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1 OVERVIEW
Here, we give more detailed information to supplement the main
paper. In section 2, we introduce how to calculate the sampling inter-
val (𝑛𝑒𝑎𝑟 to 𝑓 𝑎𝑟 ) of a ray and the bounding box of voxel grids. 𝑁𝑒𝑎𝑟

and 𝑓 𝑎𝑟 are the distances from the camera entering and leaving the
target area along the ray. In section 3, we present the convolutional
neural network (CNN) in the post-processing. In sections 4 and 5,
configurations of all models, data partitioning, and training settings
are described. In section 6, additional renderings of all NeRFs are
shown. In section 7, HS-Surf is compared with 3D Gaussian [1]. In
section 8, we present additional ablation experiments, including
analysis for the feature fusion in initialization and the compensation
stage. In section 9, we discuss the limitations of HS-Surf.

Due to the size limitation on supplementary materials, we select
two video clips from our video demos to showcase the rendering
results. The scene of video1 is 𝑡𝑟𝑎𝑛𝑠𝑎𝑚𝑒𝑟𝑖𝑐𝑎 [2], and the distance
scales undergo drastic changes. The scene of video2 is 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 [3],
and the training images are captured by a drone at a stable altitude.

2 NEAR, FAR AND BOUNDING BOX
The target areas are divided into earth and plane types. The calcula-
tions of the two types are different. Earth type includes𝑇𝑟𝑎𝑛𝑠𝑎𝑚𝑒𝑟𝑖𝑐𝑎

and 56𝐿𝑒𝑜𝑛𝑎𝑟𝑑 [2]. Because the height of the camera varies from
satellite level to ground level, the fact that Earth is a sphere needs to
be considered. Plane type includes 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔, 𝑟𝑢𝑏𝑏𝑙𝑒 , 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 , and
𝑐𝑎𝑚𝑝𝑢𝑠 [3, 4]. The drone shoots towards the ground and maintains
a stable flight altitude. Therefore, the target area is between the
flight plane and the ground.

For the earth type in this work, we reconstruct the area within
250𝑚 of the ground, which is between the orange and blue spheres
in Figure 1. The distances from the camera to the two spheres along
the ray are defined as 𝑛𝑒𝑎𝑟 and 𝑓 𝑎𝑟 . The samples on the ray are
located between 𝑛𝑒𝑎𝑟 and 𝑓 𝑎𝑟 .

In Figure 1, 𝐺 is the coordinate of earth center, and 𝑂 is the
position of camera. 𝑑𝑖𝑟 is the ray direction and is a unit vector. −→𝑎 is
a vector from𝑂 to𝐺 , and

−→
𝑏 is a vector from𝑂 to the orange or blue

sphere. For the blue sphere sitting on the ground, ∥−→𝑎 − −→
𝑏 ∥2 = 𝑟 ,

where 𝑟 = 6371011𝑚 is the radius of earth. For the orange sphere
in the sky, ∥−→𝑎 − −→

𝑏 ∥2 = 𝑟 + 250. The equations are as follows:{
∥𝐺 −𝑂 − 𝑓 𝑎𝑟 · 𝑑𝑖𝑟 ∥2 = 𝑟

∥𝐺 −𝑂 − 𝑛𝑒𝑎𝑟 · 𝑑𝑖𝑟 ∥2 = 𝑟 + 250.
(1)

The intermediate variables are as follows:
𝑎 = ∥𝑑𝑖𝑟 ∥22
𝑏 = 2 · 𝑑𝑖𝑟 · (𝑂 −𝐺)
𝑐 𝑓 𝑎𝑟 = ∥𝐺 −𝑂 ∥22 − 𝑟2

𝑐𝑛𝑒𝑎𝑟 = ∥𝐺 −𝑂 ∥22 − (𝑟 + 250)2,

(2)

Figure 1: Illustration of the earth type, we reconstruct the
area within 250m from the ground, which is located between
the orange and blue spheres.

and 𝑛𝑒𝑎𝑟 and 𝑓 𝑎𝑟 are calculated as follows:𝑓 𝑎𝑟 = (−𝑏 −
√︃
𝑏2 − 4𝑎 · 𝑐 𝑓 𝑎𝑟 )/(2𝑎)

𝑛𝑒𝑎𝑟 = (−𝑏 −
√︁
𝑏2 − 4𝑎 · 𝑐𝑛𝑒𝑎𝑟 )/(2𝑎) .

(3)

After determining 𝑛𝑒𝑎𝑟 and 𝑓 𝑎𝑟 of each ray, two boundary points
can be calculated: {

𝑝𝑛 = 𝑂 + 𝑛𝑒𝑎𝑟 · 𝑑𝑖𝑟
𝑝 𝑓 = 𝑂 + 𝑓 𝑎𝑟 · 𝑑𝑖𝑟 .

(4)

The maximum and minimum values of all boundary points in 𝑥 , 𝑦,
𝑧 determine the extent of the bounding box. To reduce computation,
we only use rays located at the four corners of each image.

For the plane type, the Z-axis of the world coordinate system
in the aerial data is perpendicular to the ground, and the range of
target area on the Z-axis is also specified, as shown in Figure 2.
The component of camera position on the Z-axis is 𝑧0. The upper
and lower surfaces of the target area correspond to 𝑧1 and 𝑧2. The
distances from camera to the upper and lower surfaces along the ray
direction 𝑑𝑖𝑟 are 𝑛𝑒𝑎𝑟 and 𝑓 𝑎𝑟 , and 𝑑𝑖𝑟 is a unit vector. Therefore,
𝑛𝑒𝑎𝑟 and 𝑓 𝑎𝑟 are calculated as follows:{

𝑛𝑒𝑎𝑟 =𝑚𝑎𝑥 (𝑧0 − 𝑧1, 0)/|𝑑𝑖𝑟 (𝑧) |
𝑓 𝑎𝑟 = (𝑧0 − 𝑧2)/|𝑑𝑖𝑟 (𝑧) |,

(5)

where 𝑑𝑖𝑟 (𝑧) represents the component of 𝑑𝑖𝑟 on the Z-axis. For
the cameras located inside the scene, 𝑛𝑒𝑎𝑟 = 0. After determining
𝑛𝑒𝑎𝑟 and 𝑓 𝑎𝑟 of each ray, the corresponding bounding box of the
scene can be obtained, and the process is the same as the earth type.
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Figure 2: Illustration of the plane type. Z-axis of the world
coordinate system is perpendicular to the ground. The pro-
jections of upper and lower surfaces of target area on the
Z-axis are known.

3 POST PROCESSING
The CNN structure in the post-processing stage is shown in Figure 3,
which is a lightweight network containing residual blocks.

4 CONFIGURATION OF COMPARED MODELS
MipNeRF [5] uses a default 8-layer MLP with 256 hidden nodes.
The sizes of voxel grids and hash tables in ZipNeRF [6] are the same
as those in HS-Surf, and the hidden nodes of the small MLPs are set
to 256. In 𝑡𝑟𝑎𝑛𝑠𝑎𝑚𝑒𝑟𝑖𝑐𝑎 and 56𝐿𝑒𝑜𝑛𝑎𝑟𝑑 [2], the size of hash table is
221 × 4. In 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔, 𝑟𝑢𝑏𝑏𝑙𝑒 , 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 , and 𝑐𝑎𝑚𝑝𝑢𝑠 [3, 4], the size
of hash table is 222 × 4. BungeeNeRF [2] is divided into four stages
according to the original paper. The first stage is a four-layer MLP
with 256 hidden nodes, and each subsequent stage adds two fully
connected layers.

For MegaNeRF [3], we directly use the Python code and check-
point provided by the authors. GridNeRF [7] contains three ground
feature planes with resolutions of 2562, 7682, and 23042. The dimen-
sions of the density and color features are set to 16 and 48 in each
plane. The hidden nodes of MLPs in the grid and NeRF branches
are set to 256. GridNeRF with the above configuration can just run
on a 3090 GPU. For 3D Gaussian [1], we use the CUDA code and
configuration provided in the paper for training, with the number
of images in iteration is set to 90000.

5 DATA PARTITIONING AND TRAINING
SETTINGS

As shown in Table 1, images in the six scenarios have different
resolutions, and 20% of the data is extracted to test all models.
For HS-Surf, the batch size of pixels and images are 2048 and 2 in
training. For the other models, the batch size of pixels is set to 2048.
The training settings of all models are shown in Table 2. Because
𝑐𝑎𝑚𝑝𝑢𝑠 has more data than the other scenarios, we appropriately
increase the training steps.

Figure 3: Detailed structure of CNN in the post-processing.

Table 1: Number of images and details of the six scenes

scene train test resolution object center

Transamerica [2] 364 91 1080 × 1920 ✓
56 Leonard [2] 371 92 1080 × 1920 ✓
Building [3] 1552 388 1152 × 1536 ×
Rubble [3] 1343 335 1152 × 1536 ×
Residence [4] 2066 516 1216 × 1824 ×
Campus [4] 4697 1174 1216 × 1824 ×

Table 2: Iteration steps of the models in all scenarios

𝑇𝑟𝑎𝑛𝑠𝑎𝑚𝑒𝑟𝑖𝑐𝑎, 56𝐿𝑒𝑜𝑛𝑎𝑟𝑑

MipNeRF [5] 500k
ZipNeRF [6] 500k
BungeeNeRF [2] 200k per stage (4 stages)
GridNeRF [7] 100k and 400k in the two stages
HS-Surf 450k and 50k in the two stages

𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔, 𝑟𝑢𝑏𝑏𝑙𝑒 , 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒

MipNeRF [5] 1200k
ZipNeRF [6] 1200k
MegaNeRF [3] Load the model directly
GridNeRF [7] 200k and 1000k in the two stages
HS-Surf 1100k and 100k in the two stages

𝐶𝑎𝑚𝑝𝑢𝑠

MipNeRF [5] 1500k
ZipNeRF [6] 1500k
MegaNeRF [3] Load the model directly
GridNeRF [7] 300k and 1200k in the two stages
HS-Surf 1400k and 100k in the two stages

6 MORE RESULTS WITH NERFS
The proposed HS-Surf is compared with MipNeRF [5], ZipNeRF
[6], BungeeNeRF [2], MegaNeRF [3], and GridNeRF [7]. Render-
ing results on 𝑡𝑟𝑎𝑛𝑠𝑎𝑚𝑒𝑟𝑖𝑐𝑎 and 56𝐿𝑒𝑜𝑛𝑎𝑟𝑑 are shown in Figure 4,
where the distance scales undergo drastic changes, from the satel-
lite level to the ground level. Rendering results on the real aerial
data (𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔, 𝑟𝑢𝑏𝑏𝑙𝑒 , 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 , 𝑐𝑎𝑚𝑝𝑢𝑠) are shown in Figures 5
and 6. The drone maintains a stable flight altitude and shoots to-
ward the ground along parallel lines or grid trajectories. Thus, the
data distribution is uniform.

Different from the other models, HS-Surf constructs a high-
frequency shell based on the current view’s scene depth tomaximize
the utilization of model capacity, efficiently increasing the model
capacity on the scene surface for rendering high-frequency textures.



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Supplementary Materials: A Novel High-Frequency Surface Shell Radiance Field to Improve Large-Scale Scene Rendering ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 4: In 𝑡𝑟𝑎𝑛𝑠𝑎𝑚𝑒𝑟𝑖𝑐𝑎 and 56𝐿𝑒𝑜𝑛𝑎𝑟𝑑 , HS-Surf preserves more high-frequency texture details at multiple distance scales with
drastic changes, such as windows and grids on buildings.
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Figure 5: Rendering results in 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 and 𝑟𝑢𝑏𝑏𝑙𝑒. HS-Surf produces finer scene structures, such as iron fences of the factory, as
well as textures on railways, etc.
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Figure 6: In 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 and 𝑐𝑎𝑚𝑝𝑢𝑠, HS-Surf renders more texture details in aerial large-scale scenes, including intricate and
complex windows, vehicles on the roads, and architectural details on buildings.
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Figure 7: Compared to HS-Surf, 3D Gaussian tends to lose texture details on fine scene structures in large-scale scenes, and
their rendering results often contain many continuous blurry areas.

Table 3: Comparison of HS-Surf and 3D Gaussian

Model Building Rubble Residence Campus
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

3D Gaussian 18.05 0.5388 0.5418 20.49 0.5795 0.5390 19.72 0.5953 0.4917 14.94 0.3154 0.8377
HS-Surf 21.88 0.6039 0.4417 24.24 0.5824 0.4943 22.12 0.5982 0.5015 21.97 0.4639 0.6183

Additionally, our feature fusion strategy embeds frustums repre-
senting distance into voxel grids to generate the target scene at
different distance scales. Therefore, HS-Surf produces high-fidelity
renderings across various distances and rendersmore texture details
in the aerial scenes.

7 COMPARISONWITH 3D GAUSSIAN
HS-Surf is compared with 3D Gaussian [1] on the aerial scenes
(𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔, 𝑟𝑢𝑏𝑏𝑙𝑒 , 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 , 𝑐𝑎𝑚𝑝𝑢𝑠), and performance metrics and
rendering results are presented in Table 3 and Figure 7. In Figure 7,

3D Gaussian tends to lose texture information when rendering
small objects. The Gaussian spheres may struggle to split into suffi-
ciently small sizes to represent texture details in large-scale scenes.
Additionally, 3D Gaussian generates large continuous blurry areas
in their rendering results. The possible reason is the sparse coverage
of views in the training set, which is not conducive to rendering
novel views in the test set.
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Figure 8: Removing the feature fusion (fusion) in initialization results in a loss of texture details across various distances. The
compensation (comp) can complete lots of high-frequency textures, but the performance is still lower than the complete model.

Figure 9: When the compensation stage is removed, the model produces unsmooth scene geometry and a large number of holes.
Simultaneously, the corresponding rendering results also lose texture information.
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Table 4: Ablation experiments of the feature fusion (fusion)
and the compensation stage (comp)

Transamerica PSNR ↑ SSIM ↑ LPIPS ↓model

A) w/o fusion & comp 24.31 0.7707 0.3526
B) w/o fusion 24.50 0.7814 0.3383
C) complete 25.59 0.8304 0.2941

Building PSNR ↑ SSIM ↑ LPIPS ↓model

A) w/o fusion & comp 20.97 0.5290 0.5025
B) w/o fusion 21.35 0.5567 0.4788
C) complete 21.88 0.6039 0.4417

8 MORE ABLATION EXPERIMENTS
We additionally analyze the benefits brought by the combination
of feature fusion strategy and compensation stage, and conduct
relevant ablation experiments on 𝑡𝑟𝑎𝑛𝑠𝑎𝑚𝑒𝑟𝑖𝑐𝑎 and 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔, as
shown in Table 4 and Figure 8. The findings are summarized here.
A) When both the feature fusion and the compensation stage are
removed, the model produces blurry rendering results and loses a
lot of high-frequency textures at different distance scales. B) When
only the feature fusion is removed, the compensation stage can fill
in many missing texture details, but the results are still different
from the ground truth. C) The combination of feature fusion and
compensation stages brings the maximum benefit, filling in high-
frequency textures at different distance scales.

The purpose of the compensation stage is to refine the scene
geometry and fill in the missing high-frequency textures. Figure 9
shows more ablation experiments of this stage. If the compensation
is removed, the scene geometry is not smooth and contains a large
number of holes due to the lack of depth augmentation. Simultane-
ously, the rendering results are blurry, and the texture information
is lost. The role of the post-processing stage is to remove noise in
the renderings and smooth the image, as shown in Figure 10.

9 LIMITATIONS
AlthoughHS-Surf achieves state-of-the-art rendering across various
distance scales for large-scale scenes, there are several limitations
that represent opportunities for future improvement: 1) Frequent
movement of dynamic objects in the scene leads to artifacts in the
rendering results, as shown in Figure 11. HS-Surf uses photometric
loss to supervise the training process.When dynamic objects appear
at a certain location in the scene, the model needs to generate
artifacts to minimize the loss function. 2) Shadows in images might
lead to collapse geometry, because the reconstruction process of
geometry does not introduce lighting information.
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