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APPENDIX

A NOTATIONS

All notations in the main text and their descriptions are summarized in Table 5.

Notation Description

x,X Query, Query set
y,Y Item, Item Set
X+

y Queries related to item y

Y+
x Items related to query x

D A Dataset consisting of X and Y
Qx The distribution of items related to x in the index
p Item-query relevance probability
m The number of queries
N The number of items
δ A tolerance level

Φ(·) The CDF of standard normal distribution
P i
Q The distribution at the i-th token of the query

P i
I The distribution at the i-th token of the item

Ci The token assigned to the item at the i-th Layer
H(a, b) Cross-entropy of a and b

H(b) Entropy of b
Uk A uniform distribution over k classes
k The width of the index (The number of tokens)
L The depth of the index (The number of Layers)

Table 5: Notations

B DATASET STATISTICS

Dataset #Query #Item # Interaction

KuaiSAR 191330 112388 1093920
Beauty 41895 15817 162713

Toys and Games 13271 25357 90557

Table 6: Dataset Statistics

We summarize the statistics of the three datasets in Table 6. Setting the tolerance level δ to 0.95 and
substituting the dataset density for p, all three datasets satisfy the conditions of Theorem 1. This
indicates that our proposed greedy algorithm is applicable to most datasets and demonstrates the
rationality of URI’s approach in simulating the greedy algorithm through machine learning.

C PROOF OF THEOREM 1

Before deriving Theorem 1, we can transform the problem of recovering the allocation scheme into
a matrix equation-solving problem. Let W be the interaction matrix between queries and items,
with a size of m × N . The value at a given position is 1 if the query is related to the item, and 0
otherwise. In a recommender system, W represents the user purchase matrix. Let H be the item
allocation matrix, with a size of N × k, where each row contains exactly one 1, and the sum of each
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column is N/k. Define M = W × H , where M has a size of m × k, representing the frequency
distribution of each query over the k buckets. Thus, the problem is transformed into solving for H
given M and W . The conclusions of the theorem and the greedy algorithm are also correspondingly
transformed, as described below.

C.1 THEOREM

Theorem 2. (Correct Reconstruction Probability)

Given the following conditions:

• Tolerance Level: A tolerance level δ ∈ (0, 1).

• Parameters: Positive integers N and k, and a probability p ∈ (0, 1).

• Random Matrix W : An m × N binary matrix where each element Wr,l is independently
and identically distributed (i.i.d.), satisfying:

P (Wr,l = 1) = p, P (Wr,l = 0) = 1− p

• Structured Matrix H: An N × k binary matrix satisfying:

– Row Constraint: Each row contains exactly one 1, and all other elements are 0.
k∑

j=1

Hi,j = 1, ∀i = 1, 2, . . . , N

– Column Constraint: Each column contains exactly Nj = N
k ones (assuming N is

divisible by k).
N∑
i=1

Hi,j = Nj , ∀j = 1, 2, . . . , k

• Product Matrix M : Defined as M = W ·H .

If the number of rows m in matrix W satisfies:

m ≥
[
Φ−1(1− δ)

]2 (
1 + 2N

k p(1 + p)
)

p(1− p)

Then, using the following greedy algorithm, the probability that each row of matrix H is correctly
reconstructed is:

Pcorrect ≥ 1− δ

C.2 GREEDY ALGORITHM DESCRIPTION

For each row index i = 1, 2, . . . , N :

1. Identify Set Si: Find all rows in matrix W where the i-th column is 1.

Si = {r | Wr,i = 1}

2. Compute Vector si: For each column j = 1, 2, . . . , k, calculate the sum of corresponding
entries in matrix M :

s
(j)
i =

∑
r∈Si

Mr,j

3. Select Maximum: Determine the column j∗ with the highest sum:

j∗ = argmax
j

s
(j)
i

4. Update Matrix H: Assign the 1 in the i-th row of H to column j∗:

Hi,j∗ = 1

14
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C.3 PROOF

Step 1: Definition of Difference Variable ∆s
(j)
i

For a given row index i and any incorrect column j ̸= j∗ (where j∗ is the correct column), define
the difference:

∆s
(j)
i = s

(j∗)
i − s

(j)
i

Using the structure of the problem:

∆s
(j)
i = ci,i +

∑
l ̸=i

(Hl,j∗ −Hl,j)ci,l

where: ci,i is the number of rows in matrix W where column i has a value of 1. ci,l is the number
of rows in matrix W where both columns i and l have a value of 1.

Step 2: Calculate Expectation and Variance of ci,i and ci,l

(a) For ci,i:

Since ci,i counts the number of times the i-th column in W contains a 1, it can be written as:

ci,i =

m∑
r=1

Wr,i

where Wr,i is an independent Bernoulli random variable with probability p. Therefore:

- Expectation:
E[ci,i] = m · p

- Variance:
Var[ci,i] = m · p(1− p)

(b) For ci,l (when l ̸= i):

Similarly, ci,l counts the number of times both columns i and l in matrix W contain a 1. Since Wr,i

and Wr,l are independent Bernoulli variables:

- Expectation:
E[ci,l] = m · p2

- Variance:
Var[ci,l] = m · p2(1− p2)

Step 3: Expectation and Variance of ∆s
(j)
i

We now calculate the expectation and variance of ∆s
(j)
i .

(a) Expectation of ∆s
(j)
i :

Using the linearity of expectation and the fact that the expectation of Hl,j∗ −Hl,j is zero (as both
are binary variables):

E[∆s
(j)
i ] = E[ci,i] = m · p(1− p)

(b) Variance of ∆s
(j)
i :

Since ci,i and ci,l are independent, the variance of ∆s
(j)
i is the sum of the variances of the terms:

Var[∆s
(j)
i ] = Var[ci,i] +

∑
l ̸=i

(Hl,j∗ −Hl,j)
2 ·Var[ci,l]

Since (Hl,j∗ − Hl,j)
2 takes values of 0 or 1 (with 1 occurring when one column contains a 1 and

the other does not), let n be the number of times (Hl,j∗ −Hl,j)
2 = 1. We have:

n ≤
(
N

k
− 1

)
+

N

k
≤ 2N

k

15
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Thus, the variance becomes:

Var[∆s
(j)
i ] = Var[ci,i] + n ·Var[ci,l]

Substitute the values of Var[ci,i] and Var[ci,l]:

Var[∆s
(j)
i ] = m · p(1− p) + n ·m · p2(1− p2)

Step 4: Apply the Central Limit Theorem

By the Central Limit Theorem, since m is a fairly large number, we approximate ∆s
(j)
i as a normally

distributed variable:
∆s

(j)
i ∼ N

(
E[∆s

(j)
i ],Var[∆s

(j)
i ]
)

Thus, the probability of correct assignment is:

P
(
∆s

(j)
i > 0

)
= Φ

 E[∆s
(j)
i ]√

Var[∆s
(j)
i ]


where Φ is the CDF of the standard normal distribution.

Step 5: Substitute the Expectation and Variance

Substitute the expressions for E[∆s
(j)
i ] and Var[∆s

(j)
i ] into the probability formula:

P
(
∆s

(j)
i > 0

)
= Φ

(
mp(1− p)√

mp(1− p) + nmp2(1− p2)

)

Step 6: Substitute m and n

Simplify the Expression:

P
(
∆s

(j)
i > 0

)
= Φ

( √
mp(1− p)√

1 + np(1 + p)

)

Substitute n ≤ 2N
k , m ≥ [Φ−1(1−δ)]

2
(1+ 2N

k p(1+p))
p(1−p) :

P
(
∆s

(j)
i > 0

)
= Φ

( √
mp(1− p)√

1 + np(1 + p)

)
≥ 1− δ
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