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Figure 1: Overview of the Draw-and-Understand Framework. (a) Illustrating the task of visual prompt-
ing understanding. (b) The architecture of Visual Prompting MLLM (VP-MLLM), which consists of an
image encoder, a visual prompt encoder, and an LLM. (c) The data generation process for training, which
involves two components: reconstruction of open-source data and data generation assisted by GPT-4V.

ABSTRACT

In this paper, we present the Draw-and-Understand framework, exploring how to inte-
grate visual prompting understanding capabilities into Multimodal Large Language Mod-
els (MLLMs). Visual prompts allow users to interact through multi-modal instructions,
enhancing the models’ interactivity and fine-grained image comprehension. In this frame-
work, we propose a general architecture adaptable to different pre-trained MLLMs, en-
abling it to recognize various types of visual prompts (such as points, bounding boxes,
and free-form shapes) alongside language understanding. Additionally, we introduce
MDVP-Instruct-Data, a multi-domain dataset featuring 1.2 million image-visual prompt-
text triplets, including natural images, document images, scene text images, mobile/web
screenshots, and remote sensing images. Building on this dataset, we introduce MDVP-
Bench, a challenging benchmark designed to evaluate a model’s ability to understand vi-
sual prompting instructions. The experimental results demonstrate that our framework
can be easily and effectively applied to various MLLMs, such as SPHINX-X and LLaVA.
After training with MDVP-Instruct-Data and image-level instruction datasets, our mod-
els exhibit impressive multimodal interaction capabilities and pixel-level understanding,
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while maintaining their image-level visual perception performance. The code and related
resources are available at https://draw-and-understand.github.io.

1 INTRODUCTION

Recent works (Liu et al., 2024b; Zhu et al., 2023; Liu et al., 2023a; Bai et al., 2023; Liu et al., 2024a) have
enhanced Large Language Models (LLMs) with visual perception, facilitating image-related communication
and fostering a deeper understanding of the world. These models primarily focus on interpreting whole
images by aligning them with text prompts. However, simple language interactions often fail to capture
users’ true intentions, especially when users need to highlight specific areas in images that are difficult to
describe with words. Consequently, there is growing interest in enabling visual prompting capabilities in
Multimodal Large Language Models (MLLMs) to enhance interactivity and pixel-level understanding.

To achieve this, ChatSpot (Zhao et al., 2023) and Shikra (Chen et al., 2023b) first utilize textual represen-
tations to specify coordinates within images, thereby enhancing interaction with the models. Some stud-
ies (Peng et al., 2023; Zhang et al., 2023a; Zhou et al., 2023) employ positional embeddings to improve
spatial recognition, while others (Rasheed et al., 2023; Zhang et al., 2023a; You et al., 2023; Yuan et al.,
2024a; Chen et al., 2023a) focus on extracting Regions of Interest (ROI) to enhance attention to specific
areas of images. Additionally, LLaVA-ViP (Cai et al., 2023) introduces visual markers to facilitate more
intuitive interactions between users and models. (More related works are discussed in Sec. B)

However, existing methods have several limitations: (i) ROI-based methods (Zhang et al., 2023a; Rasheed
et al., 2023; Yuan et al., 2024a; You et al., 2023) are typically designed for specific architectures. For
example, they often rely on pre-attached segmentation models or externally provided ground truth masks,
which hinders user flexibility and model scalability. Additionally, they require training from scratch, leading
to substantial resource consumption; (ii) Most methods (Zhang et al., 2023a; Rasheed et al., 2023; Zhao
et al., 2023; Chen et al., 2023b; Peng et al., 2023) depend on fixed visual references, such as bounding boxes,
which are neither flexible nor user-friendly; (iii) Several methods (Yuan et al., 2024a) fail to support the
simultaneous referencing of multiple objects, limiting their flexibility and preventing them from addressing
more complex understandings, such as nuanced interrelations and spatial dynamics with surrounding entities
and backgrounds; (iv) Most methods (Zhang et al., 2023a; Rasheed et al., 2023; Zhao et al., 2023; Chen
et al., 2023b; Peng et al., 2023; Yuan et al., 2024a; You et al., 2023) primarily focus on visual prompting
understanding but neglect image-level perception performance, which limits their practical applicability.

To address these challenges, we present the Draw-and-Understand framework, a solution specifically de-
signed to endow multi-modal LLMs with visual prompting understanding. As depicted in Fig.1(a), we
first define the form of the visual prompting understanding task, emphasizing the multi-modal interaction
between users and the model. Next, we introduce visual prompting MLLM (VP-MLLM), a general archi-
tecture that comprises a vision encoder, a visual prompt encoder, and an LLM. This architecture can be ef-
ficiently adapted to most mainstream pre-trained MLLMs, enabling them to easily acquire visual prompting
capabilities while maintaining their original robust vision-language understanding. Notably, our proposed
visual prompt encoder enhances the model’s referring capability by embedding the coordinate features of
visual prompts. It supports multiple input formats and can process several visual prompts simultaneously.

In addition, instruction tuning data for visual prompting is an essential component. To this end, we curate a
comprehensive Multi-Domain Visual Prompt Instruction Dataset (MDVP-Instruct-Data). This dataset com-
prises image-point-text and image-region-text pairs, totaling approximately 0.8 million images and 1.2 mil-
lion query-answer triplets. We compiled this dataset by integrating existing datasets containing segmentation
masks or bounding box annotations, while leveraging GPT-4V’s advanced image understanding capabilities
for data generation. MDVP-Instruct-Data provides detailed attribute information for objects identified by
visual prompts, including their relationships with surrounding entities and the background. This dataset
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Inter Relationship: <Mark 
1> shows the person's upper body and 
activity, while <Mark 2> provides a 
closer look at the tool used for this 
task, the laptop. Together, these 
marks convey a narrative of a person 
likely involved in design or creative 
work, using technology as their 
primary instrument.Both <Mark 2> and 

<Mark 3> are photography 
equipment, with <Mark 2>
being an analog camera and 
<Mark 3> being a lens. They 
can be used together. The lens at 
<Mark 2> is a component of the 
camera at <Mark 3>, suggesting 
that they are parts of a larger 
photography setup.

What is the relationship 
between <Mark 2> and <Mark 
3>? Can they be used together?

OREGON

Provide the ocr results of 
the <Region 1> I marked. skull on a table magzine on a table

flowers in a vase

cup on a table

book on a table

a girl looking at screen

pens on a table hand of a girl

a girl holding pen

a watch wearing by girl

a girl wearing black shirt

black hairs of a girl

1

2

3

1 2

Detail Caption: Towards the top 
right corner of the image, there is a 
large piece of paper with writing on it. 
The paper is white and is placed on 
the table, slightly towards the back. 
The writing appears to be in a unique 
script, adding an artistic touch to the 
scene.
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Figure 2: (Left) Our approach achieves unprecedented performance in OCR tasks and excels at under-
standing implicit relationships and conducting complex reasoning. (Right) Our approach demonstrates the
capability to perceive objects at a pixel level granularity, such as ’a girl holding a pen’. Furthermore, it can
perform detailed captioning and inter-relationship analysis on arbitrarily shaped Regions Of Interest (ROIs).

enhances spatial understanding across various image domains, thereby improving the robustness of model’s
responses in diverse visual contexts. With these approaches in place, users can interact with the model using
their native language and refer to specific actions, such as clicking and drawing, to obtain desired answers
about the region of interest. This allows the MLLMs to engage with the physical world more effectively.

To assess the strength and resilience of visual prompting models, we introduce MDVP-Bench, a benchmark
designed to evaluate visual prompting comprehension abilities. MDVP-Bench encompasses a variety of
tasks, including point-level and region-level captioning, inter-relationship analysis, and complex reasoning.
In evaluating our VP-MLLMs alongside other visual prompting methods on MDVP-Bench, we find that ours
consistently outperforms the other methods. We anticipate that MDVP-Bench will provide a solid foundation
for future research in the field of visual prompting and multimodal models.

2 MDVP-INSTRUCT-DATA

In this section, we introduce the Multi-Domain Visual Prompt Instruction Dataset (MDVP-Instruct-Data),
designed to enhance interactivity and fine-grained image understanding in MLLMs. It primarily consists of
two types of data:

(1) Dynamic Multi-Target Captioning. In this context, users are assumed to provide N visual prompts to
refer to regions of interest, and the model generates a comprehensive caption describing all N subjects. To
create this type of data, we observed that datasets related to Referring Expression Comprehension (REC) and
Phrase Grounding can be transformed to align with this task. Specifically, these datasets include the ability
to localize visual content and ground each entity mentioned by a noun phrase in the caption to a specific
region in the image. Building on this insight, we inverted the inputs (captions) and outputs (coordinates of
subjects), treating the ground truth boxes as input visual prompts, with the corresponding natural language
descriptions serving as the answers. The public datasets we utilized include Flickr30K (Plummer et al.,
2015), RefCOCO/+(Yu et al., 2016), GCG(Rasheed et al., 2023), and GRIT (You et al., 2023), as well as
GeoChat (Kuckreja et al., 2023) from remote sense domain.

(2) Instruct-Conversation Data. For visual prompting conversations, we primarily employ two meth-
ods for data construction: (i) Reconstructing from Grounding QA datasets. Grounding QA datasets pro-
vides ground truth bounding boxes for various target objects in both the questions and answers. We
treat the provided bounding boxes as visual prompt inputs, discarding the original ground truth coordi-
nates from the questions to create high-quality instruction data. We utilize grounding QA pairs from
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Object Categories
Dog Dog collar

Frisbee Grass

Brief Caption 

<Mark 2>: Black buckle collar
on a dog's neck.

<Mark 3>: Circular red frisbee
with central
emblem on grass.

Detailed Caption

<Mark 1> : This is a dog, showing
a glossy, reflective surface that
indicates liveliness and health. The
dog's eye is brown with a dark pupil
in the center. Surrounding the eye,
the fur is predominantly black with
some brown markings that provide a
natural pattern typical of this
animal's facial features.

Inter-Relationship Analyze Conversation & Reasoning

<Mark 1> <Mark 3>: The frisbee at <Mark 1> is
commonly used for playing fetch, a game that involves
the dog at <Mark 2>, signifying a playful relationship
between the object and the animal.

<Mark 1> <Mark 2>: The collar is part of the dog's attire,
signifying ownership and possibly containing
identification in case the dog wanders off. The collar is a
common pet accessory and is closely associated with the
dog's identification and control.

Question: Does the environment at <Mark 4> seem suitable
for the activity related to <Mark 3>?
Answer: Yes, the environment at <Mark 4>, which is well-
maintained grass, as indicated by <Mark 3>, due to its open
space and soft surface.

Question: What is the breed of the dog depicted at <Mark 1>?
Answer: The dog at <Mark 1> appears to be a corgi based
on its distinct physical characteristics such as its pointed
ears, short stature, and multicolored coat.

5%11%11%12%39%

Nature Image

12%

OCR Web Page Mobile DocumentRemoteSense

10%

Multipanel

Figure 3: An illustrative example from the MDVP-Instruct-Data. This diagram illustrates the distribution
of images sourced from various domains. It also highlights a GPT-assisted sample, emphasizing the diversity
and richness of its point-based and region-based instruction-following data

the point-QA (Shim, 2003), Visual 7W (Zhu et al., 2016), and VCR (Zellers et al., 2019) datasets.
(ii) Constructing with GPT-4V Assistance. To build a more comprehensive and diverse instruction-following
dataset, we collected various multi-domain images along with their unique annotations from public datasets
(Table 5). These include natural images, Optical Character Recognition (OCR) content in the wild, docu-
ments, webpage screenshots, mobile screen captures, remote sensing imagery, and multi-panel images. For
each distinct image domain, we meticulously crafted prompts to facilitate GPT-4V’s ability to adopt various
roles in generating instructional data. Specifically, we assigned GPT-4V four distinct tasks: brief captioning,
detailed captioning, inter-relationship analysis, and complex reasoning generation. Notably, the captions
created for each domain exhibit unique characteristics. For instance, in mobile screen captures, objects are
identified not only as relevant components—such as icons, text, search bars, and URLs—but also include
information about potential actions, indicating whether a component is clickable and the expected outcome
upon interaction. This diversity significantly enriches the dataset while also presenting challenges. Fur-
thermore, as shown in Fig.3, to enhance GPT-4V’s recognition of objects referenced by visual prompts, we
employed Set-of-Marks (SoM) prompting (Yang et al., 2023). This method directly highlights objects in the
input images, ensuring a strong association between the generated data and the referenced objects. Addi-
tionally, we propose incorporating the category information of each object within the prompts, which greatly
enhances the quality of the generated data. (Details about data construction can be found in Appendix D.)

MDVP-Bench. To evaluate the proficiency of MLLMs in visual prompting tasks and their versatility across
various domains, we initially curated a subset of our MDVP-Instruct-Data. This subset underwent a thorough
manual content filtering and refinement process, resulting in the creation of MDVP-Bench. MDVP-Bench
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LLM

Vision
Encoder

Visual Prompt
Encoder

Proj

Text LLM（LLaMA2 / LLaMA3 / InternLM2 / Qwen2）

Visual Prompt
Encoder

START VP END VP

What animal is in <Region 1>? 
What is it doing?

Tokenizer

<Region 1> is a squirrel, and it's eating pine cones.

Stage 1: Alignment Pre-training

(b)V
isual Prom

pt Encoder

(c) Overall Architecture

Vision Encoder

Visual Prompt Encoder Proj Others

Stage 2: Supervised Finetuning
LLM Proj Others

(a) Two-Stage Training Strategy

……
v1 vnv2 v3 v4 v5 ……

Positional Encoding

Validity identifier

Label=0Label=1

Three Learnable Vectors

……
MLP

Figure 4: (a) The proposed training strategy for our VP-MLLM. (b) The detail of visual prompt encoder. (c)
The overall architecture of the VP-MLLM. The Vision Encoder, Tokenizer, and LLM are derived from pre-
trained MLLMs such as LLaVA (2024), SPHINX (2024), Qwen-VL (2023), and others. By incorporating
our proposed visual prompt encoder, we can feed the image tokens, visual prompt tokens, and text tokens
together into the LLM for training, equipping the MLLM with visual prompting understanding capabilities.

serves as a challenging benchmark that encompasses a wide range of tasks, including concise descriptions,
elaborate narratives, analyses of interconnections between regions, and complex reasoning.

For open-ended evaluations, existing methods typically follow LLaVA’s approach (Liu et al., 2024b), using
GPT-4 with textual descriptions to depict image content. However, these descriptions often depend on
image annotations, which can lead to situations where GPT-4 fails to recognize unannotated objects or
backgrounds. Additionally, inherent domain gaps between textual descriptions and images may result in
misunderstandings of the image content. To ensure a more robust evaluation, we employ GPT-4V. We
directly annotate images using SoM prompting (Yang et al., 2023), submitting both the images and textual
questions to GPT-4V for scoring. The scoring follows the LLaVA-bench guidelines, with scores ranging
from 1 to 10, where higher scores indicate better model performance.

3 VISUAL PROMPTING MLLM

In this section, we detail the process of integrating visual prompt understanding into pre-trained MLLMs
and transforming them into Visual Prompting MLLMs (VP-MLLMs). We also introduce a training strategy
designed to enhance alignment and fine-tuning for VP-MLLMs.

3.1 ARCHITECTURE

Overall Architecture of VP-MLLM. For most existing MLLMs, the overall architecture consists of three
components: a vision encoder, a tokenizer (text encoder), and a Large Language Model (LLM). Each modal-
ity is processed by its corresponding encoder, and the resulting tokens are concatenated and fed into the LLM
for learning. Similarly, to achieve visual prompting understanding, we incorporate a visual prompt encoder
to embed the input visual prompts, as shown in Fig. 4(c). This integration allows us to combine the image,
visual prompt, and language representations and forward them collectively to the LLM.
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Visual Prompt Encoder. As shown in Fig. 4(b), we introduce a simple yet effective visual prompt en-
coder that focuses on two types of visual prompts: points and bounding boxes. Initially, the encoder utilizes
positional encoding(Tancik et al., 2020) for the coordinates of both points (center) and boxes (top-left and
bottom-right corners). It then adds three distinct learnable embeddings for each corner and processes them
through a linear layer to obtain unified output embeddings. Additionally, we accommodate a dynamic num-
ber of visual prompts as input. We first set a fixed number of visual prompt tokens (e.g., 16). Based on the
validity of the actual input tokens, we provide both valid and invalid tokens with a set of learnable vectors to
help the model discern their effective features. Finally, we employ a linear layer to map the embeddings of
different prompt types to the same dimension, thereby unifying the various visual prompt inputs.

3.2 TRAINING STRATEGY FOR VP-MLLM

Stage 1: Image-Visual Prompt-Text Alignment Pre-training. We initially freeze both the pre-trained
vision encoder and the LLM, then focus on training the features of visual prompts to align with those of
the input image and text. Following the approach in LLaVA (Liu et al., 2024b), we implement an MLP
to transform the visual prompt tokens into the latent space of the LLM. We use open-source detection and
segmentation datasets to create our stage 1 training data. These datasets include a wide range of objects
and label types, such as elements of the natural world (e.g., people, animals, objects), remote sensing (e.g.,
buildings, roads, vehicles, water bodies), document components (e.g., titles, paragraphs, images, tables),
OCR data (e.g., text recognition), and screenshots (e.g., icons, text, search bars). For point visual prompts,
we randomly sample pixels from semantic segmentation images, where each point corresponds to a pixel-
level label annotation. For box visual prompts, we directly use the ground truth bounding boxes from
detection datasets as inputs, enabling the model to recognize their corresponding labels. With this rich and
diverse data for pre-training, the model is well-equipped for visual prompting and object categorization. The
datasets used in stage 1 are shown in Appendix (Table 5).

Stage 2: Multi-Task Instruction Finetuning. At this stage, we load the weights trained from stage 1 and
keep the vision encoder and visual prompt encoder weights frozen. We then fine-tune the visual prompt pro-
jector and the LLM. This stage focus on enhancing model’s ability to accurately interpret user instructions
and handle diverse visual prompting understanding tasks, such as detailed captioning, inter-relationship
analysis, and complex reasoning, while maintain the original robust vision-language global understand-
ing capability. Table 6 outlines all the data utilized during stage 2 fine-tuning, which includes our pro-
posed MDVP-Instruct-Data, Visual Genome (VG)(2017), Visual Commonsense Reasoning (VCR)(2019),
Visual7w (2016), Osprey-724k (2024a), and multiple open-source image-level instruction datasets.

Simulation Training for Free-Form Visual Prompt Inputs. To support free-form visual prompts, we
introduce a noise-based augmentation during the alignment stage to simulate the required input area. For
box prompts, Gaussian noise proportional to the box size is applied, resulting in bounding boxes that may
exceed or partially cover the target, thereby approximating a free-form visual prompt’s enclosing rectangle.
For point prompts, we sample multiple pixels within the target’s mask, guiding them toward the same object
to enable precise point-based referencing. At inference, free-form inputs are pre-processed into bounding
boxes, enabling flexible, user-drawn prompts.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

For evaluation, we primarily use two popular MLLMs: SPHINX-X (Gao et al., 2024) and LLaVA-Next-
LLaMA3 (Liu et al., 2024a), along with three model sizes: 7B, 8B, and 13B. We transform these models
into VP-SPHINX and VP-LLaVA based on our proposed framework. We employ AdamW (Loshchilov &
Hutter, 2017) as our optimizer and leverage flash attention (Ford et al., 2009) to enhance computational
efficiency. During the stage 1 training phase, we set the starting learning rate to 4e− 5. In stage 2, the initial
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Table 1: Results of referring classification on LVIS and PACO, and COCO text. Calculation of Semantic
Similarity and Semantic IOU was performed using box visual prompts. We randomly perturb the center
positions and scale the dimensions of the box visual prompts to simulate free-form inputs.

Method

LVIS(2019) PACO(2023) COCO Text(2016b)

Semantic
Similarity

Semantic
IOU

Accuracy Semantic
Similarity

Semantic
IOU

Accuracy

Point Box Free-Form Box

LLaVA-7B(2023b) 48.95 19.81 50.1 50.3 - 42.20 14.56 -
Shikra-7B(2023b) 49.65 19.82 57.8 67.7 - 43.64 11.42 -
GPT4RoI-7B(2023a) 51.32 11.99 - 61.8 - 48.04 12.08 -
ChatSpot-7B(2023) - - - 64.5 - - - 31.8
Osprey-7B(2024a) 65.24 38.19 - - - 73.06 52.72 -
Ferret-13B(2023) 64.96 37.82 68.4 80.5 71.0 - - -
Ferret-v2-13B(2024) - - 75.1 87.7 76.4 - - -
VP-SPHINX-7B 86.02 61.24 85.44 88.50 86.19 74.15 49.88 43.67
VP-SPHINX-13B 87.06 62.90 86.46 89.82 88.96 76.82 51.32 45.44
VP-LLaVA-8B 86.67 61.52 85.85 89.44 88.09 75.67 50.04 44.82

learning rate was adjusted to 1e− 5. The input images were processed using each model’s unique dynamic
resolution mechanism, and the maximum sequence length for the Large Language Model (LLM) was set to
3072. In all evaluation experiments, we will not continue to fine-tune on a specific dataset but will instead
adopt a zero-shot testing approach.

4.2 REFERRING CLASSIFICATION

Object Classification. This task is defined as follows: the question targets a specific area within the image,
requiring the model to identify the object in that designated region. Following (Yuan et al., 2024a), we
employ two semantic relevance indicators—Semantic Similarity (SS) and Semantic Intersection over Union
(S-IOU)(Rezatofighi et al., 2019)—to assess the model’s classification performance on the validation sets of
the object-level LVIS(Gupta et al., 2019) and part-level PACO (Ramanathan et al., 2023) datasets. As shown
in Table 1, our VP-SPHINX and VP-LLaVA significantly outperform state-of-the-art methods in terms of
SS and S-IOU by a notable margin.

We also conducted tests on traditional closed-set object classification tasks. To ensure the model outputs
names of categories within the closed set, we followed the approach described in (You et al., 2023) and
adapted our evaluation to a binary-choice format. We posed questions such as, ”Please identify the labels of
each marked region in the image. Is the region a (Class A) or a (Class B)?”. The accuracy results presented
in Table 1 indicate that our VP-MLLMs demonstrate a strong capability for accurately locating the Region
of Interest (RoI) and identifying the corresponding object categories within that region.

Regional Optical Character Recognition. Optical character recognition (OCR) focuses on identifying
text in images and is a fundamental aspect of visual entity recognition. Following the approach in (Zhao
et al., 2023), we utilize the COCO-Text dataset(Veit et al., 2016a) to assess the regional text recognition
capabilities of our VP-MLLMs. Using the ground-truth bounding boxes provided in the dataset annotations,
we prompt the model with requests such as, “Please provide the OCR results for the marked region in the
image.” The VP-MLLMs then analyze and respond with the textual content present in the specified regions.

Given that most visual prompt-based models do not support OCR, we compare our results with ChatSpot
under identical zero-shot settings. As shown in the right column of Table 1, our models outperform ChatSpot
by more than 10%, highlighting its promising capability in regional text recognition. Moreover, as shown
in Fig. 5, our VP-MLLMs not only recognize text in the specified regions but also exhibit enhanced under-
standing and descriptive abilities. For instance, they can describe characteristics such as font type, color, and
background. This underscores our models’ exceptional pixel-level understanding capabilities.
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Table 2: Region-level captioning performance on the validation set of RefCOCOg and performance com-
parison on general MLLM benchmarks including VQA and OCR.

Method RefCOCOg(2016) VQAv2(2017) MMEP (2024) POPE(2024c) SEED(2023) TextVQA(2019) DocVQA(2021)

GPT-4V METEOR CIDEr General VQA OCR

Qwen-VL-7B(2024a) - - - 78.8 - - 56.30 63.8 65.1
LLaVA-Next-8B(2024a) - - - - 1603.7 - - 64.6 59.7
SPHINX-X-13B(2024) 40.16 - - 80.2 1457.7 89.1 74.8 65.7 61.2
Shikra-7B(2023b) 40.97 - - - - 58.8 - - -
Shikra-13B(2023b) 43.46 - - 77.4 - 59.2 - - -
Osprey-7B(2024a) 77.54 16.6 108.3 - - - - - -
Ferret-v2-7B(2024) - - - 81.5 1510.3 87.8 58.7 61.7 -
Ferret-v2-13B(2024) - - - 81.8 1521.4 88.1 61.7 62.2 -
VP-SPHINX-7B 84.37 21.0 138.7 76.8 1377.0 88.6 71.4 59.8 58.1
VP-SPHINX-13B 88.19 23.9 162.5 78.4 1412.2 88.9 73.1 63.2 60.1
VP-LLaVA-8B 86.67 22.4 153.6 81.7 1554.9 88.5 58.8 62.9 58.8

4.3 REFERRING REGION-LEVEL CAPTIONING

Brief Region Description. We provide quantitative comparisons for the region-level captioning task with
using both mask- and box-based approaches. Specifically, we employ a box visual prompt and a text prompt,
such as ”Please provide a brief description of each marked region in the image,” to prompt our VP-MLLM
to concisely describe the content of the targeted region. Experiments were conducted on the validation sets
of RefCOCOg. Following (Yuan et al., 2024a), we use the METEOR and CIDEr scores to evaluate the
semantic similarity between the generated captions and the ground truth. As the results shown in the left
part of Table 2, our VP-MLLMs demonstrate superior performance compared to Kosmos-2 and Osprey.

Detailed Region Description. To evaluate the detailed region description capabilities, we leverage GPT-4
to measure the quality of responses for input referring regions. Following the approach used in Osprey (Yuan
et al., 2024a), we sample 80 images from the RefCOCOg validation set (Yu et al., 2016) to generate detailed
region captions using box visual prompts and text prompts like, ”Please provide a detailed description of
each marked region in the image.” GPT-4 is then used to assess the captions generated by the MLLMs,
with evaluation scores ranging from 1 to 10 and calculate the ratio of the predicted score to that of GPT-4,
expressed as a percentage. The results shown in the first column of Table 2 indicate that our VP-MLLMs
achieve the best performance, with VP-SPHINX-13B reaching an accuracy of 88.19%, significantly outper-
forming other region-based and mask-based methods. In comparison to other models of similar size, our
VP-LLaVA-8B also achieves a score of 86.67%, surpassing the current SOTA method Osprey-7B by 9.13%.

4.4 COMPREHENSIVE ASSESSMENT

To comprehensively evaluate the effectiveness of our VP-MLLMs, we first use LLaVA-Bench to compare
with previous models and assess general image-level understanding capabilities. Since the questions in
LLaVA-Bench and general MLLM benchmarks are based on the entire image, we use bounding boxes that
cover nearly the full image as visual prompts. The results are shown in Table 3. Our VP-MLLMs demon-
strate highly competitive performance on complex reasoning tasks and significantly outperform other visual
prompting MLLMs in conversation and detailed captioning tasks. Additionally, we conducted evaluations
on a series of modern MLLM benchmarks. As shown in Table 2, our VP-MLLMs exhibit leading perfor-
mance across image-level benchmarks such as MME, SEED-Bench, POPE, and OCRBench compared to
existing visual prompting methods. Although their overall performance is slightly lower than that of the
original MLLMs, we attribute this situation partly to our use of only a subset of open-source instruction data
for training, which is in line with our expectations.

Furthermore, we use Ferret-Bench and our proposed MDVP-Bench to evaluate the pixel-level visual prompt-
ing capabilities of our models. Experiments are conducted on the Referring Description and Referring Rea-
soning tasks within Ferret-Bench, with the results presented in Table 3. In both tasks, our models present
competitive performance compared to the current SOTA model, Ferret-v2. For MDVP-Bench, we combine
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Table 3: Performance on the LLaVA Bench, Ferret Bench, and our MDVP Bench.

Method

LLaVA Bench(2023b) Ferret Bench(2023) MDVP Bench

Conve-
rsation

Detail
Description

Complex
Reasoning

Referring
Description

Referring
Reasoning Natural OCR Multi-Panel Screenshot

Box Point Box Point Box Point Box Point

LLaVA-7B(2023b) 85.4 68.3 92.1 41.4 31.7 - - - - - - - -
SPHINX-X-13B(2024) - - - 55.6 70.2 - - - - - - - -
Kosmos-2(2023) 71.7 63.4 74.9 51.8 33.7 - - - - - - - -
Osprey-7B(2024a) - - - 72.2 67.8 86.4 - 18.33 - 48.56 - 28.84 -
Ferret-7B(2023) 84.4 79.4 96.3 68.7 67.3 84.92 81.42 21.24 12.20 44.42 32.08 26.40 10.62
Ferret-13B(2023) 85.2 80.9 96.4 70.6 68.7 86.67 83.40 27.68 12.20 49.83 37.65 30.92 14.40
Ferret-v2-13B(2024) - - - 79.6 79.4 - - - - - - - -
VP-SPHINX-7B 81.1 83.1 79.2 73.1 68.2 85.57 88.82 74.28 81.67 74.21 75.24 76.72 50.04
VP-SPHINX-13B 84.6 86.4 83.3 77.4 71.4 88.82 92.95 78.49 85.29 77.30 79.08 80.07 54.05
VP-LLaVA-8B 90.9 78.9 94.4 75.2 68.9 87.02 89.29 75.67 81.92 76.02 75.19 78.92 51.12

different tasks to provide a comprehensive assessment of the model’s overall capabilities. As the results
show, compared to Osprey and Ferret, our VP-MLLMs significantly outperformed them across multiple do-
mains. This improvement can be attributed to training on our MDVP-Instruct-Data, which highlights the
strong fine-grained understanding and reasoning abilities of our VP-MLLMs.

Notably, we observed that box prompt scores were sometimes lower than point prompt scores. After review-
ing the model’s responses, we found that in tasks with fewer visual prompts per image, box-based prompts
performed better, while in tasks involving more visual prompts, point-based prompts showed significantly
stronger performance. This finding highlights the effectiveness of our visual prompt encoder in modeling
different types of visual prompts and suggests potential areas for future research and enhancement.

What details can be seen  in <Region 1>?User

The cat in <Region 1> has a white and black fur 
pattern, with a focus in its gaze, sitting alertly 
next to a boot.

VP-SPHINX

In <Region 1>, the cat, with its striking black and 
white fur, sits attentively by an old long boot, its 
gaze sharp and focused.

VP-LLaVA

1
2

Please provide a detailed description of <Region 1>.User

<Region 1>: The text "290" appears in a bold, sans-
serif font, with a white color that stands out against the 
red background of the sign.  
The numbers are prominently displayed, suggesting 
their significance, possibly indicating a house number 
or a part of an address. 

VP-SPHINX

<Region 1>: the bold, sans-serif numbers "290" are 
displayed in white, standing out against the red 
background of the sign. Their prominent placement 
suggests they may represent a house number or part of 
an address, indicating their importance.

VP-LLaVA

How can one interpret the 'Total stockholders' equity' 
in <Region 1>?

User

Total stockholders' equity' in <Region 1> can be 
interpreted as the residual interest in the assets of 
the company after deducting liabilities.  It 
represents the net value owned by the shareholders.

VP-SPHINX

In <Region 1>, total stockholders' equity refers to the 
remaining interest in the company’s assets once all liabilities 
have been subtracted. It reflects the net worth attributable to 
the shareholders, representing their ownership stake and 
claim on the company’s value after debts are settled.

VP-LLaVA

1

2

1

Please provide a detailed description of <Region 1>.User

This icon represents a shopping cart, which is a 
common symbol for e-commerce and online 
shopping. It typically indicates a section where users 
can view items they have selected for potential 
purchase. The number next to the cart suggests that 
there are currently 1 item in the user's cart.

VP-SPHINX

This icon depicts a shopping cart, a widely recognized 
symbol for e-commerce and online shopping. It 
usually points to a section where users can view the 
items they've chosen to buy. The number shows that 
there is currently 3 item in the user's cart.

VP-LLaVA

Please analyze the relationships between <Mark 1> and 
< Mark 2>.

User

Both < Mark 1> and < Mark 2>  are fundamental self-
care strategies, where < Mark 1> focuses on mental 
and emotional support, while < Mark 2> emphasizes 
the role of physical health in psychological well-being.

VP-SPHINX

< Mark 1> and < Mark 2> are essential self-care 
approaches. < Mark 1> prioritizes mental and emotional 
well-being, while < Mark 2> highlights the importance 
of physical health in supporting overall mental wellness.

VP-LLaVA

Please provide me a brief description of <Region 1> 
and <Region 3>.

User

<Region 1>: A large storage or industrial building 
located near agricultural fields.
<Region 3>: A small, isolated house situated in a 
remote area.

VP-SPHINX

<Region 1>: There is a sizable industrial positioned 
close to agricultural fields
<Region 3>: A modest house stands alone in a 
distant, rural location.

VP-LLaVA

1

2

3

3

2

1

2

1

Figure 5: Qualitative examples generated by our VP-SPHINX and VP-LLaVA.
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Table 4: Ablation study on different embedding format of visual prompts, training strategy, and dataset.

Method

LVIS PACO COCO Text MDVP-Bench

Semantic
Similarity

Semantic
IOU

Accuracy Semantic
Similarity

Semantic
IOU

Accuracy Natural

Point Box Point Box

SPHINX-13B w/ Alpha Blending 56.89 33.73 46.84 40.53 21.14 21.48 41.19 64.58
SPHINX-13B w/ text 57.74 34.68 49.59 40.17 22.66 20.12 46.71 63.85
SPHINX-13B w/ VPE (ours) 68.74 39.29 69.57 52.73 27.64 25.81 67.73 72.54
VP-SPHINX-13B w/ One-Stage 61.13 33.69 62.94 46.74 23.96 21.60 61.24 65.77
VP-SPHINX-13B w/ Two-Stage (ours) 68.74 39.29 69.57 52.73 27.64 25.81 67.73 72.54
VP-SPHINX-13B w/ all MDVP data 68.74 39.29 69.57 52.73 27.64 25.81 67.73 72.54
- w/ only Grounding QA data 67.67 37.24 67.98 50.93 25.14 22.90 52.59 54.64
- w/ only GPT4v-related data 68.02 38.56 68.87 51.34 26.71 24.49 64.67 68.59

4.5 ABLATION STUDY

To evaluate the effectiveness of the key elements of our approach, we conduct the ablation experiments.
Given the extensive amount of training data, our comparison was limited to the first 50k training iterations.

The Effectiveness of Visual Prompt Encoder. To assess the effectiveness of our visual prompt encoder
(VPE), we explored two alternative methods for incorporating visual prompts into MLLMs: (1) overlaying
the visual prompts on the original image via alpha blending with an alpha value of 0.5; and (2) explicitly
including the coordinates of the visual prompt in the instructional text prompt. As shown in Table 4, while
these alternative methods enabled the MLLM to successfully identify the regions indicated by the visual
prompts, their performance was not as strong as that achieved with our visual prompt encoder. This suggests
that our visual prompt encoder possesses superior capabilities for processing visual prompts.

The Two-stage Training Strategy. To validate the effectiveness of our proposed two-stage training strat-
egy, we conducted an additional experiment in which we bypassed the alignment phase (stage 1) and set both
the visual prompt encoder and the LLM to a trainable state for comprehensive model training. As shown
in Table 4, the results demonstrate that, within the same training duration, the two-stage training approach
significantly enhances visual prompting understanding, yielding improvements across all evaluated metrics.

The Importance of GPT-4V-Constructed Data. Since MDVP-Instruct-Data is constructed from open-
source grounding QA datasets and data constructed by GPT-4V, we further validate the effectiveness of
GPT-4V-related dataset. Specifically, we divide MDVP-Instruct-Data into two parts: one contains only data
from the Grounding QA datasets, while the other consists solely of GPT-4V-related data. We then perform
fine-tuning on each part separately. The results, as shown in Table 4, indicate that for both classification tasks
and complex reasoning and dialogue tasks, the GPT-4V-constructed data provides significant improvements,
underscoring its effectiveness. Moreover, when we utilize the complete dataset, the model achieve the
highest performance, highlighting the overall quality of our MDVP-Instruct-Data.

5 CONCLUSION

In summary, we introduce a new framework, Draw-and-Understand, designed to equip existing MLLMs with
robust visual prompting capabilities while preserving their original image-level perception. With our pro-
posed visual prompt encoder, our VP-MLLMs can simultaneously support multiple types of visual prompts,
including points, boxes, and free-form shapes, greatly enhancing user flexibility. Additionally, we curated
the MDVP dataset, which comprises 1.2 million high-quality image-point-text and image-region-text triplets
for model training, along with the comprehensive and challenging MDVP-Bench dataset for evaluation. Our
superior performance in various visual prompting tasks demonstrates the efficacy and robustness of our VP-
MLLMs. We believe our contributions provide a solid foundation for further exploration in the field of
intelligent visual interaction systems.
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APPENDIX

Table 5: Statistics of Training Data in Stage 1. This data also serves as the source for the GPT-4V-constructed
dataset within MDVP-Instruct-Data.

Type Raw Data #Samples

Natural

COCO (Yu et al., 2016)
Visual Genome (Krishna et al., 2017)

Object365 (Zhou et al., 2022)
ADE20k (Zhou et al., 2019)

Pascal VOC (Vicente et al., 2014)

LVIS (Gupta et al., 2019)
OpenImages (Kuznetsova et al., 2020)

V3Det (Wang et al., 2023)
Cityscapes (Cordts et al., 2016)

Flickr30k (Plummer et al., 2015)

4.6M

Document layout Docbank (Li et al., 2020c)
DoclayNet (Pfitzmann et al., 2022)

PublayNet (Zhong et al., 2019)
M6Doc (Cheng et al., 2023) 2.5M

OCR Spotting

ICDAR13 (Karatzas et al., 2013)
CTW1500 (Yuliang et al., 2017)
MLT2019 (Nayef et al., 2019)

CurvedSynText150k (Liu et al., 2020)

ICDAR15 (Karatzas et al., 2015)
MLT2017 (Nayef et al., 2017)
totaltext (Ch’ng & Chan, 2017) 550K

Remote Sense

DIOR (Li et al., 2020b)
NWPU VHR-10 (Su et al., 2019a)

RSOD (Zhang et al., 2023b)
UCAS (Xumo, 2023)

DOTA (Xia et al., 2019)
FAR1M (Sun et al., 2021)

HRRSD (Zhang et al., 2019)
HIT-UAV (Suo et al., 2023)

420K

Android & Web AITW (Taleby Ahvanooey et al., 2016) SeeClick (Cheng et al., 2024) 300K

Table 6: Statistics of Training Data in Stage 2.

Task Raw Data #Samples
Category Identification Subset in Stage-1 1.5M

Brief Caption
RefCOCO (Yu et al., 2016)

RefCOCOg (Yu et al., 2016)
MDVP-Instruct-Data

RefCOCO+ (Yu et al., 2016)
Visual Genome (Krishna et al., 2017) 1.6M

Detailed Caption MDVP-Instruct-Data 752K

Relationship Analysis
Visual Genome (Krishna et al., 2017)

DIOR (Li et al., 2020b)
MDVP-Instruct-Data

RSOD (Zhang et al., 2023b)
LEVIR (Chen & Shi, 2020) 1.3M

Multi-Target Captioning
GRIT (You et al., 2023)

OpenPsgGCG (Rasheed et al., 2023)
GeoChat (Kuckreja et al., 2023)

Flicker30K (Plummer et al., 2015)
RRSIS-D (Yuan et al., 2024b) 1.3M

Referring Q&A
and Reasoning

VCR (Krishna et al., 2017)
Osprey-724K (Yuan et al., 2024a)

OPT-RSVG (Zhan et al., 2023)

Visual7W (Zhu et al., 2016)
DIOR-RSVG (Li et al., 2020b)

MDVP-Instruct-Data
2.7M

General Image Q&A
and Reasoning

laionGPT4v (Chen et al., 2024)
ChartQA (Masry et al., 2022)

DVQA (Kafle et al., 2018)
LLaVA Instruct 150k (Liu et al., 2024b)

VisualMRC (Tanaka et al., 2021)
MGM Instrction (Li et al., 2024)

AI2D (Hiippala et al., 2020)
DocVQA (Mathew et al., 2021)

GeoQA (Chen et al., 2022)
shareGPT4v (Chen et al., 2023c)

SynthDoG (Kim et al., 2022)
In-house Dataset

4+M

A IMPLEMENTATION DETAILS

A.1 MODEL SETTINGS

To construct our VP-MLLMs, we start by inheriting the entire model structure from various pre-trained
MLLMs. Specifically, for VP-SPHINX-X, we utilize the Mixture of Visual Experts (MoV)(Gao et al.,
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2024) as the base image encoder and LLaMA2-7B/13B(Touvron et al., 2023) as the large language model
(LLM). For VP-LLaVA-8B, we employ CLIP-ViT-L-14 (3362) (Radford et al., 2021) as the base image
encoder and LLaMA3-8B (Dubey et al., 2024) as the LLM. We adopt each pre-trained MLLM’s respective
Any Resolution strategy to process input images, effectively capturing their details. This strategy primarily
involves sub-image splitting, image padding, and optimal aspect ratio selection, ultimately generating a
flattened list of image tokens. Subsequently, we introduce our proposed visual prompt encoder (VPE) to
process visual prompt inputs, yielding visual prompt tokens for modeling. These image tokens, visual
prompt tokens, and text tokens are concatenated sequentially to form a single input for the LLM. Notably,
we prepend and append a learnable token to the visual prompt tokens to serve as start and end markers.

A.2 TRAINING DATA

Our final fine-tuning data mixture comprises a diverse range of datasets, encompassing not only a variety
of image domains but also a wide array of task types. These tasks include pixel-level and region-level
classification, brief captions, detailed descriptions, relationship analysis, and complex reasoning and Q&A.

Stage 1. Our pre-training tasks are similar to the image captioning tasks commonly used in mainstream
MLLMs pre-training stage. However, they focus on learning image-level descriptions, our VP-MLLM
targets pixel-level and region-level semantic classification. Specifically, we will first collect open-source
datasets related to object detection, instance segmentation, and semantic segmentation. From their anno-
tations, we can obtain ground truth pairs such as (bbox, label), (mask, label), and (pixel, label). Next, we
will use bbox, mask (randomly sample a few points), and pixel (point) as visual prompts inputted into the
VP-MLLM to train the model to respond with the corresponding category. During this stage, only the visual
prompt encoder and the projection layer are trained. The structure of our stage-1 pre-training data is as
follows:

{"from": "human", "value": "Please identify the labels of each marked region in the image. "},
{"from": ”GPT", "value": "<Region 1>: Label 1\n< Region 2>: Label 2\n< Region 3>: Label 3\n......"}

{"from": "human", "value": "Please identify the labels of each marked point in the image."},
{"from": ”GPT", "value": "<Mark 1>: Label 1\n< Mark 2>: Label 2\n< Mark 3>: Label 3\n......"}

{"from": "human", "value": "Please recognize the text of each marked region in the image. "},
{"from": ”GPT", "value": "<Region 1>: Text 1\n< Region 2>: Text 2\n< Region 3>: Text 3\n...... "}

All datasets used in stage 1 are open-source detection and segmentation datasets. A complete list of the
datasets can be found in Table 5. Specifically, we collected data from five different image domains to en-
hance data diversity: (1) Natural Images: containing over 10k real-world semantic categories; (2) Document
Images: including layout classifications such as titles, abstracts, paragraphs, and images; (3) OCR in the
Wild: mainly for recognizing text in natural scenes, such as billboards and signage; (4) Remote Sensing: for
identifying different regions in remote sensing images, such as playgrounds, vehicles, and pedestrians; (5)
Mobile and Web Interfaces: recognizing key elements in mobile and desktop user interfaces, such as icons,
text, and search bars.

Stage 2. In Stage 2, our primary focus is on enhancing the VP-MLLMs’ ability to accurately interpret
user instructions and handle diverse pixel-level understanding tasks, including detailed captioning, inter-
relationship analysis, complex reasoning and so on. Table 6 provides an overview of all the data used during
Stage 2 fine-tuning. Figure 6a presents an example of converting object detection data into visual prompt
training data.

Training Hyperparameters. Both Stage 1 and Stage 2 training were conducted on 8 A100 GPUs. We show
the training hyperparameters for both stage 1 vision-language-visual prompt alignment pretraining and the
stage 2 instruction tuning in Table 7.
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(a) An example of converting open-source object detection data into visual prompt training data. The visual prompt
training data consists of three parts: the image, the visual prompt, and the text prompts (question and answer). The
image is taken directly from the object detection dataset, while the visual prompt is the ground-truth bounding box
with slight perturbations. The text prompts can either be selected from fixed prompt templates (e.g., the red text of
Classification on the far right) or be enhanced by GPT-4V (e.g., the blue text of Inter-Relationship and Conversations &
Reasoning on the far right).

(b) Examples from the Stage 2 training data. Each visual prompt is associated with a response that focuses on describing
the specific region of interest.

Figure 6: Training Data Preprocessing and Construction.

Training Settings Stage 1 Stage 2
Batch Size 256 64
Training Epochs 1 1
Warmup Epochs 0.03 0.03
Learning Rate 4× 10−5 1× 10−5

LR schedule cosine decay cosine decay
Gradient Clipping 8 8
Weight Decay 0 0
Optimizer AdamW AdamW

Table 7: Hyperparameters of VP-MLLMs.
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B RELATED WORKS

Multimodal Large Language Models. Recently, the development of Large Language Models (LLMs) has
marked a significant milestone in the field of Natural Language Processing (NLP). LLMs such as the GPT
series (Achiam et al., 2023), PaLM (Chowdhery et al., 2023), and LLaMA (Touvron et al., 2023) have not
only achieved remarkable results in text processing but have also laid the groundwork for multimodal learn-
ing. Building on this progress, the emergence of Multimodal Large Language Models (MLLMs), including
BLIP-2 (Li et al., 2023b), Flamingo (Alayrac et al., 2022), and LLaVA (Chen et al., 2024), has expanded
the application scope of LLMs beyond text to other modalities. Notably, a fine-grained understanding of vi-
sion has emerged as a new focus. Works such as VisionLLM (Wang et al., 2024a) employ language-guided
tokenizers to extract vision features at specific granularities, showcasing the potential in this direction.

Visual and Multi-Modal Prompting. Visual and multimodal prompting in deep learning (Kirillov et al.,
2023; Yuan et al., 2024a; You et al., 2023; Cai et al., 2023; Zhao et al., 2023) is an emerging area of study.
Techniques utilizing visual prompts (e.g., boxes, masks) aim to enhance model performance on specific
visual tasks. Key developments include SAM (Kirillov et al., 2023) and its enhanced versions, which support
a broad range of prompts. Further advancements, such as SEEM (Zou et al., 2024), HIPIE (Wang et al.,
2024b), and Semantic SAM (Li et al., 2023a), have improved semantic prediction. Nonetheless, for nuanced
real-world applications, models require multidimensional semantic analysis, incorporating color and spatial
information to fully comprehend and reason about visual scenes.

Recent advancements such as GPT4RoI (Zhang et al., 2023a), Kosmos-2 (Peng et al., 2023), Shikra (Chen
et al., 2023b), Ferret (You et al., 2023), GLaMM (Rasheed et al., 2023), and ViP-LLaVA (Cai et al., 2023)
have enhanced MLLMs’ capabilities in region-specific image comprehension. Innovations like Colorful
Prompting Tuning (CPT)(Yao et al., 2021) and RedCircle(Shtedritski et al., 2023) leverage color cues to
improve model interpretative skills. Osprey (Yuan et al., 2024a) further advances this by enabling interactive,
precise visual understanding using natural language and mask-based instructions. However, these methods
face challenges with flexibility and complex reasoning, particularly in simultaneous multi-target referencing
and their reliance on pre-defined masks, which hinders broader applications.

C MORE EXPERIMENTS

C.1 REGION-LEVEL REASONING

To evaluate the reasoning capabilities of our VP-MLLMs, we utilized the Visual Commonsense Reason-
ing (VCR) dataset (Zellers et al., 2019), a challenging benchmark designed to assess a model’s high-level
cognitive and commonsense reasoning abilities within context. The VCR dataset comprises multiple-choice
questions that require an understanding of the scene depicted in an image. Each question (Q) is accompanied
by four possible answers (A), necessitating the model to not only identify the correct answer but also provide
a rationale (R) supporting its selection. This process underscores the model’s proficiency in interpreting and
justifying visual elements within specific contexts, with accuracy serving as the evaluation metric. Follow-
ing the evaluation approach employed in LLaVA-ViP (Liu et al., 2024a) and GPT4RoI (Zhang et al., 2023a),
we fine-tuned our models using the training set of VCR. As shown in the comparison results in Tab. 8, our
VP-SPHINX-13B achieves the highest performance scores of 88.92%, 90.23%, and 80.65% across three
distinct evaluation methods, respectively, showcasing its proficiency in visual commonsense reasoning.

D MORE DETAILS OF MDVP-INSTRUCT-DATA CONSTRUCTION

In this section, we outline our methodology for reconstructing open-source grounding datasets and our ap-
plication of GPT-4V to produce instruction-based data spanning a variety of domains, leading to the devel-
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Table 8: Validation Accuracy on VCR dataset.

Model Q → A (%) QA → R (%) Q → AR (%)
ViLBERT (Lu et al., 2019) 72.4 74.5 54.0
Unicoder-VL (Li et al., 2020a) 72.6 74.5 54.5
VLBERT-L (Su et al., 2019b) 75.5 77.9 58.9
ERNIE-ViL-L (Yu et al., 2021) 78.52 83.37 65.81
VILLA-L (Gan et al., 2020) 78.45 82.57 65.18
GPT4RoI-7B (Zhang et al., 2023a) 87.4 89.6 78.6
ViP-LLaVA-Base-7B (Cai et al., 2023) 87.66 89.80 78.93
VP-SPHINX-13B 88.92 90.23 80.65
VP-LLaVA-8B 88.43 89.96 79.71

opment of the MDVP-Instruct-Data. Fig.7 depicts an example from our dynamic multi-target captioning
dataset. Sec.D.2 showcase the prompts used to generate data across these diverse domains with GPT-4V.

D.1 EXAMPLES OF DYNAMIC MULTI-TARGET CAPTIONING DATA

Using two sample images from the Flickr30k dataset (Plummer et al., 2015) as illustrations, the Phrase
Grounding task involves identifying the bounding boxes in an image that correspond to various referring
phrases based on a given ground truth (GT) sentence. In a twist on this task, we invert the inputs (captions)
and outputs (bounding boxes): the model is provided with bounding boxes as visual prompts and is tasked
with generating natural language descriptions as responses. This process is illustrated in Fig. 7.

Two people are talking outside of the 
video game shop next door to the mobile 
phone store.

A professional soccer player dressed in 
black and white run after the ball after his 
opponent kicks it in the wrong direction .

Multi-Target 
Captioning 

Flicker30K

Please provide a summarized description based on all the 
marked regions in the image.

Flicker30KMulti-Target 
Captioning 

Figure 7: Examples of dynamic multi-target captioning data.
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D.2 DETAILED PROMPTS FOR GPT4V

We carefully designed prompts to facilitate data generation by GPT-4V, assigning it various roles and em-
bedding category-specific information within these prompts. Table 9 outlines a universal prompt template
applied across different domains. Meanwhile, Tables 10, 11, 12, 13, and 14 detail prompts tailored to specific
domains. An illustrative example of GPT-4V’s response during data generation is provided in Table 15.

E MORE QUALITATIVE RESULTS

We provide additional visual examples to further illustrate the pixel-level visual prompting understanding
capabilities of our VP-MLLMs across a diverse range of visual prompts. Fig.8 displays a variety of visual
scenarios from different domains, such as natural scenes, mobile and web interfaces, optical character recog-
nition (OCR) in natural settings, document layouts, and multi-panel images. In these complex situations,
our model showcases its proficiency in accurately responding to queries, highlighting its robust and versatile
capabilities.
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image =

messages = {"role":"system", "content": In the image, I have marked each visual object with
a green point, and each is identified by a white numeric ID against a black background.

The categories of visual objects are as follows:
<Mark 1>: dog
<Mark 2>: bed
<Mark 3>: mattress
<Mark 4>: pillow

Your analysis will revolve around four main functions:
<Role>

I will now supply you with specific output templates for content corresponding to the four roles. Please
adhere strictly to these templates when generating content, refraining from making any additional alterations,
including the insertion of extra spaces or line breaks. Adhering to this guideline is extremely crucial.
Format:
<Format>

Proceed with your analysis, keeping the language natural and clear.}

Table 9: The public prompt template used to feed to GPT-4V for data generation. Public prompts for different
domains exhibit slight variations. For instance, in the screen-shot domain, "In the image" is modified
to "In the screen-shot". The highlighted <Role> and <Format> in red are domain-specific.
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Role
<Role 1 (Short Description)> Provide a succinct and clear description for each marked region, en-
suring each description stands independently without reference or comparison to others.
<Role 2 (Detailed Description)> For each marked region in the image, please provide as detailed
a description as possible using natural language. Highlight the object’s category, type, color, and additional
attributes such as location, condition, and any relevant details. Envision yourself observing each region directly
and convey your observations as thoroughly and promptly as possible. A minimum of 30 words is required in
your description. Treat each mark as a unique and separate entity, requiring a full description exclusive to that
mark only.
<Role 3 (Inter-Relationship Analysis)> Delve into and analyze the relationships between the
marked regions. In your analysis, reference specific areas using identifiers like <Mark 1>, <Mark 2>, etc.
Elucidate the links and common features among these areas, which might encompass aspects such as their spa-
tial arrangement, inherent qualities, underlying principles, resemblances, variances, contextual ties, or notable
discrepancies. Should you find certain relational aspects insignificant or lacking in noteworthy content, omit
them from your discussion. In instances where a marked region stands apart without clear ties to others, high-
light its distinctiveness and provide a detailed description of this unique object or area.
<Role 4 (Q&A and Conversations)> Dive deeper into the detailed content and intricacies of every
marked regions, and interconnections among multiple marked regions. Employ identifiers such as <Mark 1>,
<Mark 2>, etc., to specify each area in your inquiries and responses. Assist in formulating question-answer
pairs that focus on either a single target area or multiple target areas, aiming to develop a rich dialogue dataset
(comprising at least 4 Q&A pairs). Ensure that the questions you craft inquire about one or more specified
<Mark>s.
Format
Role 1
<Mark 1>: Your Short Description
. . .
<Mark N>: Your Short Description
Role 2
<Mark 1>: Your Comprehensive Description
. . .
<Mark N>: Your Comprehensive Description
Role 3
<Mark 1><Mark 2>...<Mark N>: Your Detailed Analysis
. . .
<Mark 1><Mark 2>...<Mark N>: Your Detailed Analysis
Role 4
{"question": [Your created Question], "Answer": [Your created answer]}
. . .
{"question": [Your created Question], "Answer": [Your created answer]}

Table 10: The <Role> and <Format> prompt template used for natural images domain.
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Role
<Role 1 (Detailed Analysis and Description)> First, you need to deeply understand the
page content presented by the entire screenshot, and then thoroughly examine and explain the content and
purpose of the highlighted area. Provide a comprehensive description of its features, layout and functionality.
Specify if the area is interactive (such as a clickable button or search bar), and describe the result or action that
occurs upon interaction. If the highlighted area contains text, analyze whether it is a hyperlink, and the meaning
of the text and its intended function. To ensure precise and detailed descriptions for the marked regions, please
observe the following guidelines. Avoid mentioning the green rectangle or numeric ID of the marks I placed
on the image, as they are not significant. Treat each mark as a unique and separate entity, requiring a full
description exclusive to that mark only. A minimum of 30 words is required in your description.
<Role 2 (Q&A and Conversations)> Dive deeper into the detailed content and intricacies of
every marked regions, and interconnections among multiple marked regions. Employ identifiers such as
<Region 1>, <Region 2>, etc., to specify each area in your inquiries and responses. Assist in formulating
question-answer pairs that focus on either a single target area or multiple target areas, aiming to develop a rich
dialogue dataset (comprising at least 4 Q&A pairs). Ensure that the questions you craft inquire about one or
more specified <Region>s.

Table 11: The <Role> prompt template used for screenshots domain. The <Format> can be referenced
from natural images domain in Tab.10.

Role
<Role 1 (Detailed Region Description)> For each marked region in the image, provide a
thorough description using natural language. First, referring to the categories of visual objects I provided you
with, you need to tell me what the marked region is. Then, do your best to describe the content, characteristics,
and function of the marked area. If the marked area is a text paragraph, you should first understand the content
of the text, and then summarize the main idea. If the marked area is an image, you need to describe the content
of the image in detail, as well as why this image is included in the document.
To ensure precise and detailed descriptions for the marked regions, please observe the following guidelines.
Avoid mentioning the green rectangle or numeric ID of the marks I placed on the image, as they are not
significant. Treat each mark as a unique and separate entity, requiring a full description exclusive to that mark
only.
<Role 2 (Q&A and Conversations)> Dive deeper into the detailed content and intricacies of
every marked regions, and interconnections among multiple marked regions. Employ identifiers such as
<Region 1>, <Region 2>, etc., to specify each area in your inquiries and responses. Assist in formulating
question-answer pairs that focus on either a single target area or multiple target areas, aiming to develop a rich
dialogue dataset (comprising at least 4 Q&A pairs). Ensure that the questions you craft inquire about one or
more specified <Region>s.

Table 12: The <Role> prompt template used for document domain. The <Format> can be referenced
from natural images domain in Tab.10.
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Role
<Role 1 (Detailed Region Description)> For each marked region in the image, I’d like you to
give a detailed description, as if you were examining it in person. First refer to the OCR results of the specified
area I provided to clarify the text content. Then, delve into the characteristics of the text, including the font
style and its exact location within the image. I’d also appreciate insights into the background context of the
region and an analysis of why the text is present—its intended purpose. Please ensure your explanation is clear
and straightforward.
To ensure precise and detailed descriptions for the marked regions, please observe the following guidelines.
Avoid mentioning the red polygan or numeric ID of the marks I placed on the image, as they are not significant.
Treat each mark as a unique and separate entity, requiring a full description exclusive to that mark only.
<Role 2 (Q&A and Conversations)> Dive deeper into the detailed content and intricacies of
every marked regions, and interconnections among multiple marked regions. Employ identifiers such as
<Region 1>, <Region 2>, etc., to specify each area in your inquiries and responses. Assist in formulating
question-answer pairs that focus on either a single target area or multiple target areas, aiming to develop a rich
dialogue dataset (comprising at least 4 Q&A pairs). Ensure that the questions you craft inquire about one or
more specified <Region>s.

Table 13: The <Role> prompt template used for OCR-spotting domain. The <Format> can be referenced
from natural images domain in Tab.10.

Role
<Role 1 (Detailed Region Description)> For each marked region in the image, please provide
as detailed a description as possible using natural language. Carefully observe and analyze the content and
details of each panel I have marked. Tell me as best you can what the content and purpose of each marked area
is, including the content of figure and the text. Envision yourself observing each region directly and convey
your observations as thoroughly and promptly as possible. Treat each mark as a unique and separate entity,
requiring a full description exclusive to that mark only. A minimum of 30 words is required in your description.
<Role 2 (Inter-Relationship Analysis)> Delve into and analyze the relationships between the
marked regions. In your analysis, reference specific areas using identifiers like ¡Region 1¿, ¡Region 2¿, etc.
Elucidate the links and common features among these areas, which might encompass aspects such as their
spatial arrangement, reading order and contextual ties.
<Role 2 (Q&A and Conversations)> Dive deeper into the detailed content and intricacies of every
marked regions, and interconnections among multiple marked regions. Employ identifiers such as <Region
1>, <Region 2>, etc., to specify each area in your inquiries and responses. Assist in formulating question-
answer pairs that focus on either a single target area or multiple target areas, aiming to develop a rich dialogue
dataset (comprising at least 4 Q&A pairs). Ensure that the questions you craft inquire about one or more
specified ¡Region¿s.

Table 14: The <Role> prompt template used for multi-panels images domain. The <Format> can be
referenced from natural images domain in Tab.10.
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Response
<Role 1 (Short Description)>
<Mark 1>: Light brown dog sleeping peacefully on a bed.
<Mark 2>: A neatly arranged bed with light blue floral patterns.
<Mark 3>: Cream-colored mattress exposed at the edge of the bed.
<Mark 4>: Soft grey pillow partially tucked under a sleeping dog’s head.
<Role 2 (Detailed Description)>
<Mark 1>: The image displays a light brown adult dog with a closed eyes and relaxed ears, lying on its side,
comfortably asleep. The dog appears to be in a serene state of rest, with its head gently resting on a pillow,
hinting at the trust and safety it feels in its environment.
<Mark 2>: This mark points to a well-kept bed covered with light blue sheets that exhibit a delicate floral
design. The sheets seem smooth and unwrinkled, suggesting the bed was recently made or is well-maintained,
providing a cozy resting place.
<Mark 3>: An exposed corner of a cream-colored mattress is visible here, revealing its thick, sturdy build.
The mattress looks to be in good condition, with a soft upper layer that likely contributes to a comfortable
sleeping experience.
<Mark 4>: Here, we see a soft grey pillow with a smooth texture. It appears to be of a thickness that provides
ample support for comfort. The pillow is partially tucked under the sleeping dog’s head, indicating its use for
rest.
<Role 3 (Inter-Relationship Analysis) >
<Mark 1><Mark 2>: These marks indicate a relationship of proximity and usage. The dog <Mark 1> is
resting on the bed <Mark 2>, which implies the bed’s purpose in the household as a place for relaxation and
sleep.
<Mark 1><Mark 4>: There is a direct interaction here; the dog <Mark 1>)has its head on the pillow
<Mark 4>, showcasing the pillow’s function as a support for comfort and the dog’s apparent enjoyment of
this provision.
<Mark 2><Mark 3>: The bed <Mark 2> is made up with sheets that likely cover the mattress <Mark
3>, indicating that the mattress is part of the bed setup, essential for providing a comfortable sleeping surface.
<Mark 3><Mark 4>: There is no direct relationship between the mattress <Mark 3> and the pillow
<Mark 4> other than they both contribute to the overall comfort of the sleeping area. Each serves a dif-
ferent aspect of comfort and support.
<Role 4 (Q&A and Conversations)>
{”question”: ”What color is the dog at <Mark 1>?”, ”answer”: ”The dog at <Mark 1> is light brown.”}
{”question”: ”Describe the design of the bed’s sheets at <Mark 2>.”, ”answer”: ”The sheets at <Mark 2>
have a light blue color with a floral design.”}
{”question”: ”What can be said about the condition of the mattress at <Mark 3>?”, ”answer”: ”The mattress
at <Mark 3> appears to be in good condition and sturdy.”}
{”question”: ”How does the pillow at <Mark 4> contribute to the dog’s comfort?”, ”answer”: ”The pillow at
<Mark 4> provides support and comfort for the dog’s head while it sleeps.”}

Table 15: An example response from GPT-4V during data generation.
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Figure 8: Additional visual examples of our VP-SPHINX-13B across multiple domains.
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