
A Proofs

Proposition A.1. Let qu(θ) set as Eq. 12. Assume θ(t−1) is close enough to local optima, so that we
have ∥θ(t−1) − θ(t)∥ ≪ 1. Then we have

∇uDKL[πu∥πx] ≈ −η∇u

(
∇θℓ(x, θ

(t−1))⊤∇θℓ(u, θ
(t−1))

)
. (13)

Proof. For notational simplicity, let θ0 = θ(t−1). We can reparameterize θ ∼ qu as

θ = θ0 − η∇θℓ(u, θ0) + Σ1/2ε, ε ∼ N (0, I), (23)

Assume that η and Σ are chosen such that ∥η∇θℓ(u, θ0)− Σ1/2ε∥ ≪ 1. Then we have

Eπu [1
⊤
M f(u, θ)] ≈ Eε[1

⊤
M f(u, θ0 − η∇θℓ(u, θ0) + Σ1/2ε)

]
≈ Eε

[
1⊤
M

(
f(u, θ0) +∇θf(u, θ0)(−η∇θℓ(u, θ0) + Σ1/2ε)

)]
= 1⊤

M

(
f(u, θ0)− η∇θf(u, θ0)∇θℓ(u, θ0)

)
. (24)

Similarly,

Eπu [1
⊤
N f(x, θ)] ≈ 1⊤

N

(
f(x, θ0)− η∇θf(x, θ0)∇θℓ(u, θ0)

)
. (25)

Note also that

∇u logZ(u) = ∇u log

∫
exp(1⊤

M f(u, θ))π0(dθ)

= Eπu [∇u(1
⊤
M f(u, θ))]

≈ Equ [∇u(1
⊤
M f(u, θ))]

= Eε

[
∇u

(
1⊤
M f(u, θ0 − η∇θℓ(u, θ0) + Σ1/2ε)

)]
≈ Eε

[
∇u

(
1⊤
M

(
f(u, θ0) +∇θf(u, θ0)(−η∇θℓ(u, θ0) + Σ1/2ε)

)]
= ∇u

(
1⊤
M

(
f(u, θ0)− η∇θf(u, θ0)∇θℓ(u, θ0)

))
. (26)

Plugging this into the KL gradient, we get

∇uDKL[πu∥πx] = −∇u logZ(u) +∇uEπu [1
⊤
M f(u, θ)]−∇uEπu [1

⊤
N f(x, θ)]

≈ η∇u

(
1⊤
N∇θf(x, θ0)∇θℓ(u, θ0)

)
= −η∇u

(
∇θℓ(x, θ0)

⊤∇θℓ(u, θ0)
)
. (27)

B Experimental Details

Code is available at https://github.com/balhaekim/BPC-Divergences.

B.1 Hyperparameter settings

Training In Table 2, we enumerate the hyperparameters used for our results in Section 5. Since
we use expert trajectories for all methods to train the Bayesian pseudocoresets, we refer to hyperpa-
rameters related to expert trajectories, such as the number of SGD steps or the maximum random
starting points, described in [8]. We found that a slightly shorter expert training step is better for
BPC-fKL, so we used an expert step 1 epoch shorter than BPC-W. Another important hyperparameter
for BPC-fKL is the inner SGD learning rate η. For each setting, we used the best learning rate from
a hyperparameter sweep over {0.01, 0.02, 0.03, 0.04}. All other hyperparameters are same for all
methods.

13

https://github.com/balhaekim/BPC-Divergences


Table 2: Hyperparameters used for our best-performing experiments.
K T+ Lu Lx η S Σ

1/2
u Σ

1/2
x B

1 ipc
BPC-rKL 5000 2 50 - 0.01 10 0.01 - 1000
BPC-W 5000 2 50 2 - - - - -
BPC-fKL 5000 2 50 1 0.01 30 0.01 0.01 -

10 ipc
BPC-rKL 5000 20 30 - 0.03 10 0.01 - 1000
BPC-W 5000 20 30 2 - - - - -
BPC-fKL 5000 20 30 1 0.03 30 0.01 0.01 -

20 ipc
BPC-rKL 5000 30 30 - 0.03 10 0.01 - 1000
BPC-W 5000 30 30 2 - - - - -
BPC-fKL 5000 30 30 1 0.03 30 0.01 0.01 -

Algorithm 2 Hamiltonian Monte-Carlo Sampling (HMC)
Require: Number of iteration N , initial sample distribution scale σθ , initial momentum distribution scale σr ,

number of leapfrog step m, step size ε,
Require: Potential energy function U(u, θ) = −1⊤

M f(u, θ) + λ∥θ∥22 with a dataset u and the weight decay
factor λ.
Initialize θ(1) ∼ N (0, σ2

θ).
for t = 1, . . . , N do

Resample momentum r(t) ∼ N (0, σ2
r).

Set (θ0, r0) = (θ(t), r(t)), θ(t+1) = θ(t).
r0 ← r0 − ε

2
∇U(u, θ0)

for i = 1, . . . ,m do
θi ← θi−1 + εri−1

ri ← ri−1 − ε∇U(u, θi)
end for
rm ← rm−1 − ε

2
∇U(u, θm)

(θ̂, r̂) = (θm, rm)
Metropolis-Hastings correction:
u ∼Uniform(0, 1)

ρ = eH(θ̂,r̂)−H(θ(t),r(t))

if u < min(1, ρ) then
θ(t+1) = θ̂

end if
end for

Evaluation The evaluation methods we used are summarized in Algorithm 2 and Algorithm 3.
We sampled the momentum from a normal distribution with scale σr only for initialization. During
leapfrog steps, we simulated the Hamiltonian dynamics as if it came from a standard Gaussian. As
mentioned in the main text, the tendency did not significantly change depending on sampling hyper-
parameters. Since our focus is on providing a fair comparison between each Bayesian pseudocoreset
method rather than raw performance, we used a single set of hyperparameters to generate all results.
We summarize the hyperparameters used for our evaluations in Table 3.

Table 3: Hyperparameters used for evaluations.
N m burn σθ σr ε λ α T

ipc 1 HMC 20 20 10 0.1 0.01 0.05 0.5 - -
A-SGHMC 20 5 10 0.1 0.1 0.03 1.0 0.1 0.01

ipc 10 HMC 100 5 50 0.1 0.1 0.01 1.5 - -
A-SGHMC 100 5 50 0.1 0.1 0.01 1.5 0.1 0.01

ipc 20 HMC 100 5 50 0.1 0.1 0.01 1.5 - -
A-SGHMC 100 5 50 0.1 0.1 0.01 1.0 0.1 0.01

14



Algorithm 3 Altered Stochastic Gradient Hamiltonian Monte-Carlo Sampling (A-SGHMC)
Require: Number of iteration N , initial sample distribution scale σθ , initial momentum distribution scale σr ,

number of leapfrog step m, step size ε, momentum decay factor α, noise scale T .
Require: Potential energy function U(u, θ) = −1⊤

M f(u, θ) + λ∥θ∥22 with a dataset u and the weight decay
factor λ.

Require: Differentiable augmentation function A used during the pseudocoreset training.
Initialize θ(1) ∼ N (0, σ2

θ).
Initialize momentum r(1) ∼ N (0, σ2

r).
for t = 1, . . . , N do

(θ0, r0) = (θ(t), r(t)).
for i = 1, . . . ,m do

θi ← θi−1 + εri−1

ri ← (1− α)ri−1 − ε∇U(A(u), θi) +N (0, 2αT )
end for
(θ(t+1), r(t+1)) = (θm, rm)

end for

Table 4: BPC-W vs BPC-W with diagonal covariances
A-SGHMC

Acc (↑) NLL (↓)

ipc1 BPC-W 0.2934±0.0121 2.1400±0.0333

BPC-W with d.c. 0.2959±0.0108 2.1173±0.0289

ipc10 BPC-W 0.4890±0.0172 1.6971±0.0392

BPC-W with d.c. 0.4848±0.0113 1.7163±0.0248

B.2 Implementation details for BPC-rKL

To obtain a Bayesian pseudocoreset with reverse KL divergence by Algorithm 1 in [19], we need to
sample from an approximated pseudocoreset posterior at each step through MCMC methods such
as Langevin dynamics or HMC. To simply implement this, we also approximate the pseudocoreset
posterior by a Gaussian distribution with the mean of the end point of SGD training trajectories
like BPC-W or BPC-fKL. In initial experiments, we tried using SGD training trajectories starting
from a random initial point or a point on the expert trajectory, but we found that using the expert
trajectory achieves better performance. We provide a detailed description of the BPC-rKL algorithm
in Algorithm 4.

C Additional Experiments

C.1 Extending BPC-W to Gaussians with diagonal covariances

In Section 3.2, we approximated the pseudocoreset posterior and the original posterior to Gaussian
distributions with the same covariances to obtain BPC-W. As an extension, we tried approximating
the two distributions using Gaussian distributions with diagonal covariances. The A-SGHMC results
for these pseudocoresets are in Table 4. We found that the results are comparable, and the additional
expressivity of a diagonal covariance did not further increase performance. It seems to be because
both posteriors would be much more complicated to approximate with Gaussians with diagonal
covariances. While using a more complex distribution family might improve performance, we use
Gaussian distributions with the same covariance in all dimensions to obtain BPC-W results throughout
this paper.

C.2 Gaussian approximation in BPC-fKL

In this experiment, we investigate the effect of the hyperparameters of the Gaussian approximation on
the performance of BPC-fKL. Firstly, we explore the number of Gaussian samples S and variances
Σ

1/2
u , Σ1/2

x in Eq. 20. Fig. 5a shows the accuracy of HMC as the function of the number of samples.
Even though the estimation becomes more accurate as the number of samples increases, in Fig. 5a,
the number of samples does not significantly improve the performance of pseudocoresets. Thus, we

15



Algorithm 4 Bayesian Pseudocoresets with Reverse KL

Require: Set of expert parameter trajectories {τ} trained with x, each parameter trajectory saves parameters at
the end of training epochs.

Require: Number of updates with the pseudocoreset Lu, total training steps K, maximum start epoch T+, the
number of Gaussian samples S, variance Σu, inner SGD learning rate η, minibatch size B, pseudocoresets
learning rate γ.

Require: Differentiable augmentation function A (Optional).
Initialize the pseudocoreset u by randomly selecting a subset of size M from x.
for k = 1, . . . ,K do

Sample an expert trajectory τ = {θ(r)∗ }Tr=0.
Randomly choose an epoch to start r ≤ T+ and initialize θ

(0)
u = θ

(r)
∗ .

for t = 1, . . . , Lu do
Update the network parameter θ(t)u ← θ

(t−1)
u + η∇1⊤

M f(A(u), θ(t−1)
u ).

end for
Sample random Gaussian noises {ε(s)u }Ss=1

i.i.d.∼ N (0, I).
Obtain a minibatch of B datapoints from the original dataset {x1, . . . , xB} ⊂ x.
for s = 1, . . . , S do

gs ←
(
f(A(xb), θ

(Lu)
u +Σ

1/2
u ε

(s)
u )− 1

S

∑S
s′=1 f(A(xb), θ

(Lu)
u +Σ

1/2
u ε

(s′)
u )

)B

b=1
∈ RB

g̃s ←
(
f(A(um), θ

(Lu)
u +Σ

1/2
u ε

(s)
u )− 1

S

∑S
s′=1 f(A(um), θ

(Lu)
u +Σ

1/2
u ε

(s′)
u )

)M

m=1
∈ RM

for m = 1, . . . ,M do
h̃m,s ← ∇uf(A(um), θ

(Lu)
u +Σ

1/2
u ε

(s)
u )− 1

S

∑S
s′=1∇uf(A(um), θ

(Lu)
u +Σ

1/2
u ε

(s′)
u ).

end for
end for
for m = 1, . . . ,M do
∇̂um ← − 1

S

∑S
s=1 h̃m,s(

1
B
1⊤
Bgs − 1

M
1⊤
M g̃s).

end for
for m = 1, . . . ,M do

um ← um − γ∇̂um .
end for

end for

10 20 30 40 50

Number of samples

0.36

0.38

0.40

0.42

0.44

ac
c.

(a) Number of Gaussian samples S

0 1e-05 1e-04 1e-03 1e-02 1e-01

Σ
1/2
x

0.30

0.35

0.40

0.45

0.50

0.55

0.60

ac
c.

Σ
1/2
u 0

Σ
1/2
u 1e-05

Σ
1/2
u 1e-04

Σ
1/2
u 1e-03

Σ
1/2
u 1e-02

Σ
1/2
u 1e-01

(b) Variances of Gaussian Σ
1/2
u , Σ1/2

x

Figure 5: Exploring the hyperparameters for Gaussian approximation in BPC-fKL. The pseudocore-
sets of size 10 images per class for CIFAR10.

use 30 samples for all the experiments. Fig. 5b, we show the accuracy with varying variances. The
values of the x-axis are Σ

1/2
x ’s and Σ

1/2
u ’s are presented as colors. As the graph shows, too small

variances are not much different from using the variance of 0, and when both values are 0.01 is the
best and performance drops again for the variances larger than that. So we used both Σ

1/2
x and Σ

1/2
u

of 0.01.

C.3 Additional results on CIFAR10

Table 5 shows additional results for the CIFAR10 dataset when the pseudocoreset size is larger.
Even in these cases, BPC-W and BPC-fKL effectively generate Bayesian pseudocoresets. Moreover,
compared to Table 1, the 10-ipc pseudocoreset trained with BPC-fKL outperforms the 100-ipc random

16



Table 5: Performance of each Bayesian pseudocoreset method with {50, 100} images per class (ipc)
on the CIFAR10 test dataset. We present results with HMC without augmentations during training.
All values are averaged over ten random seeds.

HMC
Acc (↑) NLL (↓)

ipc 50

Random 0.3922±0.0037 2.1443±0.0373

BPC-rKL 0.3978±0.0143 2.0692±0.0803

BPC-W 0.5424±0.0092 1.4502±0.0720

BPC-fKL 0.5557±0.0118 1.4619±0.0504

ipc 100

Random 0.4242±0.0209 2.1430±0.0703

BPC-rKL 0.4220±0.0200 2.1695±0.1378

BPC-W 0.5822±0.0494 1.6294±0.1063

BPC-fKL 0.5625±0.0143 1.5841±0.0728

Table 6: HMC performances of the coresets and Bayesian psuedocoresets with 10 ipc on the CIFAR10
dataset. All values are averaged over ten random seeds.

Acc (↑) NLL (↓) ECE (↓) Brier score (↓)
Random 0.2590±0.0068 2.1820±0.0241 0.1385±0.0052 0.8595±0.0063

Herding 0.3000±0.0067 2.0343±0.0189 0.1209±0.0043 0.8231±0.0055

K-center 0.1739±0.0048 2.3934±0.0132 0.1360±0.0090 0.9125±0.0032

BPC-rKL 0.3334±0.0064 1.9516±0.0178 0.1183±0.0038 0.7988±0.0038

BPC-W 0.3538±0.0111 1.9369±0.0158 0.1457±0.0110 0.8030±0.0049

BPC-fKL 0.4361±0.0080 1.7198±0.0204 0.1538±0.0049 0.7231±0.0049

coreset which has 10 times more images. The overall BPC-fKL results demonstrate that the forward
KL divergence is effective for constructing the Bayesian pseudocoresets. For evaluations, we used
same hyperparameters as the case of ipc 20 as described in Table 2 and Table 3, except that σr is
0.01, ε is 0.02 and λ is 0.1.

Other coreset baselines and evaluation metrics We compared our results with other coreset
baselines and other evaluation metrics for validating the quality of obtained posterior distributions
more rigorously. We added Herding [29] and K-center [31] as another coreset baselines and for
other evaluation metrics, we used expected calibration error (ECE) [21] and Brier score [2]. Herding
constructs coresets by gathering samples close to the centers of the feature representations for each
class and K-center constructs coresets by selecting multiple center points such that the distance
between each data point is maximized while the distance between centers is minimized. To obtain
the feature representations for both methods, we use a pre-trained ConvNet as in [13]. On the other
hand, the ECE and Brier scores are conventional metrics for evaluating posterior qualities. Table 6
shows the HMC results of various metrics for coresets and psuedocoresets with 10 ipc. As [13]
already shows that the coreset baselines underperform pseudocoresets for SGD, Table 6 also shows
that pseudocoresets are better for Bayesian inference tasks through various metrics.

C.4 Additional results on other datasets

In the main text, we trained Bayesian pseudocoresets only on the CIFAR10 dataset. To validate how
well each method works on different datasets, we trained the pseudocoresets with a size of 1 image
per class on other datasets, CIFAR100 and ImageNet. We can see that how well each method works
when the number of classes is large with the CIFAR100 dataset and when the data dimension is
large with the ImageNet dataset. The CIFAR100 dataset has the same image dimension as CIFAR10
but has 100 classes and ImageNet has 128×128 data dimension. For ImageNet, we use the same
existing subset of the entire dataset, ImageNette, which consists of 10 classes and increased network
architecture. Following previous work [8], we use a depth-5 ConvNet as the model architecture. As
in the results on CIFAR10, Table 7 shows all three pseudocoresets are better than a random coreset.
Moreover, BPC-W and BPC-fKL outperform BPC-rKL, demonstrating that the proposed divergence
measures are effective.

17



Table 7: Performance of each Bayesian pseudocoreset method with 1 image per class (ipc) on the
CIFAR100 and ImageNette test dataset. We present results with HMC without augmentations during
training. All values are averaged over ten random seeds.

HMC
Acc (↑) NLL (↓)

CIFAR100

Random 0.0420±0.0025 4.7063±0.0202

BPC-rKL 0.0460±0.0023 4.6665±0.0293

BPC-W 0.1035±0.0053 4.2066±0.0180

BPC-fKL 0.1055±0.0059 4.2366±0.0220

ImageNette

Random 0.1572±0.0264 2.4267±0.0748

BPC-rKL 0.2406±0.0179 2.1896±0.0222

BPC-W 0.2876±0.0224 2.0977±0.0310

BPC-fKL 0.2578±0.0185 2.1520±0.0325

Figure 6: Divergence measures according to training steps where pseudocoreset size M = 5.
Pseudocoresets trained with different divergence measures are represented by colors.

C.5 Additional results on the synthetic dataset

To validate if the posterior distribution of each algorithm learns as intended, we trained pseudocoresets
on the synthetic dataset of samples from 10-dimensional multivariate Gaussian distribution, whose
posterior distribution is tractable. Given data samples {x1,x2, ...,x100}

i.i.d.∼ N (θ,Σ), we trained
pseudocoresets {um}Mm=1 of sizes M = {5, 20, 40, 60, 80, 100} to have similar posterior distribution
of θ ∼ N (θ0,Σ0) with the true posterior which is tractable in this setting. Since we know that the
exact posterior distribution is given by N (θu,Σu) where

Σu = (Σ−1
0 +MΣ−1)−1, (28)

θu = Σu(Σ
−1
0 θ0 +Σ−1

M∑
m=1

um), (29)

we validate each method by directly calculating the divergence measures between pseudocoresets
posteriors and true posterior. Fig. 6 shows that all three methods work well in that all divergences
are well reduced even when trained with the algorithm with different divergence measures in this
simple synthetic setting. Also, as expected, Fig. 7 shows divergences decrease as pseudocoreset sizes
increase.

D Example images of each Bayesian pseudocoreset

Fig. 8 are the example images of CIFAR10 pseudocoresets of 10 images per class.

18



Figure 7: Divergence measures according to the pseudocoreset size. Pseudocoresets trained with
different divergence measures are represented by colors.

(a) BPC-rKL (b) BPC-W

(c) BPC-fKL

Figure 8: Examples of Bayesian pseudocoresets. Each row is the pseudocoresets for each class.

19


	Proofs
	Experimental Details
	Hyperparameter settings
	Implementation details for BPC-rKL

	Additional Experiments
	Extending BPC-W to Gaussians with diagonal covariances
	Gaussian approximation in BPC-fKL
	Additional results on CIFAR10
	Additional results on other datasets
	Additional results on the synthetic dataset

	Example images of each Bayesian pseudocoreset

