
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

HS-Surf: A Novel High-Frequency Surface Shell Radiance Field to
Improve Large-Scale Scene Rendering

Anonymous Authors

Figure 1: (a) Top: Prior NeRFs evenly sampling along the ray or on the grid, which usually falls in the contentless areas or is
limited by the grid resolution. It leads to rendering blur and model capacity wasting. Bottom: HS-Surf constructs a shell on
the scene surface based on the current view’s depth, fully using model capacity on texture-rich areas to improve rendering
quality. (b) Our method could render more high-frequency information on the scene surface to improve the clarity of textures
compared to the SOTA NeRFs.

ABSTRACT
Prior neural radiance fields often struggle to preserve high-frequency
textures in urban and aerial large-scale scenes due to insufficient
model capacity on the scene surface. This is attributed to their sam-
pling locations or grid vertices falling in empty areas. Additionally,
most models do not consider the drastic changes in distances. To
address these issues, we propose a novel high-frequency surface
shell radiance field, which uses depth-guided information to create
a shell enveloping the scene surface under the current view, and
then samples conic frustums on this shell to render high-frequency
textures. Specifically, our method comprises three parts. Initially, we

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

propose a strategy to fuse voxel grids and information of distance
scales to generate a coarse scene at different distance scales. Sub-
sequently, we construct a shell based on the depth information to
carry out compensation to incorporate texture details not captured
by voxels. Finally, the smooth and denoise post-processing further
improves the rendering quality. Substantial scene experiments and
ablation experiments demonstrate that our method achieves the ob-
vious improvement of high-frequency textures at different distance
scales and outperforms the state-of-the-art methods.

CCS CONCEPTS
• Computing methodologies→ Image-based rendering.

KEYWORDS
large-scale scenes, high-frequency shell, surface rendering, high-
frequency textures

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

1 INTRODUCTION
Rendering urban and aerial large-scale scenes has many applica-
tions like AR/VR and digital navigation. Prior neural radiance fields
[1–3] (NeRFs) have tried improving the rendering quality, which
can be categorized into two streams. The first [4–6] divides the
scene or camera poses into multiple sub-regions or groups, and
each unit is represented by a NeRF. This increases the number of
NeRF modules, indirectly enhancing model capacity on the surface.
However, those NeRFs sample along the entire ray, including empty
spaces. The second [7, 8] reconstructs a coarse scene or density
field to guide subsequent sampling, concentrating in high-density
areas near the surface. Nevertheless, some samples inevitably fall
into empty regions, such as the sampling interval ends.

Multi-layer perceptron (MLP) based NeRFs [1, 2] frequently sam-
ple along rays, resulting in many points falling into empty regions.
Therefore, much model capacity for storing geometry and appear-
ance is used to represent these meaningless spaces rather than the
scene surface. Additionally, voxel [9] and grid-based [10–12] NeRFs
only have a few vertices to be sampled near the target surface,
leading to an upper bound on the model capacity allocated to the
surface. These inefficient samplings result in a significant waste of
model capacity, lacking enough model capacity on the scene surface
to render high-frequency textures. Moreover, most NeRFs [4, 5, 7]
have not considered the drastic changes in distances between the
camera and the scene surface, which is prone to generate blurry
rendering results at various distances.

To overcome the inefficient sampling and enhance the quality
of high-frequency textures, we propose a novel high-frequency
surface shell radiance field (HS-Surf) to efficiently increase model
capacity on scene surfaces. It constructs a shell enveloping the
scene surface based on the current view’s scene depth. As shown
in Figure 1(a), the shell’s width increases with the depth, and conic
frustums sampled on the shell are used to render high-frequency
textures at different distance scales. We call this shell as High-
Frequency Shell (HS). HS confines the rendering to scene surfaces,
greatly enhancing the utilization of model capacity. Additionally, to
model geometry and appearance at different distances, we propose
a feature fusion strategy to embed conic frustums representing
distances into voxel grids.

OurHS-Surf consists of three stages: initialization, compensation,
and post-processing. The initialization uses hash-based voxel grids
to generate coarse geometry and appearance. To model distances
with drastic changes in large-scale scenes, the proposed feature
fusion strategy embeds conic frustums into voxel grids. The com-
pensation generates high-frequency textures at different distance
scales. It first augments the coarse scene depth under the current
view and constructs an HS based on the augmented depth. Conic
frustums are then exclusively sampled on the shell to generate
high-frequency textures lost in the coarse appearance. The post-
processing uses a convolutional neural network (CNN) to smooth
and denoise the rendering results to achieve a better visual effect.

The experimental results indicate that HS-Surf greatly improves
high-frequency textures (see Figure 1(b)) and achieves state-of-the-
art rendering quality. Additionally, we observe that our rendering

speed improves 2× to 4× faster than previous NeRFs, achieving dou-
ble improvement of the rendering effect and computation efficiency.
Our contributions can be summarized as follows:

• Our proposed high-frequency shell overcomes the sampling
inefficiency of previousmethods, efficiently increasingmodel
capacity on scene surfaces to render high-frequency textures.

• The proposed feature fusion strategy embeds conic frustums
into voxels to represent the distance scales, enabling the
voxel to model the scene at various distances.

2 RELATEDWORK
2.1 Neural Radiance Fields
NeRF [1, 3] employs MLPs to model volume density and color of
spatial points. A lot of NeRF variants [13–23] render different size
objects from small goods to large-scale scenes, aiming to enhance
fidelity, rectify camera poses, and accelerate rendering. There are
also models [24, 25] designed for unbounded scenes. To speed up
rendering, some methods replace MLPs in NeRF with voxel [9, 26]
or plane grids [10–12], but these increase GPU memory consump-
tion. Recent methods [27–29] map the voxel vertices into smaller
hash tables, which compress 3D spaces and achieve more compact
representations.

MipNeRF [2] samples conic frustums along rays, and uses inte-
grated positional encoding (IPE) of the frustums to represent the
distance scales. However, the local continuous space of the frustum
is incompatible with interpolation operations in grids. ZipNeRF [8]
simulates the local space by sampling six points within a conic frus-
tum. These points are then fed into InstantNGP [27]. 3D Gaussian
[30] is another recent method with different mechanisms for scene
representation, which involves fitting a large number of ellipsoids
to approximate the target scene and render novel views.

2.2 Large-scale Scene Rendering
Some traditional methods [31–35] have been proposed to recon-
struct the large-scale scenes. Their working pipeline usually needs
three stages: keypoint detection, feature matching, and bundle ad-
justment. Keypoint detection [36–38] looks for unique and easily
identifiable regions in images and constructs corresponding feature
descriptions. Then, the features of key points are matched to com-
pute camera poses and locations of 3D points. Finally, the camera
poses and 3D points are jointly optimized by bundle adjustment
[39, 40]. These methods can roughly reconstruct the target scene
and synthesize novel views [41, 42], but the results often contain
artifacts and holes.

The NeRFs-based methods are also introduced into large-scale
scene rendering, including BungeeNeRF [6], BlockNeRF [4], MegaN-
eRF [5], URF [43], and GridNeRF [7]. BungeeNeRF divides camera
poses into four groups based on their heights. A single NeRF is used
in the highest group. For each subsequent group with lower heights,
the model adds a NeRF module to capture the finer texture details.
BlockNeRF and MegaNeRF divide the target scene into multiple
sub-regions, with each region represented by a separate NeRF. By
partitioning the camera poses or the scene, BungeeNeRF, BlockN-
eRF, and MegaNeRF reduce the target regions for each sub-NeRF,
increasing the model capacity on scene surfaces. However, their



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

HS-Surf: A Novel High-Frequency Surface Shell Radiance Field to Improve Large-Scale Scene Rendering ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

performance improvements are limited because NeRF still needs
to sample the entire ray, including empty regions. The key issue
of low utilization and allocation of model capacity on the scene
surface remains unresolved. URF [43] leverages depth data of radar
as auxiliary information to reconstruct street-level scenes.

GridNeRF [7] comprises a grid branch and a NeRF branch. The
grid branch compresses the scene onto a ground plane to recon-
struct a coarse radiance field, guiding a second sampling operation
to add points in high-density regions near the scene surface. All the
sampling points are then fed into the NeRF branch for rendering
novel views. However, adding points near the surface still can have
some samples falling into empty regions, particularly at the ends
of the sampling interval. Moreover, the points in the first sampling
operation are distributed across the entire ray, which increases
the consumption of model capacity by empty regions. As a result,
GridNeRF still lacks sufficient model capacity on the scene surface
to render high-frequency texture details.

Both our HS-Surf and GridNeRF include rendering on the scene
surface based on a coarse reconstruction. However, our method has
different motivation and working mechanism. HS-Surf constructs
high-frequency shells on the scene surface. These shells confine
the computation of MLPs to the surface while excluding the sur-
rounding empty regions, which greatly enhances the utilization
of model capacity. Thus, our method has more power to render
high-frequency textures.

3 METHOD
The overview of HS-Surf is illustrated in Figure 2, consisting of
three stages: initialization, compensation, and post-processing. The
initialization reconstructs the coarse geometry and appearance us-
ing hash-based voxel grids. IPE encoding of conic frustums and
grid features are fused to model the target scene at different dis-
tance scales. The compensation first augments the coarse depth
map under the current view to ensure a more accurate surface
geometry. Subsequently, it constructs an HS based on the depth
map, and samples conic frustums on HS to compensate for the lost
high-frequency textures in the coarse appearance. This step is very
important because the texture is attached to the geometry. Thus,
good depth and its subsequent product of HS can confine sampling
to effective texture areas. In the post-processing, a lightweight CNN
is employed to smooth and denoise the rendering results of the
compensation.

3.1 Initialization of Geometry and Appearance
Hash-based voxel grid is suitable for large-scale scenes as uniformly
distributed vertices ensure that model capacity is reasonably allo-
cated across the entire scene to generate a coarse radiance field.
Additionally, hash tables are very useful for reducing GPU occu-
pancy for high-resolution voxel grids.

Due to the drastic changes of distance scales in large-scale scenes,
sampling points along rays can easily result in blurry rendering
results at different distances. Inspired by MipNeRF [2], we sample
conic frustums within the target scene and use IPE encoding to
model distance scales. Specifically, a frustum is approximated by
mean and covariance, which are then fed into IPE to generate the
corresponding encoding [2]. Like MipNeRF, the radius of conic

containing the frustums at image plane 𝑜 + 𝑑𝑖𝑟 is set to ¤𝑟 , and ¤𝑟 is
the width of the pixel in world coordinates scaled by 2/

√
12.

To leverage the advantages of both the hash-based voxel grids
and conic frustums, we propose a feature fusion strategy to re-
construct the coarse scene at different distance scales. As shown
in Figure 2, the center coordinates 𝑥 of the frustums are used to
query features in the density grids 𝐷𝐺 (·) and the color grids𝐶𝐺 (·).
The IPE encoding 𝐸𝑖 of the frustums is fed into a two-layer MLP
𝑀𝑖 (·), which is then fused with density features and color features
to compute density 𝜎 and color 𝑟𝑔𝑏 as follows:

𝜎 = 𝑀𝜎 (𝑐𝑜𝑛𝑐𝑎𝑡 (𝐷𝐺 (𝑥), 𝑀𝑖 (𝐸𝑖 )))
𝑟𝑔𝑏 = 𝑀𝑐 (𝑐𝑜𝑛𝑐𝑎𝑡 (𝐶𝐺 (𝑥), 𝑀𝑖 (𝐸𝑖 )), 𝑑𝑖𝑟 ), (1)

where𝑀𝜎 (·) and𝑀𝑐 (·) are small MLPs for generating density and
color, and 𝑑𝑖𝑟 is the ray direction. Volume rendering subsequently
generates scene depth and rendering results.

The initialization stage can be described in two steps. The first
step samples conic frustums along rays to render pixel colors 𝐶1.
The second step conducts finer sampling based on existing sample
densities to obtain pixel depths 𝑑𝑐 and colors 𝐶2. Both steps utilize
the same voxel grids and hash tables. To ensure that the initializa-
tion results contain less artifacts such as “floaters" and “background
collapse", we add an interval-based regularization loss 𝐿𝑑𝑖𝑠𝑡 in the
fine step, which is proposed in MipNeRF360 [24].

𝐿𝑑𝑖𝑠𝑡 (𝑠,𝑤) =
∑︁
𝑖, 𝑗

𝜔𝑖𝜔 𝑗 |
𝑠𝑖 + 𝑠𝑖+1

2
−
𝑠 𝑗 + 𝑠 𝑗+1

2
|

+ 1
3

∑︁
𝑖

𝜔2
𝑖 (𝑠𝑖+1 − 𝑠𝑖 ), (2)

where 𝑠 and𝑤 represent the (normalized) ray distances and weights
of conic frustums in volume rendering, respectively. The role of
𝐿𝑑𝑖𝑠𝑡 is to concentrate the frustums with high density into a nar-
rower region. Then, the loss of the initialization stage is as follows:

𝐿𝑖𝑛𝑖𝑡 = 𝜆1 ∥ 𝐶1 −𝐶𝑔𝑡 ∥22 + ∥ 𝐶2 −𝐶𝑔𝑡 ∥22 +𝜆2𝐿𝑑𝑖𝑠𝑡 , (3)

where 𝐶𝑔𝑡 is the real pixel color. 𝜆1 and 𝜆2 are set to 0.1 and 0.001
in all experiments.

3.2 Compensation of Depth and Texture
The initialization includes a large number of voxel vertices far from
the scene surface, leading to the insufficient model capacity on the
surface and the loss of high-frequency textures. To recover the lost
texture details, we construct a high-frequency shell for each view
to efficiently increase the capacity on the surface. The details are
as follows:

Depth Augmentation. The limited model capacity on the sur-
face leads to coarse geometry with noises and holes. Therefore,
before constructing the high-frequency shell, we propose a depth
augmentation module to improve the depth map under the current
view. As shown in Figures 2(a) and 2(c), the coarse depth 𝑑𝑐 is uti-
lized to compute the coordinate 𝑝𝑐 of the scene surface. The depth
augmentation then employs a four-layer MLP 𝐷 (·) to predict the
distance from 𝑝𝑐 to surface along the ray direction 𝑑𝑖𝑟 . The output
of 𝐷 (·) is added with 𝑑𝑐 to obtain a more accurate surface depth
𝑑𝑓 as follows:

𝑑𝑓 = 𝐷 (𝛾 (𝑝𝑐 ), 𝛾 (𝑑𝑖𝑟 )) + 𝑑𝑐 , (4)



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 2: Overview of HS-Surf. (a) is the method pipeline. The initialization employs the feature fusion to embed IPE encoding
of conic frustum into the grid feature, generating the coarse geometry 𝑑𝑐 and texture 𝐶2 at different distance scales. The
compensation stage first augments the depth 𝑑𝑐 to obtain a more accurate depth 𝑑𝑓 , and constructs a high-frequency shell of
the current view based on 𝑑𝑓 . Then, for each ray, a conic frustum sampled on the shell is fed into the texture compensation to
render the high-frequency textures lost in𝐶2. Finally, the post-processing smooths and denoises the output of the compensation
stage to achieve a better visual effect. (b), (c) and (d) are network structures for feature fusion, depth augmentation and texture
compensation, respectively.

where 𝛾 represents the Fourier encoding [1]. More accurate depths
and positions of the scene surface guarantee fewer errors in the
inputs of subsequent modules.

We optimize the parameters of depth augmentation using both
depth loss and subsequent rendering loss 𝐿𝑟𝑒𝑛𝑑𝑒𝑟 . The depth loss
ensures that the module preserves the basic geometry and structure
of the scene, and the rendering loss 𝐿𝑟𝑒𝑛𝑑𝑒𝑟 is used to refine the
scene depth for more accurate surface representation. Without
depth ground truth, we take an augmentation manner to improve
depth. Like the pyramid image processing, we take a down-sample
on the coarse depth 𝑑𝑐 to get a low-resolution depth map, which
could filter out certain noises while preserving the major depth
information. The low-resolution depth map is determined by𝑊
and is then compared with the output 𝑑𝑓 of depth augmentation
to compute the depth loss 𝐿𝑑𝑒𝑝𝑡ℎ . Specifically, we perform down-
sampling in 𝑑𝑐 by a factor of 3:

𝑊 = (𝑥%3 == 0) 𝑎𝑛𝑑 (𝑦%3 == 0)
𝐿𝑑𝑒𝑝𝑡ℎ =𝑊 · ∥ 𝑑𝑓 − 𝑑𝑐 ∥22, (5)

where 𝑥 and 𝑦 are the pixel coordinates.
High-frequency Shell.After obtaining accurate scene depth𝑑𝑓

under the current view, we need to construct a high-frequency shell
on the surface based on𝑑𝑓 . As shown in Figure 1(a), the shell’s width
𝑡𝑟𝑎𝑛𝑔𝑒 along the ray determines the enclosed space on the ray {𝑥 |𝑥 =

𝑜 +𝑡 ×𝑑𝑖𝑟, 𝑡 ∈ [𝑑𝑓 −0.5×𝑡𝑟𝑎𝑛𝑔𝑒 , 𝑑𝑓 +0.5×𝑡𝑟𝑎𝑛𝑔𝑒 ]}. An infinite cone
is constructed based on camera position, ray direction and pixel.

Then, we truncate the interval [𝑑𝑓 − 0.5 × 𝑡𝑟𝑎𝑛𝑔𝑒 , 𝑑𝑓 + 0.5 × 𝑡𝑟𝑎𝑛𝑔𝑒 ]
on conic axis to obtain a conic frustum Δ.

As the depth increases, the high-frequency textures on the sur-
face should become blurred or even disappear. Therefore, the width
of Δ needs to increase with depth to suppress the high-frequency
components in IPE encoding. The relationship between shell’s
width 𝑡𝑟𝑎𝑛𝑔𝑒 and depth 𝑑𝑓 follows a linear function. First, we calcu-
late the normalized width 𝑟 :

𝑟 = 𝜆𝑟 · (𝑘 ·
𝑑𝑓 − 𝑛𝑒𝑎𝑟

𝑓 𝑎𝑟 − 𝑛𝑒𝑎𝑟
+ 𝑏), (6)

where 𝜆𝑟 = 0.1 is a scaling factor to stabilize the model. 𝑁𝑒𝑎𝑟 and
𝑓 𝑎𝑟 are the distances traveled along the ray from camera to enter
and exit the target scene. 𝑘 ≥ 0 and 𝑏 ≥ 0 are estimated by a four-
layer MLP, and the input of MLP is the concatenation of 𝑛𝑒𝑎𝑟 and
𝑓 𝑎𝑟 . The length 𝑡𝑟𝑎𝑛𝑔𝑒 of the shell in the world coordinate system
is as follows:

𝑡𝑟𝑎𝑛𝑔𝑒 =𝑚𝑎𝑥 (𝑚𝑖𝑛(𝑟, 1
50

), 1
2000

) · (𝑓 𝑎𝑟 − 𝑛𝑒𝑎𝑟 ) . (7)

The normalized length 𝑟 needs to be clipped to [1/2000, 1/50] for
more stable results.

Texture Compensation. After sampling a conic frustum Δ for
each ray on the high-frequency shell, we utilize continuous MLPs to
complete the high-frequency textures lost in the voxel grids during
initialization. As illustrated in Figures 2(a) and 2(d), the frustum
Δ is located at the surface coordinate 𝑝 𝑓 , and its width equals to
the shell’s width along the ray. IPE encoding of Δ and ray direction



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

HS-Surf: A Novel High-Frequency Surface Shell Radiance Field to Improve Large-Scale Scene Rendering ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

𝑑𝑖𝑟 are then fed into an eight-layer MLP 𝐹 (·) to compute the high-
frequency texture details missing in the voxel grids. The generated
details are then added with the coarse rendering 𝐶2 to obtain the
complete appearance 𝐶𝑓 as follows:

𝐶𝑓 = 𝜆𝑓 · 𝐹 (𝐼𝑃𝐸 (Δ), 𝛾 (𝑑𝑖𝑟 )) +𝐶2, (8)

where 𝛾 is the Fourier encoding [1]. 𝜆𝑓 = 0.2 is a scale factor to
stabilize the model. The output of 𝐹 (·) is the texture residual instead
of the complete rendering result. The reason is that this method
can reduce the learning burden of MLPs and focus the attention of
model on the generation of texture details.

Since the scope of inputs in the texture compensation is confined
to the scene surface, the model capacity of MLP is dedicated to
rendering textures on the target surface. This significantly improves
both the capacity utilization on surface and the ability to render
high-frequency details. The rendering loss 𝐿𝑟𝑒𝑛𝑑𝑒𝑟 is as follows:

𝐿𝑟𝑒𝑛𝑑𝑒𝑟 = 𝜆3 ∥ 𝐶𝑓 −𝐶𝑔𝑡 ∥1 + ∥ 𝐶𝑓 −𝐶𝑔𝑡 ∥22, (9)

where𝐶𝑔𝑡 is the real pixel color, and 𝜆3 is set to 0.1. The loss function
𝐿𝑡𝑒𝑥𝑡𝑢𝑟𝑒 of the compensation stage includes rendering loss 𝐿𝑟𝑒𝑛𝑑𝑒𝑟
and depth loss 𝐿𝑑𝑒𝑝𝑡ℎ :

𝐿𝑡𝑒𝑥𝑡𝑢𝑟𝑒 = 𝐿𝑟𝑒𝑛𝑑𝑒𝑟 + 𝐿𝑑𝑒𝑝𝑡ℎ . (10)

3.3 Post-Processing of Smooth and Denoise
As the initialization and compensation stages calculate each pixel
individually, the generated results may contain noises and are not
continuously smooth. Therefore, a lightweight CNN-based post-
processing is constructed to deal with them. The network contains
two residual blocks to adjust the features of the original image 𝐶𝑓 .
Sigmoid activation is used in the final layer of convolution, which
limits the output range to [0, 1], whose details are provided in the
supplementary material. We opt for a CNN due to the necessity
of incorporating correlations between neighboring pixels in the
smoothing and denoising processes. Convolution kernels offer a
natural way to introduce such information. The loss function 𝐿𝑖𝑚𝑔

of the post-processing stage is as follows:

𝐿𝑖𝑚𝑔 = 𝜆4 ∥ 𝐶 −𝐶𝑔𝑡 ∥1 + ∥ 𝐶 −𝐶𝑔𝑡 ∥22, (11)

where 𝐶 and 𝐶𝑔𝑡 are the predicted and real colors, and 𝜆4 = 0.1.

3.4 Scene Division and Details
The compensation stage can further enhance the quality of high-
frequency textures by partitioning the target scene. Assuming the
scene is uniformly divided into 𝑁 sub-regions, and each contains a
depth augmentation and a texture compensation, with correspond-
ing MLPs represented as 𝐷𝑖 (·) and 𝐹𝑖 (·). The outputs of all sub-
regions are combined into the final results. Therefore, the output
𝑑𝑓 of depth augmentation in Equation (4) is modified as follows:

𝑑𝑓 =

∑𝑁
𝑖=1𝑀𝑖 · (𝐷𝑖 (𝛾 (𝑝𝑐 ), 𝛾 (𝑑𝑖𝑟 )) + 𝑑𝑐 )∑𝑁

𝑖=1𝑀𝑖

, (12)

where𝑀𝑖 = 1 indicates that 𝑝𝑐 is located in the 𝑖-th region, other-
wise𝑀𝑖 = 0. The output 𝐶𝑓 of texture compensation in Equation
(8) is modified as follows:

𝐶𝑓 =

∑𝑁
𝑖=1𝑀𝑖 · (𝜆𝑓 · 𝐹𝑖 (𝐼𝑃𝐸 (Δ), 𝛾 (𝑑𝑖𝑟 )) +𝐶2)∑𝑁

𝑖=1𝑀𝑖

, (13)

where 𝑀𝑖 = 1 indicates that 𝑝 𝑓 is located in the 𝑖-th region, oth-
erwise𝑀𝑖 = 0. The increment in the number of MLPs leads to an
augmentation in model capacity on the scene surface.

In Figure 2, the depth 𝑑𝑐 generated by the initialization needs
to go through a gradient stop. Otherwise, the depth augmentation
performance may decrease. In the initialization, the first coarse and
second fine step samples 64 and 128 inters along a ray, respectively.
The minimum resolution of the voxel grids is 2563, and the maxi-
mum resolution is 81923 after 15 increments. The size of hash table
is 221 × 4 or 222 × 4, and the hidden nodes of MLPs are 128. For
the compensation stage, the hidden nodes of MLPs in the depth
augmentation, estimation of high-frequency shell, and texture com-
pensation are set to 256, 64, and 512. The channel of CNN in the
post-processing is set to 32.

The training of HS-Surf consists of two stages. The first stage
involves joint training of the initialization and compensation. The
second stage only trains the post-processing. Their losses are as
follows:

𝐿𝑠𝑡𝑎𝑔𝑒1 = 𝐿𝑖𝑛𝑖𝑡 + 𝐿𝑡𝑒𝑥𝑡𝑢𝑟𝑒 (14)
𝐿𝑠𝑡𝑎𝑔𝑒2 = 𝐿𝑖𝑚𝑔 . (15)

The learning rate is 1𝑒 − 4 for both stages and decays exponentially
to 1𝑒 − 5 during training. More details can be found in the supple-
mentary material.

4 EXPERIMENTS AND RESULTS
4.1 Experiment Setup
Our experiments are conducted on six scenes, including𝑇𝑟𝑎𝑛𝑠𝑎𝑚𝑒𝑟𝑖𝑐𝑎,
56𝐿𝑒𝑜𝑛𝑎𝑟𝑑 , 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔, 𝑟𝑢𝑏𝑏𝑙𝑒 , 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 , and 𝑐𝑎𝑚𝑝𝑢𝑠 . All models are
implemented in environments of Python and PyTorch on a single
RTX 3090 24G GPU. 𝑇𝑟𝑎𝑛𝑠𝑎𝑚𝑒𝑟𝑖𝑐𝑎 and 56𝐿𝑒𝑜𝑛𝑎𝑟𝑑 are two syn-
thetic scenes from the satellite level to the ground level, provided
in BungeeNeRF [6]. All images are collected from Google Earth
Studio [44], where the camera rotates around the central object
of the scene, and the distance to the ground gradually decreases.
𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔, 𝑟𝑢𝑏𝑏𝑙𝑒 , 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 , and 𝑐𝑎𝑚𝑝𝑢𝑠 are four real aerial data.
The first two are from Mill 19 [5], and the remaining two are from
UrbanScene3D [45]. In these four datasets, the drone always keeps
a stable flying height and shoots to the ground along parallel lines
or grid tracks. Therefore, the data distribution is uniform.

HS-Surf is compared with the previous state-of-the-art NeRFs,
including BungeeNeRF [6], MegaNeRF [5], and GridNeRF [7]. Mip-
NeRF [2] and ZipNeRF [8] are also used in the experiments because
they are basic neural rendering methods and can model different
distance scales in large-scale scenes. Since each image in the four
aerial photography datasets has a different exposure and white bal-
ance, we refer to NeRF-in-the-wild [46] to assign a 48-dimensional
appearance embedding for each image to model the lighting in-
formation. The highest frequencies of positional and directional
encodings are set to 12 and 4 for all models. The details of training
and testing sets, and more model configurations can be found in
the supplementary material.

HS-Surf is also compared to 3D Gaussian [30] with different
mechanisms, and the experimental results are presented in the
supplementary material. The ability of 3D Gaussian to render high-
frequency textures is not as good as HS-Surf because ellipsoids may



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Performance comparison of HS-Surf with previous NeRFs on large-scale scenes

Model Transamerica 56 Leonard Building
PSNR ↑ SSIM ↑ LPIPS ↓ Time (s) PSNR ↑ SSIM ↑ LPIPS ↓ Time (s) PSNR ↑ SSIM ↑ LPIPS ↓ Time (s)

MipNeRF [2] 22.12 0.6016 0.4856 50.90 21.87 0.5754 0.4883 51.48 19.44 0.3853 0.6499 44.32
ZipNeRF [8] 23.34 0.7092 0.4327 38.73 24.39 0.7864 0.3376 39.31 20.47 0.5282 0.5010 36.74
BungeeNeRF [6] 22.40 0.6216 0.4812 92.16 22.15 0.6015 0.4839 93.12 × × × ×
MegaNeRF [5] × × × × × × × × 20.69 0.4738 0.5544 251.96
GridNeRF [7] 23.22 0.6769 0.4640 89.30 23.47 0.6875 0.4605 90.41 21.00 0.5055 0.5259 80.85
HS-Surf 25.59 0.8304 0.2941 25.42 26.41 0.8679 0.2363 24.51 21.88 0.6039 0.4417 27.35

Model Rubble Residence Campus
PSNR ↑ SSIM ↑ LPIPS ↓ Time (s) PSNR ↑ SSIM ↑ LPIPS ↓ Time (s) PSNR ↑ SSIM ↑ LPIPS ↓ Time (s)

MipNeRF [2] 22.12 0.3933 0.6761 44.20 20.21 0.4504 0.6582 55.66 20.89 0.3687 0.7631 55.19
ZipNeRF [8] 23.68 0.5536 0.5169 37.15 21.00 0.5424 0.5240 44.77 20.61 0.4013 0.6591 48.58
BungeeNeRF [6] × × × × × × × × × × × ×
MegaNeRF [5] 23.10 0.4591 0.6003 232.34 20.45 0.4869 0.5796 341.34 21.71 0.4028 0.6981 271.03
GridNeRF [7] 23.20 0.4752 0.5897 81.11 20.85 0.4967 0.5883 103.38 20.00 0.3863 0.6596 100.32
HS-Surf 24.24 0.5824 0.4943 27.01 22.12 0.5982 0.5015 34.06 21.97 0.4639 0.6183 34.36

be difficult to split into small enough sizes in large-scale scenes.
Additionally, due to the lack of continuity in spherical harmonics,
3D Gaussian generates lots of aliasing under the unseen views in
the training set.

4.2 Experiment results
In Table 1, we use PSNR, SSIM, LPIPS (VGG), and the time of ren-
dering a frame to compare the rendering performance. The data
distribution in 𝑡𝑟𝑎𝑛𝑠𝑎𝑚𝑒𝑟𝑖𝑐𝑎 and 56𝐿𝑒𝑜𝑛𝑎𝑟𝑑 [6] is uneven because
the cameras make loop shoot for the centers of scenes. Therefore,
𝑡𝑟𝑎𝑛𝑠𝑎𝑚𝑒𝑟𝑖𝑐𝑎 and 56𝐿𝑒𝑜𝑛𝑎𝑟𝑑 are not divided. MegaNeRF [5] is not
suitable for this mode, so it has no corresponding results. For the
four aerial photography data, MegaNeRF and HS-Surf divide each
scene into 8 sub-regions evenly. Since the drone always keeps a sta-
ble flight height, BungeeNeRF [6] cannot divide the camera poses
according to the height from the camera to the ground, so it has no
corresponding results on the later four datasets.

In 𝑡𝑟𝑎𝑛𝑠𝑎𝑚𝑒𝑟𝑖𝑐𝑎 and 56𝐿𝑒𝑜𝑛𝑎𝑟𝑑 [6], the distance scales undergo
drastic changes, HS-Surf achieves noticeable improvements in all
metrics compared to models designed for variable distance scales
(MipNeRF [2], ZipNeRF [8] and BungeeNeRF [6]), as shown in
Table 1. The LPIPS errors of our method are reduced by 30%-
40%. Figure 3 demonstrates a visual comparison example in the
𝑡𝑟𝑎𝑛𝑠𝑎𝑚𝑒𝑟𝑖𝑐𝑎 from the satellite level to the ground level. HS-Surf
renders more high-frequency texture details for objects with differ-
ent distances and shapes, which benefits from that HS-Surf embeds
conic frustums into voxels to model distances and uses compensa-
tion to render high-frequency details at different distance scales.

In aerial photography scenes (𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔, 𝑟𝑢𝑏𝑏𝑙𝑒 , 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 , 𝑐𝑎𝑚𝑝𝑢𝑠)
with stable heights, HS-Surf also demonstrates better performance,
with LPIPS error decreasing by 10%-20% compared to MegaNeRF
[5] and GridNeRF [7]. Figure 4 presents visual comparison examples
in 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 (top) and 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 (bottom), HS-Surf synthesizes the
most accurate views, especially regarding high-frequency textures
for buildings with complex structures, wall or roof planes with
different directions, and the vehicles with tiny height difference.

Table 2: Comparison of model sizes

model parameters model parameters

MipNeRF 0.608M ZipNeRF 671.839M
BungeeNeRF 1.080M HS-Surf (w/o comp & pp) 537.039M
MegaNeRF 11.322M HS-Surf (w/o pp) 555.611M
GridNeRF 465.914M HS-Surf 555.678M

Compared to the other models, these cases validate the advantage of
our high-frequency shells in confining the rendering to the surface
and improving the utilization of model capacity. GridNeRF recon-
structs a coarse scene using ground plane grids, then guides the
sampling of NeRF branch in the high-density regions rather than
on the surface. Its shortcomings are similar to MipNeRF, BungeeN-
eRF, and MegaNeRF. The inefficiency of sampling results in low
capacity utilization and loss of high-frequency textures, as shown
in Figure 4.

We find that the rendering of HS-Surf is 2× to 4× faster than other
NeRFs in Table 1. Except for benefiting from the voxel grids, there
are two other contributing reasons: 1) The compensation stage only
samples a conic frustum for each ray. Thus, each ray only needs
to be calculated once. 2) The hidden channel of shallow CNN in
the post-processing is only 32. MipNeRF, BungeeNeRF, MegaNeRF
and GridNeRF query multiple samples along a ray in each sampling
stage, resulting in multiple computations for rendering a pixel.
ZipNeRF samples six points in a conic frustum, bringing it a huge
cost and a slow speed.

The model sizes on the dataset of 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 are presented in Ta-
ble 2, where the result of BungeeNeRF are from 𝑡𝑟𝑎𝑛𝑠𝑎𝑚𝑒𝑟𝑖𝑐𝑎. The
compensation and post-processing are denoted as 𝑐𝑜𝑚𝑝 and 𝑝𝑝 .
The compensation stage of HS-Surf introduces extra parameters on
the scene surface, resulting in a parameter increase of 3.5%.

4.3 Ablation Study
In Table 3, we present an ablation study of HS-Surf. The post-
processing stage is represented by PP. We summarize the findings



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

HS-Surf: A Novel High-Frequency Surface Shell Radiance Field to Improve Large-Scale Scene Rendering ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 3: A visual comparison example from the aerial orbiting photography of 𝑇𝑟𝑎𝑛𝑠𝑎𝑚𝑒𝑟𝑖𝑐𝑎. The top row is near the ground
and the bottom row is far from the ground. The zoom-in images include different distances (near and far) and appearances
(floater and buildings).

Figure 4: Two visual comparison examples from the drone shooting with fixed altitude and route. The top row is the 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔
and the bottom row is the 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒, respectively. The zoom-in images include the complex building structure, vertical and
horizontal planes, and the vehicles with tiny height differences.

as follows. F) The removal of feature fusion strategy in the initializa-
tion stage results in a decreased modeling ability for distance scales.
In supplementary material, we demonstrate the impacts of feature
fusion and compensation on rendering results. G) The removal of
compensation leads to a significant decrease in model performance.

In Figure 5, the results without compensation lose a lot of high-
frequency textures at the top of the building. For more results of
depth and rendering, please refer to the supplementary material.
H) Removing depth augmentation (dea) in compensation leads to
poor geometry and holes, and it also affects rendering quality, as



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 3: Performance comparison of ablation experiments

Model Transamerica 56 Leonard Building Residence
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

A) w/o fusion & PP 23.77 0.7411 0.4087 24.43 0.7877 0.3476 20.79 0.4971 0.5060 21.41 0.5275 0.5394
B) w/o compensate & PP 24.95 0.7966 0.3528 23.24 0.7063 0.4528 20.50 0.4911 0.5151 21.68 0.5639 0.5089
C) w/o dea & PP 25.15 0.8089 0.3309 25.05 0.8262 0.2896 21.25 0.5521 0.4681 19.53 0.5010 0.5509
D) w/o HS & PP 25.18 0.8105 0.3332 25.98 0.8515 0.2613 20.61 0.5274 0.4852 21.61 0.5549 0.5106
E) w/o PP 25.25 0.8147 0.3251 26.12 0.8566 0.2537 21.52 0.5678 0.4537 21.99 0.5797 0.4952
F) w/o fusion 24.50 0.7814 0.3383 25.30 0.8240 0.2875 21.35 0.5567 0.4788 21.70 0.5725 0.5281
G) w/o compensate 25.29 0.8149 0.3146 23.80 0.7446 0.3722 20.89 0.5428 0.5011 21.81 0.5867 0.5128
H) w/o dea 25.49 0.8250 0.2983 25.56 0.8431 0.2623 21.66 0.5911 0.4552 19.99 0.5268 0.5584
I) w/o HS 25.51 0.8268 0.2988 26.28 0.8634 0.2419 21.14 0.5648 0.4711 21.76 0.5797 0.5185
J) complete 25.59 0.8304 0.2941 26.41 0.8679 0.2363 21.88 0.6039 0.4417 22.12 0.5982 0.5015

Figure 5: Ablation study on compensation. Without com-
pensation, the rendering results lose a lot of high-frequency
textures. The post-processing (PP) just removes noises, but
cannot generate the lost textures.

Figure 6: Ablation study on the depth augmentation. With
depth augmentation, the depth map is further improved,
alleviating the holes and depth texture-copy.

shown in Figure 6. I) Replacing the high-frequency shell with a
single spatial point in compensation results in the framework’s in-
ability to model distance scales, as shown in Figure 7. A)-E) remove
the post-processing based on F)-J). Therefore, the rendering results
contain noise and have relatively low quality, as shown in Table 3
and Figure 5.

Figure 7: Ablation study on the HS. When removing the HS
and directly sampling a point on the surface, the targets like
windows and ships-like become unclear.

5 DISCUSSION AND CONCLUSION
In this work, we aim to improve the quality of high-frequency tex-
tures in urban and aerial large-scale scenes by dealing with issues
of inefficient sampling and various distances. We have presented
HS-Surf, a novel high-frequency surface shell radiance field method
to improve large-scale scene rendering. We create a high-frequency
shell on the scene surface under the current view, and sample conic
frustums on this shell to overcome the sampling inefficiency in
previous methods. As a result, model capacity is efficiently uti-
lized to render high-frequency textures. Additionally, to model the
distances with drastic changes in large-scale scenes, we embed
frustums representing distance into voxel grids to construct the
scene at different distance scales.

Our HS-Surf achieves better rendering results in large-scale
scenes, particularly concerning high-frequency textures. The solid
ablation study experiments validate the effectiveness of each com-
ponent in our model. Meanwhile, as we optimize the sampling and
make better use of the model capacity, our implementation speed
is also faster. Furthermore, our method can easily generalize to
NeRFs variants and new rendering techniques. In the future, we
will explore integrating the high-frequency surface shell into other
rendering techniques, and consider rendering texture details at
different distance scales in dynamic scenes.



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

HS-Surf: A Novel High-Frequency Surface Shell Radiance Field to Improve Large-Scale Scene Rendering ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi

Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields
for view synthesis. Eur. Conf. Comput. Vis., pages 405–421, 2020.

[2] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo
Martin-Brualla, and Pratul P. Srinivasan. Mip-nerf: A multiscale representation
for anti-aliasing neural radiance fields. Int. Conf. Comput. Vis., 2021.

[3] PengWang, Lingjie Liu, Yuan Liu, Christian Theobalt, TakuKomura, andWenping
Wang. Neus: Learning neural implicit surfaces by volume rendering for multi-
view reconstruction. NeurIPS, 2021.

[4] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Pradhan, Ben Mildenhall,
Pratul P.Srinivasan, Jonathan T.Barron, and Henrik Kretzschmar. Block-nerf:
Scalable large scene neural view synthesis. IEEE Conf. Comput. Vis. Pattern Recog.,
pages 8238–8248, 2022.

[5] Haithem Turki, Deva Ramanan, and Mahadev Satyanarayanan. Mega-nerf: Scal-
able construction of large-scale nerfs for virtual fly-throughs. IEEE Conf. Comput.
Vis. Pattern Recog., pages 12912–12921, 2022.

[6] Yuanbo Xiangli, Linning XU, Xingang Pan, Nanxuan Zhao, Anyi Rao, Christian
Theobalt, Bo Dai, and Dahua Lin. Bungeenerf: Progressive neural radiance field
for extreme multi-scale scene rendering. Eur. Conf. Comput. Vis., 2022.

[7] Linning Xu, Yuanbo Xiangli, Sida Peng, Xingang Pan, Nanxuan Zhao, Christian
Theobalt, Bo Dai, and Dahua Lin. Grid-guided neural radiance fields for large
urban scenes. IEEE Conf. Comput. Vis. Pattern Recog., pages 8296–8306, 2023.

[8] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter
Hedman. Zip-nerf: Anti-aliased grid-based neural radiance fields. Int. Conf.
Comput. Vis., 2023.

[9] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization:
Super-fast convergence for radiance fields reconstruction. IEEE Conf. Comput.
Vis. Pattern Recog., 2022.

[10] Ang Cao and Justin Johnson. Hexplane: A fast representation for dynamic scenes.
IEEE Conf. Comput. Vis. Pattern Recog., 2023.

[11] Sara Fridovich-Keil, GiacomoMeanti, Frederik RahbækWarburg, Benjamin Recht,
and Angjoo Kanazawa. K-planes: Explicit radiance fields in space, time, and
appearance. IEEE Conf. Comput. Vis. Pattern Recog., 2023.

[12] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf:
Tensorial radiance fields. Eur. Conf. Comput. Vis., 2022.

[13] Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey. Barf :
Bundle-adjusting neural radiance fields. Int. Conf. Comput. Vis., 2021.

[14] Yifan Jiang, Peter Hedman, Ben Mildenhall, Dejia Xu, Jonathan T. Barron,
Zhangyang Wang, and Tianfan Xue. Alignerf: High-fidelity neural radiance
fields via alignment-aware training. IEEE Conf. Comput. Vis. Pattern Recog., pages
46–55, 2023.

[15] Dogyoon Lee, Minhyeok Lee, Chajin Shin, and Sangyoun Lee. Dp-nerf: Deblurred
neural radiance field with physical scene priors. IEEE Conf. Comput. Vis. Pattern
Recog., pages 12386–12396, 2023.

[16] Yusen Wang, Zongcheng Li, Yu Jiang, Kaixuan Zhou, Tuo Cao, Yanping Fu, and
Chunxia Xiao. Neuralroom: Geometry-constrained neural implicit surfaces for
indoor scene reconstruction. ACM Transactions on Graphics, pages 1–15, 2022.

[17] Zongcheng Li, Xiaoxiao Long, Yusen Wang, Tuo Cao, Wenping Wang, Fei Luo,
and Chunxia Xiao. Neto: Neural reconstruction of transparent objects with
self-occlusion aware refraction-tracing. Int. Conf. Comput. Vis., 2023.

[18] Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and Andrea Tagliasacchi.
Mobilenerf: Exploiting the polygon rasterization pipeline for efficient neural field
rendering on mobile architectures. IEEE Conf. Comput. Vis. Pattern Recog., pages
16569–16578, 2023.

[19] Krishna Wadhwani and Tamaki Kojima. Squeezenerf: Further factorized fastnerf
for memory-efficient inference. IEEE Conf. Comput. Vis. Pattern Recog., pages
2716–2724, 2022.

[20] Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, and Andrea
Tagliasacchi. Derf: Decomposed radiance fields. IEEE Conf. Comput. Vis. Pattern
Recog., pages 14153–14161, 2021.

[21] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. Kilonerf: Speeding
up neural radiance fields with thousands of tiny mlps. Int. Conf. Comput. Vis.,
2021.

[22] Tong Xu, Ruhao Wang, Fei Luo, and Chunxia Xiao. Multi-scale implicit surface
reconstruction for outdoor scenes. Computational Visual Media, 2024.

[23] Wenxiao Zhang, Huajian Zhou, Zhen Dong, Qingan Yan, and Chunxia Xiao.
Rank-pointretrieval: Reranking point cloud retrieval via a visually consistent
registration evaluation. IEEE Transactions on Visualization and Computer Graphics,
2022.

[24] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter
Hedman. Mip-nerf 360: Unbounded anti-aliased neural radiance fields. IEEE
Conf. Comput. Vis. Pattern Recog., pages 5470–5479, 2022.

[25] Peng Wang, Yuan Liu, Zhaoxi Chen, Lingjie Liu, Ziwei Liu, Taku Komura, Chris-
tian Theobalt, and Wenping Wang. F2-nerf: Fast neural radiance field training
with free camera trajectories. IEEE Conf. Comput. Vis. Pattern Recog., 2023.

[26] Tong Wu, Jiaqi Wang, Xingang Pan, Xudong Xu, Christian Theobalt, Ziwei
Liu, and Dahua Lin. Voxurf: Voxel-based efficient and accurate neural surface
reconstruction. Int. Conf. Learn. Represent., 2023.

[27] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant
neural graphics primitives with a multiresolution hash encoding. ACM Trans.
Graph., 41(4):102:1–102:15, 2022.

[28] Yiming Wang, Qin Han, Marc Habermann, Kostas Daniilidis, Christian Theobalt,
and Lingjie Liu. Neus2: Fast learning of neural implicit surfaces for multi-view
reconstruction. Int. Conf. Comput. Vis., 2023.

[29] Zhaoshuo Li, Thomas Müller, Alex Evans, Russell H Taylor, Mathias Unberath,
Ming-Yu Liu, and Chen-Hsuan Lin. Neuralangelo: High-fidelity neural surface
reconstruction. IEEE Conf. Comput. Vis. Pattern Recog., 2023.

[30] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis.
3d gaussian splatting for real-time radiance field rendering. ACM Transactions
on Graphics, 42(4), July 2023.

[31] Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless,
Steven M. Seitz, and Richard Szeliski. Building rome in a day. Communications
of the ACM, 2011.

[32] Xiaowei Li, Changchang Wu, Christopher Zach, Svetlana Lazebnik, and Jan-
Michael Frahm. Modeling and recognition of landmark image collections using
iconic scene graphs. Eur. Conf. Comput. Vis., 2008.

[33] Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited.
IEEE Conf. Comput. Vis. Pattern Recog., 2016.

[34] Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo tourism: Exploring
photo collections in 3d. SIGGRAPH, 2006.

[35] Siyu Zhu, Runze Zhang, Lei Zhou, Tianwei Shen, Tian Fang, Ping Tan, and Long
Quan. Very large-scale global sfm by distributed motion averaging. IEEE Conf.
Comput. Vis. Pattern Recog., 2018.

[36] David G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J.
Comput. Vis., 2004.

[37] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust
features. Eur. Conf. Comput. Vis., 2006.

[38] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient
alternative to sift or surf. Int. Conf. Comput. Vis., 2011.

[39] R. I. Hartley and A. Zisserman. Multiple view geometry in computer vision.
Cambridge University Press, second edition, 2004.

[40] Bill Triggs, Philip F McLauchlan, Richard I Hartley, and Andrew W Fitzgibbon.
Bundle adjustment - a modern synthesis. International workshop on vision algo-
rithms, 1999.

[41] Frank Losasso and Hugues Hoppe. Geometry clipmaps: terrain rendering using
nested regular grids. SIGGRAPH, 2004.

[42] Qi Shan, Riley Adams, Brian Curless, Yasutaka Furukawa, and Steven M. Seitz.
The visual turing test for scene reconstruction. 3DV, 2013.

[43] Konstantinos Rematas, Andrew Liu, Pratul Srinivasan, Jonathan Barron, Andrea
Tagliasacchi, Thomas Funkhouser, and Vittorio Ferrari. Urban radiance fields.
IEEE Conf. Comput. Vis. Pattern Recog., 2022.

[44] Google earth studio. https://earth.google.com/studio/.
[45] Liqiang Lin, Yilin Liu, Yue Hu, Xingguang Yan, Ke Xie, and Hui Huang. Capturing,

reconstructing, and simulating: the urbanscene3d dataset. Eur. Conf. Comput.
Vis., 2022.

[46] Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi, Jonathan T. Barron,
Alexey Dosovitskiy, and Daniel Duckworth. Nerf in the wild: Neural radiance
fields for unconstrained photo collections. IEEE Conf. Comput. Vis. Pattern Recog.,
2021.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Neural Radiance Fields
	2.2 Large-scale Scene Rendering

	3 Method
	3.1 Initialization of Geometry and Appearance
	3.2 Compensation of Depth and Texture
	3.3 Post-Processing of Smooth and Denoise
	3.4 Scene Division and Details

	4 Experiments and results
	4.1 Experiment Setup
	4.2 Experiment results
	4.3 Ablation Study

	5 Discussion and Conclusion
	References

