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1 OVERVIEW

Here, we give more detailed information to supplement the main
paper. In section 2, we introduce how to calculate the sampling inter-
val (near to far) of a ray and the bounding box of voxel grids. Near
and far are the distances from the camera entering and leaving the
target area along the ray. In section 3, we present the convolutional
neural network (CNN) in the post-processing. In sections 4 and 5,
configurations of all models, data partitioning, and training settings
are described. In section 6, additional renderings of all NeRFs are
shown. In section 7, HS-Surf is compared with 3D Gaussian [1]. In
section 8, we present additional ablation experiments, including
analysis for the feature fusion in initialization and the compensation
stage. In section 9, we discuss the limitations of HS-Surf.

Due to the size limitation on supplementary materials, we select
two video clips from our video demos to showcase the rendering
results. The scene of videol is transamerica [2], and the distance
scales undergo drastic changes. The scene of video2 is building [3],
and the training images are captured by a drone at a stable altitude.

2 NEAR, FAR AND BOUNDING BOX

The target areas are divided into earth and plane types. The calcula-
tions of the two types are different. Earth type includes Transamerica
and 56Leonard [2]. Because the height of the camera varies from
satellite level to ground level, the fact that Earth is a sphere needs to
be considered. Plane type includes building, rubble, residence, and
campus [3, 4]. The drone shoots towards the ground and maintains
a stable flight altitude. Therefore, the target area is between the
flight plane and the ground.

For the earth type in this work, we reconstruct the area within
250m of the ground, which is between the orange and blue spheres
in Figure 1. The distances from the camera to the two spheres along
the ray are defined as near and far. The samples on the ray are
located between near and far.

In Figure 1, G is the coordinate of earth center, and O is the
position of camera. dir is the ray direction and is a unit vector. @ is

5
avector from O to G, and b is a vector from O to the orange or blue

N
sphere. For the blue sphere sitting on the ground, [@ — bz = r,
where r = 6371011m is the radius of earth. For the orange sphere

N
in the sky, |[@ — b ||2 = r + 250. The equations are as follows:

{||G—O—far-dir||2 = ”
|G — O — near - dir||2 = r + 250.
The intermediate variables are as follows:

a= ||dir||§

b=2-dir- (O-G) @

far = G~ Ol -
cnear = |G - O”% - (r+ 250)2,

Figure 1: Illustration of the earth type, we reconstruct the
area within 250m from the ground, which is located between
the orange and blue spheres.

and near and far are calculated as follows:

far=(-b— \/b% —4a- crar)/(2a) @)
near = (=b — \/b? — 4a - cpear)/(2a).
After determining near and far of each ray, two boundary points
can be calculated:

{pn = O + near - dir @)

pr =0+ far-dir.

The maximum and minimum values of all boundary points in x, y,
z determine the extent of the bounding box. To reduce computation,
we only use rays located at the four corners of each image.

For the plane type, the Z-axis of the world coordinate system
in the aerial data is perpendicular to the ground, and the range of
target area on the Z-axis is also specified, as shown in Figure 2.
The component of camera position on the Z-axis is zg. The upper
and lower surfaces of the target area correspond to z; and z;. The
distances from camera to the upper and lower surfaces along the ray
direction dir are near and far, and dir is a unit vector. Therefore,
near and far are calculated as follows:

near = max(zg — z1,0)/|dir(z)|
far = (20 — z2)/|dir (2)],

where dir(z) represents the component of dir on the Z-axis. For

the cameras located inside the scene, near = 0. After determining

near and far of each ray, the corresponding bounding box of the
scene can be obtained, and the process is the same as the earth type.
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Z

Zy

z,

z

Figure 2: Illustration of the plane type. Z-axis of the world
coordinate system is perpendicular to the ground. The pro-
jections of upper and lower surfaces of target area on the
Z-axis are known.

3 POST PROCESSING

The CNN structure in the post-processing stage is shown in Figure 3,
which is a lightweight network containing residual blocks.

4 CONFIGURATION OF COMPARED MODELS

MipNeRF [5] uses a default 8-layer MLP with 256 hidden nodes.
The sizes of voxel grids and hash tables in ZipNeRF [6] are the same
as those in HS-Surf, and the hidden nodes of the small MLPs are set
to 256. In transamerica and 56Leonard [2], the size of hash table is
221 % 4. In building, rubble, residence, and campus [3, 4], the size
of hash table is 222 x 4. BungeeNeRF [2] is divided into four stages
according to the original paper. The first stage is a four-layer MLP
with 256 hidden nodes, and each subsequent stage adds two fully
connected layers.

For MegaNeRF [3], we directly use the Python code and check-
point provided by the authors. GridNeRF [7] contains three ground
feature planes with resolutions of 2562, 7682, and 23042. The dimen-
sions of the density and color features are set to 16 and 48 in each
plane. The hidden nodes of MLPs in the grid and NeRF branches
are set to 256. GridNeRF with the above configuration can just run
on a 3090 GPU. For 3D Gaussian [1], we use the CUDA code and
configuration provided in the paper for training, with the number
of images in iteration is set to 90000.

5 DATA PARTITIONING AND TRAINING
SETTINGS

As shown in Table 1, images in the six scenarios have different
resolutions, and 20% of the data is extracted to test all models.
For HS-Surf, the batch size of pixels and images are 2048 and 2 in
training. For the other models, the batch size of pixels is set to 2048.
The training settings of all models are shown in Table 2. Because
campus has more data than the other scenarios, we appropriately
increase the training steps.

Anonymous Authors

Post Processing

@3 x 3 convolution @ relu 'sigmoid i+) add

Figure 3: Detailed structure of CNN in the post-processing.

Table 1: Number of images and details of the six scenes

scene train  test resolution object center
Transamerica [2] 364 91 1080 x 1920 v
56 Leonard [2] 371 92 1080 x 1920 N
Building [3] 1552 388 1152 X 1536 x
Rubble [3] 1343 335 1152 X 1536 X
Residence [4] 2066 516 1216 X 1824 X
Campus [4] 4697 1174 1216 X 1824 X

Table 2: Iteration steps of the models in all scenarios

Transamerica, 56Leonard

MipNeRF [5] 500k

ZipNeRF [6] 500k
BungeeNeRF [2] 200k per stage (4 stages)
GridNeRF [7] 100k and 400k in the two stages
HS-Surf 450k and 50k in the two stages

Building, rubble, residence

MipNeRF [5] 1200k

ZipNeRF [6] 1200k

MegaNeRF [3] Load the model directly
GridNeRF [7] 200k and 1000k in the two stages

HS-Surf 1100k and 100k in the two stages
Campus

MipNeRF [5] 1500k

ZipNeRF [6] 1500k

MegaNeRF [3]
GridNeRF [7]
HS-Surf

Load the model directly
300k and 1200k in the two stages
1400k and 100k in the two stages

6 MORE RESULTS WITH NERFS

The proposed HS-Surf is compared with MipNeRF [5], ZipNeRF
[6], BungeeNeRF [2], MegaNeRF [3], and GridNeRF [7]. Render-
ing results on transamerica and 56Leonard are shown in Figure 4,
where the distance scales undergo drastic changes, from the satel-
lite level to the ground level. Rendering results on the real aerial
data (building, rubble, residence, campus) are shown in Figures 5
and 6. The drone maintains a stable flight altitude and shoots to-
ward the ground along parallel lines or grid trajectories. Thus, the
data distribution is uniform.

Different from the other models, HS-Surf constructs a high-
frequency shell based on the current view’s scene depth to maximize
the utilization of model capacity, efficiently increasing the model
capacity on the scene surface for rendering high-frequency textures.
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BungeeNeRF

GridNeRF
HS-Surf (Ours)
Ground Truth

BungeeNeRF

GridNeRF
HS-Surf (Ours)
Ground Truth

GridNeRF
HS-Surf (Ours)
BungeeNeRF Ground Truth BungeeNeRF

GridNeRF
Ground Truth

Figure 4: In transamerica and 56Leonard, HS-Surf preserves more high-frequency texture details at multiple distance scales with
drastic changes, such as windows and grids on buildings.
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GridNeRF ~ HS-Surf (Ours)

Figure 5: Rendering results in building and rubble. HS-Surf produces finer scene structures, such as iron fences of the factory, as
well as textures on railways, etc.
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MipNeRF

Figure 6: In residence and campus, HS-Surf renders more texture details in aerial large-scale scenes, including intricate and
complex windows, vehicles on the roads, and architectural details on buildings.
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3D Gaussian

HS-Surf (Ours)

Anonymous Authors

Ground Truth

Figure 7: Compared to HS-Surf, 3D Gaussian tends to lose texture details on fine scene structures in large-scale scenes, and
their rendering results often contain many continuous blurry areas.

Table 3: Comparison of HS-Surf and 3D Gaussian

Model ‘ Building ‘ Rubble Residence ‘ Campus

| PSNRT SSIMT LPIPS| | PSNRT SSIMT LPIPS| | PSNRT SSIMT LPIPS| | PSNRT SSIMT LPIPS |
3D Gaussian 18.05 0.5388 0.5418 20.49 0.5795 0.5390 19.72 0.5953 0.4917 14.94 0.3154 0.8377
HS-Surf 21.88 0.6039 0.4417 24.24 0.5824 0.4943 22.12 0.5982 0.5015 21.97 0.4639 0.6183

Additionally, our feature fusion strategy embeds frustums repre-
senting distance into voxel grids to generate the target scene at
different distance scales. Therefore, HS-Surf produces high-fidelity
renderings across various distances and renders more texture details
in the aerial scenes.

7 COMPARISON WITH 3D GAUSSIAN

HS-Surf is compared with 3D Gaussian [1] on the aerial scenes
(building, rubble, residence, campus), and performance metrics and
rendering results are presented in Table 3 and Figure 7. In Figure 7,

3D Gaussian tends to lose texture information when rendering
small objects. The Gaussian spheres may struggle to split into suffi-
ciently small sizes to represent texture details in large-scale scenes.
Additionally, 3D Gaussian generates large continuous blurry areas
in their rendering results. The possible reason is the sparse coverage
of views in the training set, which is not conducive to rendering
novel views in the test set.
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Ground truth w/o fusion & comp w/o fusion complete

Figure 8: Removing the feature fusion (fusion) in initialization results in a loss of texture details across various distances. The
compensation (comp) can complete lots of high-frequency textures, but the performance is still lower than the complete model.

LA 3

Depths (w/o compensation) Depths (w compensation)

Depths (w/o compensation) Depths (w compensation)

Figure 9: When the compensation stage is removed, the model produces unsmooth scene geometry and a large number of holes.
Simultaneously, the corresponding rendering results also lose texture information.
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Table 4: Ablation experiments of the feature fusion (fusion)
and the compensation stage (comp)

Transamerica

model PSNRT SSIMT LPIPS |
A) w/o fusion & comp 2431  0.7707  0.3526
B) w/o fusion 2450 07814  0.3383
C) complete 25.59 0.8304 0.2941
Building

model PSNRT SSIMT LPIPS |
A) w/o fusion & comp 2097  0.5290  0.5025
B) w/o fusion 2135  0.5567  0.4788
C) complete 21.88 0.6039 0.4417

8 MORE ABLATION EXPERIMENTS

We additionally analyze the benefits brought by the combination
of feature fusion strategy and compensation stage, and conduct
relevant ablation experiments on transamerica and building, as
shown in Table 4 and Figure 8. The findings are summarized here.
A) When both the feature fusion and the compensation stage are
removed, the model produces blurry rendering results and loses a
lot of high-frequency textures at different distance scales. B) When
only the feature fusion is removed, the compensation stage can fill
in many missing texture details, but the results are still different
from the ground truth. C) The combination of feature fusion and
compensation stages brings the maximum benefit, filling in high-
frequency textures at different distance scales.

The purpose of the compensation stage is to refine the scene
geometry and fill in the missing high-frequency textures. Figure 9
shows more ablation experiments of this stage. If the compensation
is removed, the scene geometry is not smooth and contains a large
number of holes due to the lack of depth augmentation. Simultane-
ously, the rendering results are blurry, and the texture information
is lost. The role of the post-processing stage is to remove noise in
the renderings and smooth the image, as shown in Figure 10.

9 LIMITATIONS

Although HS-Surf achieves state-of-the-art rendering across various
distance scales for large-scale scenes, there are several limitations
that represent opportunities for future improvement: 1) Frequent
movement of dynamic objects in the scene leads to artifacts in the
rendering results, as shown in Figure 11. HS-Surf uses photometric
loss to supervise the training process. When dynamic objects appear
at a certain location in the scene, the model needs to generate
artifacts to minimize the loss function. 2) Shadows in images might
lead to collapse geometry, because the reconstruction process of
geometry does not introduce lighting information.
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