMENT PATTERN ANALYSIS

Analysis of prediction disagreements across methods provides evidence that different visualization types
provide genuinely different information to VLMs, resulting in systematic behavioral differences.

Key Disagreement Statistics:

* Only 35% agreement across all methods on test cases

* 65% partial disagreement indicates methods provide different information

 Highest disagreement pairs: tsne_knn vs tsne_3d_perturbation (33 disagreements)
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1.2.2 CONCRETE EXAMPLES OF ADAPTIVE REASONING

The following examples demonstrate how VLMs adapt their reasoning based on the specific visual information
provided:

Quantitative Analysis with k-NN Information:
”The query point is closer to the cluster of Class_1 neighbors (4 neighbors) than to the
cluster of Class_2 neighbors (1 neighbor). Additionally, the average distance to Class_1
neighbors (6.1) is slightly lower than to Class_2 neighbors (5.2), indicating higher similarity
to Class_1.”

Semantic Integration with Class Labels:
”The red star (query point) is closest to the orange-colored points, which represent the
’Long-term methods’ class. This spatial clustering indicates that the query point is more
aligned with the characteristics of the *Long-term methods’ class.”

Basic Proximity Analysis:

”The red star (query point) is closest to the green-colored training points, which are
associated with Class_2.”

These examples show clear adaptation: quantitative distance calculations appear only with k-NN information,
semantic reasoning emerges with meaningful class labels, and basic approaches rely on simple proximity
heuristics.

J MARVIS EXTENDED RESULTS

In Table 11, we present the comprehensive results for all models on all benchmarks.
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Domain Benchmark Method Backend Metric Value
Vision
CIFAR-10 Conventional ~Gemini-Flash-2.0 Accuracy  85.7
CIFAR-100 Conventional ~Gemini-Flash-2.0 Accuracy  64.3
CIFAR-10 Conventional Qwen 2.5 VL 3B Accuracy  83.2
CIFAR-100 Conventional Qwen 2.5 VL 3B Accuracy  51.0
CIFAR-10 KNN DinoV2-ViT-L-14-reg Accuracy  99.0
CIFAR-100 KNN DinoV2-ViT-L-14-reg Accuracy 91.6
CIFAR-10 CLAMS CLAM 3B Accuracy  98.0
CIFAR-100 CLAMS CLAM 3B Accuracy  88.0
Audio
ESC-50 KNN Whisper-Large Accuracy  76.0
RAVDESS KNN Whisper-Large Accuracy 479
UrbanSound-8K KNN Whisper-Large Accuracy  65.9
ESC-50 Contrastive CLAP Accuracy  90.5
RAVDESS Contrastive CLAP Accuracy  21.8
UrbanSound-8K Contrastive CLAP Accuracy  77.1
ESC-50 CLAMS CLAM 3B Accuracy 913
RAVDESS CLAMS CLAM 3B Accuracy  38.4
UrbanSound-8K CLAMS CLAM 3B Accuracy  79.8
Biological
FishNet Conventional Qwen 2.5 VL 3B Accuracy  17.3
AWA2 Conventional Qwen 2.5 VL 3B Accuracy  92.6
PlantDoc Conventional Qwen 2.5 VL 3B Accuracy  37.3
FishNet Conventional ~Gemini-Flash-2.0 Accuracy  59.5
AWA2 Conventional ~Gemini-Flash-2.0 Accuracy  96.5
PlantDoc Conventional ~Gemini-Flash-2.0 Accuracy  74.2
FishNet KNN BioClip2 Accuracy  83.7
AWA2 KNN BioClip2 Accuracy  97.1
PlantDoc KNN BioClip2 Accuracy  72.0
FishNet CLAMS CLAM 3B Accuracy  80.2
AWA2 CLAMS CLAM 3B Accuracy  95.7
PlantDoc CLAMS CLAM 3B Accuracy 67.4
Tabular Classification
CC-18 (Semantic) JOLT Qwen 2.5 3B Accuracy 41.2
CC-18 (Semantic) TabLLM Qwen 2.5 3B Accuracy 429
CC-18 (Semantic) TabLLM Gemini-Flash-2.0 Accuracy  50.1
CC-18 (Semantic) Conventional ~TabPFNv2 Accuracy  87.8
CC-18 (Semantic) CLAMS CLAM 3B Accuracy  84.5
CC-18 (Semantic) Conventional Random Forest Accuracy  86.5
CC-18 (Semantic) Conventional Logistic Regression Accuracy  82.5
CC-18 (Semantic) Conventional CatBoost Accuracy  87.0
Tabular Regression
Regression 2025 (Semantic) Conventional TabPFNv2 Avg R2(0-100) 66.9
Regression 2025 (Semantic) Conventional CatBoost Avg R2(0-100) 714
Regression 2025 (Semantic) JOLT Qwen 2.5 3B Avg R2 (0-100)  05.1
Regression 2025 (Semantic) CLAMS CLAM 3B Avg R? (0-100)  66.0
Regression 2025 (Semantic) Conventional —Linear Model Avg R2(0-100) 51.2
Regression 2025 (Semantic) Conventional Random Forest Avg R2(0-100) 72.8

Table 11: Comprehensive Performance ResultsiA cross Multiple Domains. Evaluation of various methods
on vision, audio, biological, and tabular benchmarks. CLAMS demonstrates competitive performance across
all domains, achieving near state-of-the-art results while using a unified approach. Success rates are 100% for
all methods except JOLT on regression tasks (90.3%).
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K MARVIS VISUALIZATION GALLERY
This section presents visualizations from the MARVIS framework applied to tabular datasets.

K.1 CMC DATASET

KNN Visualization
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1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1991
1992

1993
1995

1996 Method Name tsne_knn
1997

1998 Prompt Length 1,776 characters
1999

2000 Response Length 299 characters
2001

2002 Visualizations 3 images (showing top 3)
2003

2004

2005 .

2006 @ System Prompt

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020
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you can see:

you to classify

neighbors by class

Class Legend:

K-NN Analysis (k=5):

features

Consider:

lines) belong to

neighbor analysis.

[brief explanation]"

Looking at thisenhanced t-SNE visualization of tabular data,

1. Colored points representing training data, where each
color corresponds to a different class

2. Gray square points representing » test data

3. One red .. star point which is the @ query point I want

4. A pie chart showing the distribution of the 5 nearest

5. The pie chart includes class counts, percentages, and
average distances to neighbors

-+ Class @: Blue RGB(30, 119, 181)

- « Class 1: Orange RGB(255, 127, 12)
-+ Class 2: Green RGB(43, 160, 43)

- ~ Test points: Light Gray

® - (Class 0: 3 neighbors (60%), AvgDist: 8.0
e - (lass 1: 1 neighbors (20%), AvgDist: 5.1
e - (lass 2: 1 neighbors (20%), AvgDist: 9.0

Dataset Context: Tabular data embedded using appropriate

IMPORTANT: The pie chart shows the class distribution of the
S nearest neighbors found in the original high-dimensional
embedding space, NOT just based on the 2D visualization
space. Smaller average distances indicate higher similarity.

Based on BOTH the spatial position in the t-SNE visualization
AND the explicit nearest neighbor connections, which class
should this @ query point belong to? The available classes
are: "Class_0", "Class_1", "Class_2"

- The spatial clustering patterns in the t-SNE visualization
- Which classes the nearest neighbors (connected by red

- The relative importance of close neighbors (thicker lines)
Please respond with just the class label (e.g., "Class_0",

"Class_1", "Class_2") followed by a brief explanation of your
reasoning based on the spatial clustering AND the pie chart

Format your response as: "Class: [class_label] | Reasoning:

¢~ Example Response

Class_0.

Class: Class_0 | Reasonfﬂﬁ; The @ query point is closer to
the cluster of Class_0 neighbors (3 neighbors) compared to
Class_1 and Class_2 neighbors. Additionally, the average
distance to Class_@ neighbors (8.0) is lower than to Class_1
(5.1) and Class_2 (9.0), indicating higher similarity to
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Visualizations
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£-SNE with KNN Analysis - Query Point 0 (Zoom: 6.5x)

K:NN Distribution (k=5)
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t-SNE Dimension 1

~ visualization_4.png

t-SNE with KNN Analysis - Query Point 15 (Zoom: 6.5x)

K-NN Distribution (k=5)

10 o s -7 6

~ visualization_5.png
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t-SNE with KNN Analysis - Query Point 18 (Zoom: 6.5x) KeNN Distribution (k=5)

Training Class 0

Taining Class 1

Training Class 2

Test Points (Light Gray)

H Query Fant (Red star) °

°
°
°
o

14

LSNE Dimens

181 o

TSNE Dimension 1

~ Vvisualization_test_018.png
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Semantic Axes
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2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225 M tsne_semantic_axes
2226
2227

2228
2230

2231 Method Name tsne_semantic_axes
2232

2233 Prompt Length 1,294 characters
2234

2235 Response Length 309 characters
2236

2237 Visualizations 3 images (showing top 3)
2238

2239

2240 .

2941 @ System Prompt

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251
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2253

2254

2255

48



2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302

Under review as a conference paper at ICLR 2026

Looking at this t-SNE visualization of tabular data, you can
see:

1. Colored points representing training data, where each
color corresponds to a different class

2. Gray square points representing » test data

3. One red .. star point which is the @ query point I want
you to classify

Class Legend:

- No-use: Blue RGB(30, 119, 181)

- Long-term methods: Orange RGB(255, 127, 12)
- Short-term methods: Green RGB(43, 160, 43)
- ~ Test points: Light Gray

Semantic Axis Interpretation:
e X-axis (39.3% var): +Living standard (1=low, 2, 3, 4=high)
® Y-axis (15.0% var): Mixed factors

Dataset Context: Tabular data embedded using appropriate
features

Based on the position of the red star (¢ query point)
relative to the colored training points, which class should
this @ query point belong to? The available classes are:
"No-use", "Long-term methods", "Short-term methods"

Consider:

- The spatial relationships in the t-SNE visualization

- Which colored class clusters the red star is closest to or
embedded within

Please respond with just the class label (e.g., "No-use",
"Long-term methods", etc.) followed by a brief explanation of
your reasoning based on the spatial clustering patterns you
observe.

Format your response as: "Class: [class_label] | Reasoning:
[brief explanation]"

Example Response

Class: Long-term methods | Reasoning: The red star (& query
point) is positioned closer to the cluster of orange-colored
points, which represent the "Long-term methods" class. This
spatial proximity suggests that the @ query point is most
similar to the "Long-term methods" class in the given t-SNE
visualization.
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t-SNE Visualization - Query Point 0 (Zoom: 6.5x)
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~ visualization_4.png

t-SNE Visualization - Query Point 15 (Zoom: 6.5x)
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