HS-Surf: A Novel High-Frequency Surface Shell Radiance Field to Improve Large-Scale Scene Rendering

Figure 1: (a) Top: Prior NeRFs evenly sampling along the ray or on the grid, which usually falls in the contentless areas or is limited by the grid resolution. It leads to rendering blur and model capacity wasting. Bottom: HS-Surf constructs a shell on the scene surface based on the current view's depth, fully using model capacity on texture-rich areas to improve rendering quality. (b) Our method could render more high-frequency information on the scene surface to improve the clarity of textures compared to the SOTA NeRFs.

ABSTRACT

Prior neural radiance fields often struggle to preserve high-frequency textures in urban and aerial large-scale scenes due to insufficient model capacity on the scene surface. This is attributed to their sampling locations or grid vertices falling in empty areas. Additionally, most models do not consider the drastic changes in distances. To address these issues, we propose a novel high-frequency surface shell radiance field, which uses depth-guided information to create a shell enveloping the scene surface under the current view, and then samples conic frustums on this shell to render high-frequency textures. Specifically, our method comprises three parts. Initially, we

Unpublished working draft. Not for distribution.

51 for profit or commercial advantage and that copies bear this notice and the full citation 52 on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission 54 and/or a fee Request permissions from permissions area or or 55 for permissions and the server or or distribute to lists. The server of the

- ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
- 57 https://doi.org/10.1145/nnnnnnnnnnn

propose a strategy to fuse voxel grids and information of distance scales to generate a coarse scene at different distance scales. Subsequently, we construct a shell based on the depth information to carry out compensation to incorporate texture details not captured by voxels. Finally, the smooth and denoise post-processing further improves the rendering quality. Substantial scene experiments and ablation experiments demonstrate that our method achieves the obvious improvement of high-frequency textures at different distance scales and outperforms the state-of-the-art methods.

CCS CONCEPTS

 $\bullet \ Computing \ methodologies \rightarrow Image-based \ rendering.$

KEYWORDS

large-scale scenes, high-frequency shell, surface rendering, high-frequency textures

and/or a fee. Request permissions from permissions@acm.org.

⁵⁵ ACM MM, 2024, Melbourne, Australia

^{56 © 2024} Copyright held by the owner/author(s). Publication rights licensed to ACM.

1 INTRODUCTION

117

118

119

120

121

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Rendering urban and aerial large-scale scenes has many applications like AR/VR and digital navigation. Prior neural radiance fields [1–3] (NeRFs) have tried improving the rendering quality, which can be categorized into two streams. The first [4–6] divides the scene or camera poses into multiple sub-regions or groups, and each unit is represented by a NeRF. This increases the number of NeRF modules, indirectly enhancing model capacity on the surface. However, those NeRFs sample along the entire ray, including empty spaces. The second [7, 8] reconstructs a coarse scene or density field to guide subsequent sampling, concentrating in high-density areas near the surface. Nevertheless, some samples inevitably fall into empty regions, such as the sampling interval ends.

Multi-layer perceptron (MLP) based NeRFs [1, 2] frequently sample along rays, resulting in many points falling into empty regions. Therefore, much model capacity for storing geometry and appearance is used to represent these meaningless spaces rather than the scene surface. Additionally, voxel [9] and grid-based [10–12] NeRFs only have a few vertices to be sampled near the target surface, leading to an upper bound on the model capacity allocated to the surface. These inefficient samplings result in a significant waste of model capacity, lacking enough model capacity on the scene surface to render high-frequency textures. Moreover, most NeRFs [4, 5, 7] have not considered the drastic changes in distances between the camera and the scene surface, which is prone to generate blurry rendering results at various distances.

To overcome the inefficient sampling and enhance the quality of high-frequency textures, we propose a novel high-frequency surface shell radiance field (HS-Surf) to efficiently increase model capacity on scene surfaces. It constructs a shell enveloping the scene surface based on the current view's scene depth. As shown in Figure 1(a), the shell's width increases with the depth, and conic frustums sampled on the shell are used to render high-frequency textures at different distance scales. We call this shell as High-Frequency Shell (HS). HS confines the rendering to scene surfaces, greatly enhancing the utilization of model capacity. Additionally, to model geometry and appearance at different distances, we propose a feature fusion strategy to embed conic frustums representing distances into voxel grids.

Our HS-Surf consists of three stages: initialization, compensation, and post-processing. The initialization uses hash-based voxel grids to generate coarse geometry and appearance. To model distances with drastic changes in large-scale scenes, the proposed feature fusion strategy embeds conic frustums into voxel grids. The compensation generates high-frequency textures at different distance scales. It first augments the coarse scene depth under the current view and constructs an HS based on the augmented depth. Conic frustums are then exclusively sampled on the shell to generate high-frequency textures lost in the coarse appearance. The postprocessing uses a convolutional neural network (CNN) to smooth and denoise the rendering results to achieve a better visual effect.

The experimental results indicate that HS-Surf greatly improves high-frequency textures (see Figure 1(b)) and achieves state-of-theart rendering quality. Additionally, we observe that our rendering 175

speed improves $2 \times$ to $4 \times$ faster than previous NeRFs, achieving double improvement of the rendering effect and computation efficiency. Our contributions can be summarized as follows:

- Our proposed high-frequency shell overcomes the sampling inefficiency of previous methods, efficiently increasing model capacity on scene surfaces to render high-frequency textures.
- The proposed feature fusion strategy embeds conic frustums into voxels to represent the distance scales, enabling the voxel to model the scene at various distances.

2 RELATED WORK

2.1 Neural Radiance Fields

NeRF [1, 3] employs MLPs to model volume density and color of spatial points. A lot of NeRF variants [13–23] render different size objects from small goods to large-scale scenes, aiming to enhance fidelity, rectify camera poses, and accelerate rendering. There are also models [24, 25] designed for unbounded scenes. To speed up rendering, some methods replace MLPs in NeRF with voxel [9, 26] or plane grids [10–12], but these increase GPU memory consumption. Recent methods [27–29] map the voxel vertices into smaller hash tables, which compress 3D spaces and achieve more compact representations.

MipNeRF [2] samples conic frustums along rays, and uses integrated positional encoding (IPE) of the frustums to represent the distance scales. However, the local continuous space of the frustum is incompatible with interpolation operations in grids. ZipNeRF [8] simulates the local space by sampling six points within a conic frustum. These points are then fed into InstantNGP [27]. 3D Gaussian [30] is another recent method with different mechanisms for scene representation, which involves fitting a large number of ellipsoids to approximate the target scene and render novel views.

2.2 Large-scale Scene Rendering

Some traditional methods [31–35] have been proposed to reconstruct the large-scale scenes. Their working pipeline usually needs three stages: keypoint detection, feature matching, and bundle adjustment. Keypoint detection [36–38] looks for unique and easily identifiable regions in images and constructs corresponding feature descriptions. Then, the features of key points are matched to compute camera poses and locations of 3D points. Finally, the camera poses and 3D points are jointly optimized by bundle adjustment [39, 40]. These methods can roughly reconstruct the target scene and synthesize novel views [41, 42], but the results often contain artifacts and holes.

The NeRFs-based methods are also introduced into large-scale scene rendering, including BungeeNeRF [6], BlockNeRF [4], MegaNeRF [5], URF [43], and GridNeRF [7]. BungeeNeRF divides camera poses into four groups based on their heights. A single NeRF is used in the highest group. For each subsequent group with lower heights, the model adds a NeRF module to capture the finer texture details. BlockNeRF and MegaNeRF divide the target scene into multiple sub-regions, with each region represented by a separate NeRF. By partitioning the camera poses or the scene, BungeeNeRF, BlockNeRF, and MegaNeRF reduce the target regions for each sub-NeRF, increasing the model capacity on scene surfaces. However, their

performance improvements are limited because NeRF still needs
to sample the entire ray, including empty regions. The key issue
of low utilization and allocation of model capacity on the scene
surface remains unresolved. URF [43] leverages depth data of radar
as auxiliary information to reconstruct street-level scenes.

GridNeRF [7] comprises a grid branch and a NeRF branch. The grid branch compresses the scene onto a ground plane to recon-struct a coarse radiance field, guiding a second sampling operation to add points in high-density regions near the scene surface. All the sampling points are then fed into the NeRF branch for rendering novel views. However, adding points near the surface still can have some samples falling into empty regions, particularly at the ends of the sampling interval. Moreover, the points in the first sampling operation are distributed across the entire ray, which increases the consumption of model capacity by empty regions. As a result, GridNeRF still lacks sufficient model capacity on the scene surface to render high-frequency texture details.

Both our HS-Surf and GridNeRF include rendering on the scene surface based on a coarse reconstruction. However, our method has different motivation and working mechanism. HS-Surf constructs high-frequency shells on the scene surface. These shells confine the computation of MLPs to the surface while excluding the surrounding empty regions, which greatly enhances the utilization of model capacity. Thus, our method has more power to render high-frequency textures.

3 METHOD

The overview of HS-Surf is illustrated in Figure 2, consisting of three stages: initialization, compensation, and post-processing. The initialization reconstructs the coarse geometry and appearance using hash-based voxel grids. IPE encoding of conic frustums and grid features are fused to model the target scene at different distance scales. The compensation first augments the coarse depth map under the current view to ensure a more accurate surface geometry. Subsequently, it constructs an HS based on the depth map, and samples conic frustums on HS to compensate for the lost high-frequency textures in the coarse appearance. This step is very important because the texture is attached to the geometry. Thus, good depth and its subsequent product of HS can confine sampling to effective texture areas. In the post-processing, a lightweight CNN is employed to smooth and denoise the rendering results of the compensation.

3.1 Initialization of Geometry and Appearance

Hash-based voxel grid is suitable for large-scale scenes as uniformly distributed vertices ensure that model capacity is reasonably allocated across the entire scene to generate a coarse radiance field. Additionally, hash tables are very useful for reducing GPU occupancy for high-resolution voxel grids.

Due to the drastic changes of distance scales in large-scale scenes, sampling points along rays can easily result in blurry rendering results at different distances. Inspired by MipNeRF [2], we sample conic frustums within the target scene and use IPE encoding to model distance scales. Specifically, a frustum is approximated by mean and covariance, which are then fed into IPE to generate the corresponding encoding [2]. Like MipNeRF, the radius of conic containing the frustums at image plane o + dir is set to \dot{r} , and \dot{r} is the width of the pixel in world coordinates scaled by $2/\sqrt{12}$.

To leverage the advantages of both the hash-based voxel grids and conic frustums, we propose a feature fusion strategy to reconstruct the coarse scene at different distance scales. As shown in Figure 2, the center coordinates x of the frustums are used to query features in the density grids $DG(\cdot)$ and the color grids $CG(\cdot)$. The IPE encoding E_i of the frustums is fed into a two-layer MLP $M_i(\cdot)$, which is then fused with density features and color features to compute density σ and color rgb as follows:

$$\sigma = M_{\sigma}(concat(DG(x), M_i(E_i)))$$

$$rgb = M_c(concat(CG(x), M_i(E_i)), dir), \qquad (1)$$

where $M_{\sigma}(\cdot)$ and $M_{c}(\cdot)$ are small MLPs for generating density and color, and *dir* is the ray direction. Volume rendering subsequently generates scene depth and rendering results.

The initialization stage can be described in two steps. The first step samples conic frustums along rays to render pixel colors C_1 . The second step conducts finer sampling based on existing sample densities to obtain pixel depths d_c and colors C_2 . Both steps utilize the same voxel grids and hash tables. To ensure that the initialization results contain less artifacts such as "floaters" and "background collapse", we add an interval-based regularization loss L_{dist} in the fine step, which is proposed in MipNeRF360 [24].

$$L_{dist}(s, w) = \sum_{i,j} \omega_i \omega_j \mid \frac{s_i + s_{i+1}}{2} - \frac{s_j + s_{j+1}}{2} \mid \\ + \frac{1}{3} \sum_i \omega_i^2(s_{i+1} - s_i),$$
(2)

where *s* and *w* represent the (normalized) ray distances and weights of conic frustums in volume rendering, respectively. The role of L_{dist} is to concentrate the frustums with high density into a narrower region. Then, the loss of the initialization stage is as follows:

$$L_{init} = \lambda_1 \parallel C_1 - C_{gt} \parallel_2^2 + \parallel C_2 - C_{gt} \parallel_2^2 + \lambda_2 L_{dist},$$
(3)

where C_{gt} is the real pixel color. λ_1 and λ_2 are set to 0.1 and 0.001 in all experiments.

3.2 Compensation of Depth and Texture

The initialization includes a large number of voxel vertices far from the scene surface, leading to the insufficient model capacity on the surface and the loss of high-frequency textures. To recover the lost texture details, we construct a high-frequency shell for each view to efficiently increase the capacity on the surface. The details are as follows:

Depth Augmentation. The limited model capacity on the surface leads to coarse geometry with noises and holes. Therefore, before constructing the high-frequency shell, we propose a depth augmentation module to improve the depth map under the current view. As shown in Figures 2(a) and 2(c), the coarse depth d_c is utilized to compute the coordinate p_c of the scene surface. The depth augmentation then employs a four-layer MLP $D(\cdot)$ to predict the distance from p_c to surface along the ray direction dir. The output of $D(\cdot)$ is added with d_c to obtain a more accurate surface depth d_f as follows:

$$d_f = D(\gamma(p_c), \gamma(dir)) + d_c, \tag{4}$$

Anonymous Authors

Figure 2: Overview of HS-Surf. (a) is the method pipeline. The initialization employs the feature fusion to embed IPE encoding of conic frustum into the grid feature, generating the coarse geometry d_c and texture C_2 at different distance scales. The compensation stage first augments the depth d_c to obtain a more accurate depth d_f , and constructs a high-frequency shell of the current view based on d_f . Then, for each ray, a conic frustum sampled on the shell is fed into the texture compensation to render the high-frequency textures lost in C_2 . Finally, the post-processing smooths and denoises the output of the compensation stage to achieve a better visual effect. (b), (c) and (d) are network structures for feature fusion, depth augmentation and texture compensation, respectively.

where γ represents the Fourier encoding [1]. More accurate depths and positions of the scene surface guarantee fewer errors in the inputs of subsequent modules.

We optimize the parameters of depth augmentation using both depth loss and subsequent rendering loss L_{render} . The depth loss ensures that the module preserves the basic geometry and structure of the scene, and the rendering loss L_{render} is used to refine the scene depth for more accurate surface representation. Without depth ground truth, we take an augmentation manner to improve depth. Like the pyramid image processing, we take a down-sample on the coarse depth d_c to get a low-resolution depth map, which could filter out certain noises while preserving the major depth information. The low-resolution depth map is determined by W and is then compared with the output d_f of depth augmentation to compute the depth loss L_{depth} . Specifically, we perform down-sampling in d_c by a factor of 3:

$$W = (x\%3 == 0) \text{ and } (y\%3 == 0)$$

$$L_{depth} = W \cdot || d_f - d_c ||_2^2, \qquad (5)$$

where x and y are the pixel coordinates.

High-frequency Shell. After obtaining accurate scene depth d_f under the current view, we need to construct a high-frequency shell on the surface based on d_f . As shown in Figure 1(a), the shell's width t_{range} along the ray determines the enclosed space on the ray {x | x = $o + t \times dir$, $t \in [d_f - 0.5 \times t_{range}, d_f + 0.5 \times t_{range}]$ }. An infinite cone is constructed based on camera position, ray direction and pixel. Then, we truncate the interval $[d_f - 0.5 \times t_{range}, d_f + 0.5 \times t_{range}]$ on conic axis to obtain a conic frustum Δ .

As the depth increases, the high-frequency textures on the surface should become blurred or even disappear. Therefore, the width of Δ needs to increase with depth to suppress the high-frequency components in IPE encoding. The relationship between shell's width t_{range} and depth d_f follows a linear function. First, we calculate the normalized width r:

$$r = \lambda_r \cdot (k \cdot \frac{d_f - near}{far - near} + b), \tag{6}$$

where $\lambda_r = 0.1$ is a scaling factor to stabilize the model. *Near* and *f ar* are the distances traveled along the ray from camera to enter and exit the target scene. $k \ge 0$ and $b \ge 0$ are estimated by a fourlayer MLP, and the input of MLP is the concatenation of *near* and *f ar*. The length t_{range} of the shell in the world coordinate system is as follows:

$$t_{range} = max(min(r, \frac{1}{50}), \frac{1}{2000}) \cdot (far - near).$$
 (7)

The normalized length r needs to be clipped to [1/2000, 1/50] for more stable results.

Texture Compensation. After sampling a conic frustum Δ for each ray on the high-frequency shell, we utilize continuous MLPs to complete the high-frequency textures lost in the voxel grids during initialization. As illustrated in Figures 2(a) and 2(d), the frustum Δ is located at the surface coordinate p_f , and its width equals to the shell's width along the ray. IPE encoding of Δ and ray direction

dir are then fed into an eight-layer MLP $F(\cdot)$ to compute the highfrequency texture details missing in the voxel grids. The generated details are then added with the coarse rendering C_2 to obtain the complete appearance C_f as follows:

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

$$C_f = \lambda_f \cdot F(IPE(\Delta), \gamma(dir)) + C_2, \tag{8}$$

where γ is the Fourier encoding [1]. $\lambda_f = 0.2$ is a scale factor to stabilize the model. The output of $F(\cdot)$ is the texture residual instead of the complete rendering result. The reason is that this method can reduce the learning burden of MLPs and focus the attention of model on the generation of texture details.

Since the scope of inputs in the texture compensation is confined to the scene surface, the model capacity of MLP is dedicated to rendering textures on the target surface. This significantly improves both the capacity utilization on surface and the ability to render high-frequency details. The rendering loss L_{render} is as follows:

$$L_{render} = \lambda_3 \parallel C_f - C_{qt} \parallel_1 + \parallel C_f - C_{qt} \parallel_2^2, \tag{9}$$

where C_{qt} is the real pixel color, and λ_3 is set to 0.1. The loss function Ltexture of the compensation stage includes rendering loss Lrender and depth loss *L*_{depth}:

$$L_{texture} = L_{render} + L_{depth}.$$
 (10)

Post-Processing of Smooth and Denoise 3.3

As the initialization and compensation stages calculate each pixel individually, the generated results may contain noises and are not continuously smooth. Therefore, a lightweight CNN-based postprocessing is constructed to deal with them. The network contains two residual blocks to adjust the features of the original image C_f . Sigmoid activation is used in the final layer of convolution, which limits the output range to [0, 1], whose details are provided in the supplementary material. We opt for a CNN due to the necessity of incorporating correlations between neighboring pixels in the smoothing and denoising processes. Convolution kernels offer a natural way to introduce such information. The loss function L_{img} of the post-processing stage is as follows:

$$L_{img} = \lambda_4 \parallel C - C_{qt} \parallel_1 + \parallel C - C_{qt} \parallel_2^2, \tag{11}$$

where *C* and *C*_{*gt*} are the predicted and real colors, and $\lambda_4 = 0.1$.

3.4 Scene Division and Details

The compensation stage can further enhance the quality of highfrequency textures by partitioning the target scene. Assuming the scene is uniformly divided into N sub-regions, and each contains a depth augmentation and a texture compensation, with corresponding MLPs represented as $D_i(\cdot)$ and $F_i(\cdot)$. The outputs of all subregions are combined into the final results. Therefore, the output d_f of depth augmentation in Equation (4) is modified as follows:

$$d_f = \frac{\sum_{i=1}^{N} M_i \cdot (D_i(\gamma(p_c), \gamma(dir)) + d_c)}{\sum_{i=1}^{N} M_i},$$
 (12)

where $M_i = 1$ indicates that p_c is located in the *i*-th region, otherwise $M_i = 0$. The output C_f of texture compensation in Equation (8) is modified as follows:

$$C_f = \frac{\sum_{i=1}^N M_i \cdot (\lambda_f \cdot F_i(IPE(\Delta), \gamma(dir)) + C_2)}{\sum_{i=1}^N M_i},$$
 (13)

where $M_i = 1$ indicates that p_f is located in the *i*-th region, otherwise $M_i = 0$. The increment in the number of MLPs leads to an augmentation in model capacity on the scene surface.

In Figure 2, the depth d_c generated by the initialization needs to go through a gradient stop. Otherwise, the depth augmentation performance may decrease. In the initialization, the first coarse and second fine step samples 64 and 128 inters along a ray, respectively. The minimum resolution of the voxel grids is 256³, and the maximum resolution is 8192³ after 15 increments. The size of hash table is $2^{21}\times 4$ or $2^{22}\times 4,$ and the hidden nodes of MLPs are 128. For the compensation stage, the hidden nodes of MLPs in the depth augmentation, estimation of high-frequency shell, and texture compensation are set to 256, 64, and 512. The channel of CNN in the post-processing is set to 32.

The training of HS-Surf consists of two stages. The first stage involves joint training of the initialization and compensation. The second stage only trains the post-processing. Their losses are as follows:

$$L_{stage1} = L_{init} + L_{texture} \tag{14}$$

$$L_{stage2} = L_{img}.$$
 (15)

The learning rate is 1e - 4 for both stages and decays exponentially to 1e - 5 during training. More details can be found in the supplementary material.

EXPERIMENTS AND RESULTS 4

4.1 Experiment Setup

Our experiments are conducted on six scenes, including Transamerica, 56Leonard, Building, rubble, residence, and campus. All models are implemented in environments of Python and PyTorch on a single RTX 3090 24G GPU. Transamerica and 56Leonard are two synthetic scenes from the satellite level to the ground level, provided in BungeeNeRF [6]. All images are collected from Google Earth Studio [44], where the camera rotates around the central object of the scene, and the distance to the ground gradually decreases. Building, rubble, residence, and campus are four real aerial data. The first two are from Mill 19 [5], and the remaining two are from UrbanScene3D [45]. In these four datasets, the drone always keeps a stable flying height and shoots to the ground along parallel lines or grid tracks. Therefore, the data distribution is uniform.

HS-Surf is compared with the previous state-of-the-art NeRFs, including BungeeNeRF [6], MegaNeRF [5], and GridNeRF [7]. Mip-NeRF [2] and ZipNeRF [8] are also used in the experiments because they are basic neural rendering methods and can model different distance scales in large-scale scenes. Since each image in the four aerial photography datasets has a different exposure and white balance, we refer to NeRF-in-the-wild [46] to assign a 48-dimensional appearance embedding for each image to model the lighting information. The highest frequencies of positional and directional encodings are set to 12 and 4 for all models. The details of training and testing sets, and more model configurations can be found in the supplementary material.

HS-Surf is also compared to 3D Gaussian [30] with different mechanisms, and the experimental results are presented in the supplementary material. The ability of 3D Gaussian to render highfrequency textures is not as good as HS-Surf because ellipsoids may

523

524

525

574

575

576

577

578

579

Table 1: Performance com	parison of HS-Surf with	previous NeRFs on	large-scale scenes
--------------------------	-------------------------	-------------------	--------------------

Model	Transamerica					56 Le	eonard		Building				
	PSNR ↑	SSIM ↑	LPIPS↓	Time (s)	PSNR ↑	SSIM ↑	LPIPS ↓	Time (s)	PSNR ↑	SSIM ↑	LPIPS ↓	Time (s)	
MipNeRF [2]	22.12	0.6016	0.4856	50.90	21.87	0.5754	0.4883	51.48	19.44	0.3853	0.6499	44.32	
ZipNeRF [8]	23.34	0.7092	0.4327	38.73	24.39	0.7864	0.3376	39.31	20.47	0.5282	0.5010	36.74	
BungeeNeRF [6]	22.40	0.6216	0.4812	92.16	22.15	0.6015	0.4839	93.12	×	×	×	×	
MegaNeRF [5]	×	×	×	×	×	×	×	×	20.69	0.4738	0.5544	251.96	
GridNeRF [7]	23.22	0.6769	0.4640	89.30	23.47	0.6875	0.4605	90.41	21.00	0.5055	0.5259	80.85	
HS-Surf	25.59	0.8304	0.2941	25.42	26.41	0.8679	0.2363	24.51	21.88	0.6039	0.4417	27.35	
Model	Rubble				Residence				Campus				
	PSNR ↑	SSIM ↑	LPIPS↓	Time (s)	PSNR ↑	SSIM ↑	LPIPS ↓	Time (s)	PSNR ↑	SSIM ↑	LPIPS↓	Time (s)	
MipNeRF [2]	22.12	0.3933	0.6761	44.20	20.21	0.4504	0.6582	55.66	20.89	0.3687	0.7631	55.19	
ZipNeRF [8]	23.68	0.5536	0.5169	37.15	21.00	0.5424	0.5240	44.77	20.61	0.4013	0.6591	48.58	
BungeeNeRF [6]	×	×	×	×	×	×	×	×	×	×	×	×	
MegaNeRF [5]	23.10	0.4591	0.6003	232.34	20.45	0.4869	0.5796	341.34	21.71	0.4028	0.6981	271.03	
GridNeRF [7]	23.20	0.4752	0.5897	81.11	20.85	0.4967	0.5883	103.38	20.00	0.3863	0.6596	100.32	

be difficult to split into small enough sizes in large-scale scenes. Additionally, due to the lack of continuity in spherical harmonics, 3D Gaussian generates lots of aliasing under the unseen views in the training set.

4.2 Experiment results

In Table 1, we use PSNR, SSIM, LPIPS (VGG), and the time of rendering a frame to compare the rendering performance. The data distribution in *transamerica* and 56*Leonard* [6] is uneven because the cameras make loop shoot for the centers of scenes. Therefore, *transamerica* and 56*Leonard* are not divided. MegaNeRF [5] is not suitable for this mode, so it has no corresponding results. For the four aerial photography data, MegaNeRF and HS-Surf divide each scene into 8 sub-regions evenly. Since the drone always keeps a stable flight height, BungeeNeRF [6] cannot divide the camera poses according to the height from the camera to the ground, so it has no corresponding results on the later four datasets.

In transamerica and 56Leonard [6], the distance scales undergo drastic changes, HS-Surf achieves noticeable improvements in all metrics compared to models designed for variable distance scales (MipNeRF [2], ZipNeRF [8] and BungeeNeRF [6]), as shown in Table 1. The LPIPS errors of our method are reduced by 30%-40%. Figure 3 demonstrates a visual comparison example in the transamerica from the satellite level to the ground level. HS-Surf renders more high-frequency texture details for objects with differ-ent distances and shapes, which benefits from that HS-Surf embeds conic frustums into voxels to model distances and uses compensa-tion to render high-frequency details at different distance scales.

In aerial photography scenes (building, rubble, residence, campus) with stable heights, HS-Surf also demonstrates better performance, with LPIPS error decreasing by 10%-20% compared to MegaNeRF [5] and GridNeRF [7]. Figure 4 presents visual comparison examples in building (top) and residence (bottom), HS-Surf synthesizes the most accurate views, especially regarding high-frequency textures for buildings with complex structures, wall or roof planes with different directions, and the vehicles with tiny height difference.

Table 2: Comparison of model sizes

model	parameters	model	parameters
MipNeRF	0.608M	ZipNeRF	671.839M
BungeeNeRF	1.080M	HS-Surf (w/o comp & pp)	537.039M
MegaNeRF	11.322M	HS-Surf (w/o pp)	555.611M
GridNeRF	465.914M	HS-Surf	555.678M

Compared to the other models, these cases validate the advantage of our high-frequency shells in confining the rendering to the surface and improving the utilization of model capacity. GridNeRF reconstructs a coarse scene using ground plane grids, then guides the sampling of NeRF branch in the high-density regions rather than on the surface. Its shortcomings are similar to MipNeRF, BungeeNeRF, and MegaNeRF. The inefficiency of sampling results in low capacity utilization and loss of high-frequency textures, as shown in Figure 4.

We find that the rendering of HS-Surf is 2× to 4× faster than other NeRFs in Table 1. Except for benefiting from the voxel grids, there are two other contributing reasons: 1) The compensation stage only samples a conic frustum for each ray. Thus, each ray only needs to be calculated once. 2) The hidden channel of shallow CNN in the post-processing is only 32. MipNeRF, BungeeNeRF, MegaNeRF and GridNeRF query multiple samples along a ray in each sampling stage, resulting in multiple computations for rendering a pixel. ZipNeRF samples six points in a conic frustum, bringing it a huge cost and a slow speed.

The model sizes on the dataset of *building* are presented in Table 2, where the result of BungeeNeRF are from *transamerica*. The compensation and post-processing are denoted as *comp* and *pp*. The compensation stage of HS-Surf introduces extra parameters on the scene surface, resulting in a parameter increase of 3.5%.

4.3 Ablation Study

In Table 3, we present an ablation study of HS-Surf. The postprocessing stage is represented by PP. We summarize the findings

HS-Surf: A Novel High-Frequency Surface Shell Radiance Field to Improve Large-Scale Scene Rendering

Figure 3: A visual comparison example from the aerial orbiting photography of *Transamerica*. The top row is near the ground and the bottom row is far from the ground. The zoom-in images include different distances (near and far) and appearances (floater and buildings).

Figure 4: Two visual comparison examples from the drone shooting with fixed altitude and route. The top row is the *building* and the bottom row is the *residence*, respectively. The zoom-in images include the complex building structure, vertical and horizontal planes, and the vehicles with tiny height differences.

as follows. F) The removal of feature fusion strategy in the initialization stage results in a decreased modeling ability for distance scales. In supplementary material, we demonstrate the impacts of feature fusion and compensation on rendering results. G) The removal of compensation leads to a significant decrease in model performance. In Figure 5, the results without compensation lose a lot of highfrequency textures at the top of the building. For more results of depth and rendering, please refer to the supplementary material. H) Removing depth augmentation (dea) in compensation leads to poor geometry and holes, and it also affects rendering quality, as

Table 3: Performance comparison of ablation experiments

Model	Transamerica			56 Leonard			Building			Residence		
	PSNR ↑	SSIM ↑	LPIPS \downarrow	PSNR ↑	SSIM ↑	LPIPS \downarrow	PSNR ↑	SSIM ↑	LPIPS \downarrow	PSNR ↑	SSIM ↑	LPIPS
A) w/o fusion & PP	23.77	0.7411	0.4087	24.43	0.7877	0.3476	20.79	0.4971	0.5060	21.41	0.5275	0.5394
B) w/o compensate & PP	24.95	0.7966	0.3528	23.24	0.7063	0.4528	20.50	0.4911	0.5151	21.68	0.5639	0.5089
C) w/o dea & PP	25.15	0.8089	0.3309	25.05	0.8262	0.2896	21.25	0.5521	0.4681	19.53	0.5010	0.5509
D) w/o HS & PP	25.18	0.8105	0.3332	25.98	0.8515	0.2613	20.61	0.5274	0.4852	21.61	0.5549	0.5106
E) w/o PP	25.25	0.8147	0.3251	26.12	0.8566	0.2537	21.52	0.5678	0.4537	21.99	0.5797	0.4952
F) w/o fusion	24.50	0.7814	0.3383	25.30	0.8240	0.2875	21.35	0.5567	0.4788	21.70	0.5725	0.5281
G) w/o compensate	25.29	0.8149	0.3146	23.80	0.7446	0.3722	20.89	0.5428	0.5011	21.81	0.5867	0.5128
H) w/o dea	25.49	0.8250	0.2983	25.56	0.8431	0.2623	21.66	0.5911	0.4552	19.99	0.5268	0.5584
I) w/o HS	25.51	0.8268	0.2988	26.28	0.8634	0.2419	21.14	0.5648	0.4711	21.76	0.5797	0.5185
J) complete	25.59	0.8304	0.2941	26.41	0.8679	0.2363	21.88	0.6039	0.4417	22.12	0.5982	0.5015

Figure 5: Ablation study on compensation. Without compensation, the rendering results lose a lot of high-frequency textures. The post-processing (PP) just removes noises, but cannot generate the lost textures.

Figure 6: Ablation study on the depth augmentation. With depth augmentation, the depth map is further improved, alleviating the holes and depth texture-copy.

shown in Figure 6. I) Replacing the high-frequency shell with a single spatial point in compensation results in the framework's inability to model distance scales, as shown in Figure 7. A)-E) remove the post-processing based on F)-J). Therefore, the rendering results contain noise and have relatively low quality, as shown in Table 3 and Figure 5.

Figure 7: Ablation study on the HS. When removing the HS and directly sampling a point on the surface, the targets like windows and ships-like become unclear.

5 DISCUSSION AND CONCLUSION

In this work, we aim to improve the quality of high-frequency textures in urban and aerial large-scale scenes by dealing with issues of inefficient sampling and various distances. We have presented HS-Surf, a novel high-frequency surface shell radiance field method to improve large-scale scene rendering. We create a high-frequency shell on the scene surface under the current view, and sample conic frustums on this shell to overcome the sampling inefficiency in previous methods. As a result, model capacity is efficiently utilized to render high-frequency textures. Additionally, to model the distances with drastic changes in large-scale scenes, we embed frustums representing distance into voxel grids to construct the scene at different distance scales.

Our HS-Surf achieves better rendering results in large-scale scenes, particularly concerning high-frequency textures. The solid ablation study experiments validate the effectiveness of each component in our model. Meanwhile, as we optimize the sampling and make better use of the model capacity, our implementation speed is also faster. Furthermore, our method can easily generalize to NeRFs variants and new rendering techniques. In the future, we will explore integrating the high-frequency surface shell into other rendering techniques, and consider rendering texture details at different distance scales in dynamic scenes. HS-Surf: A Novel High-Frequency Surface Shell Radiance Field to Improve Large-Scale Scene Rendering

ACM MM, 2024, Melbourne, Australia

929 **REFERENCES**

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

- Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Eur. Conf. Comput. Vis.*, pages 405–421, 2020.
- [2] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields. Int. Conf. Comput. Vis., 2021.
- [3] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang. Neus: Learning neural implicit surfaces by volume rendering for multiview reconstruction. *NeurIPS*, 2021.
- [4] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Pradhan, Ben Mildenhall, Pratul P.Srinivasan, Jonathan T.Barron, and Henrik Kretzschmar. Block-nerf: Scalable large scene neural view synthesis. *IEEE Conf. Comput. Vis. Pattern Recog.*, pages 8238–8248, 2022.
- [5] Haithem Turki, Deva Ramanan, and Mahadev Satyanarayanan. Mega-nerf: Scalable construction of large-scale nerfs for virtual fly-throughs. *IEEE Conf. Comput.* Vis. Pattern Recog., pages 12912–12921, 2022.
- [6] Yuanbo Xiangli, Linning XU, Xingang Pan, Nanxuan Zhao, Anyi Rao, Christian Theobalt, Bo Dai, and Dahua Lin. Bungeenerf: Progressive neural radiance field for extreme multi-scale scene rendering. *Eur. Conf. Comput. Vis.*, 2022.
- [7] Linning Xu, Yuanbo Xiangli, Sida Peng, Xingang Pan, Nanxuan Zhao, Christian Theobalt, Bo Dai, and Dahua Lin. Grid-guided neural radiance fields for large urban scenes. *IEEE Conf. Comput. Vis. Pattern Recog.*, pages 8296–8306, 2023.
- [8] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. Zip-nerf: Anti-aliased grid-based neural radiance fields. Int. Conf. Comput. Vis., 2023.
- [9] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-fast convergence for radiance fields reconstruction. *IEEE Conf. Comput. Vis. Pattern Recog.*, 2022.
- [10] Ang Cao and Justin Johnson. Hexplane: A fast representation for dynamic scenes. IEEE Conf. Comput. Vis. Pattern Recog., 2023.
- [11] Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg, Benjamin Recht, and Angjoo Kanazawa. K-planes: Explicit radiance fields in space, time, and appearance. IEEE Conf. Comput. Vis. Pattern Recog., 2023.
- [12] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance fields. Eur. Conf. Comput. Vis., 2022.
- [13] Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey. Barf : Bundle-adjusting neural radiance fields. Int. Conf. Comput. Vis., 2021.
- [14] Yifan Jiang, Peter Hedman, Ben Mildenhall, Dejia Xu, Jonathan T. Barron, Zhangyang Wang, and Tianfan Xue. Alignerf: High-fidelity neural radiance fields via alignment-aware training. *IEEE Conf. Comput. Vis. Pattern Recog.*, pages 46–55, 2023.
- [15] Dogyoon Lee, Minhyeok Lee, Chajin Shin, and Sangyoun Lee. Dp-nerf: Deblurred neural radiance field with physical scene priors. *IEEE Conf. Comput. Vis. Pattern Recog.*, pages 12386–12396, 2023.
- [16] Yusen Wang, Zongcheng Li, Yu Jiang, Kaixuan Zhou, Tuo Cao, Yanping Fu, and Chunxia Xiao. Neuralroom: Geometry-constrained neural implicit surfaces for indoor scene reconstruction. ACM Transactions on Graphics, pages 1–15, 2022.
- [17] Zongcheng Li, Xiaoxiao Long, Yusen Wang, Tuo Cao, Wenping Wang, Fei Luo, and Chunxia Xiao. Neto: Neural reconstruction of transparent objects with self-occlusion aware refraction-tracing. *Int. Conf. Comput. Vis.*, 2023.
- [18] Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and Andrea Tagliasacchi. Mobilenerf: Exploiting the polygon rasterization pipeline for efficient neural field rendering on mobile architectures. *IEEE Conf. Comput. Vis. Pattern Recog.*, pages 16569–16578, 2023.
- [19] Krishna Wadhwani and Tamaki Kojima. Squeezenerf: Further factorized fastnerf for memory-efficient inference. *IEEE Conf. Comput. Vis. Pattern Recog.*, pages 2716–2724, 2022.
- [20] Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, and Andrea Tagliasacchi. Derf: Decomposed radiance fields. *IEEE Conf. Comput. Vis. Pattern Recog.*, pages 14153–14161, 2021.
- [21] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. Kilonerf: Speeding up neural radiance fields with thousands of tiny mlps. Int. Conf. Comput. Vis., 2021.
- [22] Tong Xu, Ruhao Wang, Fei Luo, and Chunxia Xiao. Multi-scale implicit surface reconstruction for outdoor scenes. *Computational Visual Media*, 2024.
- [23] Wenxiao Zhang, Huajian Zhou, Zhen Dong, Qingan Yan, and Chunxia Xiao. Rank-pointretrieval: Reranking point cloud retrieval via a visually consistent registration evaluation. *IEEE Transactions on Visualization and Computer Graphics*, 2022.
- [24] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded anti-aliased neural radiance fields. *IEEE Conf. Comput. Vis. Pattern Recog.*, pages 5470–5479, 2022.
- [25] Peng Wang, Yuan Liu, Zhaoxi Chen, Lingjie Liu, Ziwei Liu, Taku Komura, Christian Theobalt, and Wenping Wang. F2-nerf: Fast neural radiance field training with free camera trajectories. *IEEE Conf. Comput. Vis. Pattern Recog.*, 2023.

- [26] Tong Wu, Jiaqi Wang, Xingang Pan, Xudong Xu, Christian Theobalt, Ziwei Liu, and Dahua Lin. Voxurf: Voxel-based efficient and accurate neural surface reconstruction. Int. Conf. Learn. Represent., 2023.
- [27] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph., 41(4):102:1–102:15, 2022.
- [28] Yiming Wang, Qin Han, Marc Habermann, Kostas Daniilidis, Christian Theobalt, and Lingjie Liu. Neus2: Fast learning of neural implicit surfaces for multi-view reconstruction. *Int. Conf. Comput. Vis.*, 2023.
- [29] Zhaoshuo Li, Thomas Müller, Alex Evans, Russell H Taylor, Mathias Unberath, Ming-Yu Liu, and Chen-Hsuan Lin. Neuralangelo: High-fidelity neural surface reconstruction. *IEEE Conf. Comput. Vis. Pattern Recog.*, 2023.
- [30] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for real-time radiance field rendering. ACM Transactions on Graphics, 42(4), July 2023.
- [31] Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless, Steven M. Seitz, and Richard Szeliski. Building rome in a day. *Communications* of the ACM, 2011.
- [32] Xiaowei Li, Changchang Wu, Christopher Zach, Svetlana Lazebnik, and Jan-Michael Frahm. Modeling and recognition of landmark image collections using iconic scene graphs. *Eur. Conf. Comput. Vis.*, 2008.
- [33] Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. IEEE Conf. Comput. Vis. Pattern Recog., 2016.
- [34] Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo tourism: Exploring photo collections in 3d. SIGGRAPH, 2006.
- [35] Siyu Zhu, Runze Zhang, Lei Zhou, Tianwei Shen, Tian Fang, Ping Tan, and Long Quan. Very large-scale global sfm by distributed motion averaging. *IEEE Conf. Comput. Vis. Pattern Recog.*, 2018.
- [36] David G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis., 2004.
- [37] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features. Eur. Conf. Comput. Vis., 2006.
- [38] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient alternative to sift or surf. Int. Conf. Comput. Vis., 2011.
- [39] R. I. Hartley and A. Zisserman. Multiple view geometry in computer vision. Cambridge University Press, second edition, 2004.
- [40] Bill Triggs, Philip F McLauchlan, Richard I Hartley, and Andrew W Fitzgibbon. Bundle adjustment - a modern synthesis. *International workshop on vision algo*rithms, 1999.
- [41] Frank Losasso and Hugues Hoppe. Geometry clipmaps: terrain rendering using nested regular grids. SIGGRAPH, 2004.
- [42] Qi Shan, Riley Adams, Brian Curless, Yasutaka Furukawa, and Steven M. Seitz. The visual turing test for scene reconstruction. 3DV, 2013.
- [43] Konstantinos Rematas, Andrew Liu, Pratul Srinivasan, Jonathan Barron, Andrea Tagliasacchi, Thomas Funkhouser, and Vittorio Ferrari. Urban radiance fields. *IEEE Conf. Comput. Vis. Pattern Recog.*, 2022.
- [44] Google earth studio. https://earth.google.com/studio/.
- [45] Liqiang Lin, Yilin Liu, Yue Hu, Xingguang Yan, Ke Xie, and Hui Huang. Capturing, reconstructing, and simulating: the urbanscene3d dataset. *Eur. Conf. Comput. Vis.*, 2022.
- [46] Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi, Jonathan T. Barron, Alexey Dosovitskiy, and Daniel Duckworth. Nerf in the wild: Neural radiance fields for unconstrained photo collections. *IEEE Conf. Comput. Vis. Pattern Recog.*, 2021.

987

988

989

990

991

992

993

994

995

996

- 104:
- 1044