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4D Gaussian Splatting with Scale-aware Residual Field and
Adaptive Optimization for Real-time rendering of temporally

complex dynamic scenes
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Figure 1: Performance comparison with previous SOTA[5–7, 9, 31, 45]. Our approach achieves higher-quality reconstruction
in temporally complex scenes (a) while maintaining real-time rendering (b), with a certain improvement in performance(c).
Additionally, we achieve dynamic scene segmentation without any prior information (c).

ABSTRACT
Reconstructing dynamic scenes from video sequences is a highly
promising task in the multimedia domain. While previous methods
have made progress, they often struggle with slow rendering and
managing temporal complexities such as significant motion and ob-
ject appearance/disappearance. In this paper, we propose SaRO-GS
as a novel dynamic scene representation capable of achieving real-
time rendering while effectively handling temporal complexities in
dynamic scenes. To address the issue of slow rendering speed, we
adopt a Gaussian primitive-based representation and optimize the
Gaussians in 4D space, which facilitates real-time rendering with
the assistance of 3D Gaussian Splatting. Additionally, to handle
temporally complex dynamic scenes, we introduce a Scale-aware
Residual Field. This field considers the size information of each
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Gaussian primitive while encoding its residual feature and aligns
with the self-splitting behavior of Gaussian primitives. Furthermore,
we propose an Adaptive Optimization Schedule, which assigns dif-
ferent optimization strategies to Gaussian primitives based on their
distinct temporal properties, thereby expediting the reconstruc-
tion of dynamic regions. Through evaluations on monocular and
multi-view datasets, our method has demonstrated state-of-the-art
performance.

CCS CONCEPTS
• Computing methodologies→ Rendering.

KEYWORDS
Real-time rendering,Dynamic scene reconstruction
1 INTRODUCTION
The reconstruction of dynamic scenes is pivotal for immersive imag-
ing, driving advancements in various multimedia technologies such
as VR, AR, andmetaverse. Rendering dynamic scenes from any time,
position, and viewpoint is crucial for enhancing user experiences
with multimedia products, like free-viewpoint video and bullet-
time effects. Our objective is to reconstruct a continuous 4D space
from a discrete temporal video sequence. However, this endeavor
faces several challenges. Firstly, the reconstruction quality acts as

1
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a bottleneck for widespread adoption, requiring accurate capture
of spatial dimensions and temporal variations in dynamic scenes.
Additionally, there’s a growing demand for real-time interaction in
multimedia products to boost user engagement, highlighting the
importance of achieving real-time rendering. Nevertheless, exist-
ing methods struggle to achieve both high-quality reconstruction
and real-time rendering simultaneously, precisely the issue our
approach aims to tackle.

Recent advancements in dynamic scene reconstruction have
been achieved through methods based on NeRF [23] and 3DGS
[14]. NeRF employs an implicit field to model static scenes and
achieves photo-realistic view synthesis. Many extensions of NeRF
to dynamic scenes either utilize deformation fields and canonical
fields to model the motion of objects relative to canonical frames
over time[10, 20, 27, 31, 35, 38], or decompose the 4D volume into
spatial-only and spatial-temporal spaces[5, 7, 19, 34], representing
space through combinations of dimensionally reduced features.
While significant progress has beenmade in rendering quality, these
methods face a significant disadvantage in rendering speed. The
emergence of 3DGS has enabled real-time rendering of dynamic
scenes. Some methods [13, 18, 45–47] have attempted dynamic
scene modeling based on 3DGS. However, they either struggle
to model temporally complex scenes such as object appearances
and disappearances [13, 45, 46] or overlook the spatiotemporal
information in the scene [18, 47], resulting in disadvantages when
dealing with temporally complex dynamic scenes.

To address the aforementioned challenges, we propose SaRO-
GS, aiming to achieve real-time rendering while maintaining high-
quality reconstruction of temporally complex dynamic scenes. SaRO-
GS comprises a set of Gaussian primitives in 4D space and a Scale-
aware Residual Field. Each Gaussian receives a unique optimization
schedule based on its distinct temporal properties through an Adap-
tive Optimization strategy. To address the issue of slow rendering
speeds, Gaussian primitives in 4D space can be projected to 3D
based on their temporal properties and residual features obtained
from the Scale-aware Residual Field. Then we can achieve real-time
rendering leveraging the fast differentiable rasterizer introduced
by 3DGS. For high-quality modeling of temporally complex scenes,
we employ the following strategies: Firstly, each 4D Gaussian prim-
itive possesses temporal properties, including temporal position
and lifespan. The lifespan allows us to model the appearance and
disappearance of objects in dynamic scenes, while the temporal
position of Gaussians spans the entire temporal range, rather than
being fixed at frame 0 as in previous methods. Additionally, we
incorporate scale information of Gaussian primitives into the Resid-
ual Field to accommodate their ellipsoidal nature. By encoding the
region that the Gaussian primitives occupy rather than just their
position, we ensure accurate feature extraction and align with the
self-splitting behavior of Gaussian primitives. Thirdly, we intro-
duce an Adaptive Optimization strategy, where unique optimiza-
tion strategies are assigned to each Gaussian primitive based on its
temporal properties, facilitating faster reconstruction of dynamic
regions.

We extensively evaluated our approach on monocular and multi-
view dynamic scene datasets, comprising both real and synthetic
scenes. Both quantitative and qualitative results demonstrate that

our method achieves high-quality rendering in real time and ef-
fectively handles temporal complexities in dynamic scenes. Our
contributions are summarized below.

• We propose a Scale-aware Residual Field, incorporating the
scale information of Gaussian primitives. This results in a
more precise spatiotemporal representation, considering
Gaussian primitives’ ellipsoidal nature and self-splitting
behavior.

• We introduce an Adaptive Optimization strategy, assigning
unique optimization schedule to Gaussians based on their
unique temporal properties, enhancing the reconstruction
of dynamic areas.

• Our SaRO-GS excels in managing temporally complex sce-
narios, delivering state-of-the-art performance in both the
reconstruction quality and rendering speed. It achieves an
80x rendering speed improvement compared to NeRF-based
methods as shown in Fig. 1. SaRO-GS is versatile, applicable
to both monocular and multi-view scenarios and can also
achieve dynamic scene segmentation without any prior
knowledge.

2 RELATEDWORK
2.1 Neural Scene Representations
In recent years, there has been widespread interest in the represen-
tation of static scenes based on Neural Radiance Fields. NeRF[23], as
a representative work, adopts a purely implicit approach, modeling
static scenes as a radiance field and synthesizing images through
volume rendering. The photo-realistic view synthesis capability
of NeRF has inspired a series of works across various domains,
including enhancing rendering quality[3, 39, 40, 51, 53],different
camera trajectories[4, 43],sparse inputs[2, 25],accelerating training
and rendering[8, 11, 12, 24, 32–34, 36, 48, 52], as well as human body
reconstruction[29, 30, 44, 50] and large-scale scene modeling[22,
37], among others.

Recently, there has been a breakthrough in high-quality view
synthesis and real-time rendering with 3D Gaussian Splatting[14]
and relate works[16, 49, 54, 55], garnering significant attention in
the scene reconstruction field.

2.2 Dynamic Scene Representation Based on
NeRF

Expanding static scene representation to dynamic scenes is not a
simple task. Somemethods[10, 20, 27, 31, 35, 38] havemade progress
based on deformation fields, modeling the entire scene as a canoni-
cal field and a deformation field. They use the deformation field to
represent the association between sampled points under different
frames and the static canonical. Other methods[5, 7, 19, 34] reduce
the dimensionality of the 4D space by decomposing it into a set of
planar grids, projecting the 4D sampled points onto planes to obtain
corresponding features. This approach effectively models temporal
correlations through spatiotemporal planes. Furthermore, some
methods[17, 42] adopt a streaming strategy to model residuals be-
tween adjacent frames, which is suitable for real-time transmission
and decoding. However, these rendering approachs based on NeRF
requires dense sampling along rays during rendering, limiting the
possibility of real-time rendering.

2
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2.3 Dynamic Scene Representation Based on 3D
Gaussian

There are some concurrent works based on 3D Gaussian represen-
tations for dynamic scenes. [21] uses an online strategy to model
dynamic scenes frame by frame, [45] uses a Hex-planes to model the
changes of Gaussian primitives over sampling time. Both of them
struggle to handle temporal complexities, such as significant mo-
tion and object appearances/disappearances. [47] introduces a time
dimension to Gaussian, enabling 4D Gaussian to be decomposed
into a conditional 3D Gaussian and a marginal 1D Gaussian. In
comparison, we propose an Scale-aware Residual field to model the
residual of Gaussian primitives projected from 4D to 3D, employing
an explicit-implicit blending approach that better incorporates spa-
tiotemporal correlations. Other methods like [18] are not suitable
for monocular scenarios, and [46] cannot be utilized in multi-view
scenes. In contrast, our approach, validated through experiments,
demonstrates promising results in both single-view and multi-view
scenarios.

3 PRELIMINARY
3.1 3D Gaussian Splatting
Given a set of input images of a static scene along with their cor-
responding camera parameters, 3D Gaussian Splatting (3DGS) ini-
tiates the reconstruction of the static scene from an initial point
cloud, employing 3DGaussians as primitives. This approach enables
high-quality real-time novel view synthesis.

In 3DGS, each Gaussian primitive encompasses a set of attributes,
including 3D position 𝜇3𝑑 , opacity 𝛼 , and covariance matrix Σ. A
3D Gaussian G can be represented as:

𝐺 (𝑥) = 𝑒−
1
2 (𝑥−𝜇 )

𝑇 Σ−1 (𝑥−𝜇 ) (1)

For optimization convenience, 3DGS employs a scaling matrix 𝑆
and a rotation matrix 𝑅 to represent covariance, stored as a 3D
vector 𝑠 for scaling and a quaternion 𝑞 for rotation.

Σ = 𝑅𝑆𝑆𝑇𝑅𝑇 (2)

Additionally, 3DGS utilizes SH coefficients to represent view-dependent
color.

Based on the fast differentiable rasterizer implemented by 3DGS,
we can achieve rapid image rendering through Gaussian Splatting.
To get the rendering images from a given viewpoint, we should
first project 3D Gaussian primitives to 2D. Specifically, for a given
viewpoint transformation matrix𝑊 and a projection matrix 𝐾 , we
can obtain the covariance and the position in 2D space:

Σ2𝐷 = (𝐽𝑊 Σ𝑊𝑇 𝐽𝑇 )1:2,1:2

𝜇2𝐷 = 𝐾 ( 𝑊𝜇

(𝑊𝜇)𝑧
)
1:2

(3)

where 𝐽 is the Jacobian of the affine approximation of the projetive
transformation. And we can get the 2D Gaussian G2𝑑 based on Eq.
1.

After sorting the Gaussian primitives in 2D space based on depth,
we can obtain the color of the specified pixel in the image:

𝑐 (𝑥) =
𝑁∑︁
𝑖=1

𝑐𝑖𝛼𝑖G2𝐷
𝑖

𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗G2𝐷
𝑗 (𝑥)) (4)

Here, 𝑐𝑖 represents the view-dependent color obtained by combin-
ing the SH coefficients of G𝑖 with the viewing direction.

3.2 4D Volume Representation Based on
Hex-planes

Previous works modeling dynamic scenes using plane field en-
coders mostly employed hexplanes 𝑃 , which encompass spatial-
only planes 𝑃𝑠𝑜 = {𝑃𝑥,𝑦, 𝑃𝑦,𝑧 , 𝑃𝑥,𝑧 } and spatiotemporal planes
𝑃𝑠𝑡 = {𝑃𝑥,𝑡 , 𝑃𝑦,𝑡 , 𝑃𝑧,𝑡 }. Each plane 𝑃𝑖, 𝑗 in 𝑃 is a 𝑀 × 𝑁 × 𝑁 two-
dimensional grid, where𝑀 represents the feature dimension and
𝑁 represents the spatiotemporal resolution of the grid. For a 4D
sample point 𝑞 = (x,y,z,t), we perform interpolation based on its
projected coordinates on the six grids to obtain the corresponding
feature for this point:

𝑓 (𝑞) =
∏
𝑖, 𝑗∈𝐶

𝜓𝑏𝑖 (𝜋𝑖, 𝑗 (𝑞); 𝑃𝑖, 𝑗 )

𝐶 = {(𝑥,𝑦), (𝑥, 𝑧), (𝑥, 𝑡), (𝑦, 𝑧), (𝑦, 𝑡), (𝑧, 𝑡)}
(5)

Here, 𝑓 (𝑞) is an𝑀-dimensional feature,𝜓𝑏𝑖 represents bilinear in-
terpolation, and 𝜋𝑖, 𝑗 (𝑞) denotes the projected coordinates of sample
point 𝑞 on 𝑃𝑖, 𝑗 .

4 METHOD
In this section, we initiate with the presentation of overall pipeline
of SaRO-GS in Sec. 4.1. Subsequently, we explore the Scale-aware
Residual Field in Sec. 4.2, with a particular emphasis on its consid-
eration of scale information for Gaussian primitives. Following this,
we elaborate on the Adaptive Optimization strategy employed in
Sec. 4.3. Finally, we delineate the loss function and regularization
terms utilized in our approach in Sec. 4.4.

4.1 Representation of SaRO-GS
To represent a dynamic scene, we utilize a set of Gaussian primitives
G4𝐷 in 4D space alongside Scale-aware Residual FieldM, as shown
in Fig. 2(a). Each 4D Gaussian primitive G4𝐷

𝑖
possesses a temporal

position 𝜏𝑖 ,it is learned alongside its 3D position (x,y,z), forming a
4D location 𝜇4𝐷 = (𝑥,𝑦, 𝑧, 𝜏). Together with the initial attributes
Σ4𝐷 , 𝑐4𝐷 and 𝛼4𝐷 , a 4D Gaussian primitive and its residual feature
𝑓 can be represented as follows:

G4𝐷 = (𝜇4𝐷 , Σ4𝐷 , 𝑐4𝐷 , 𝛼4𝐷 ), (6)

𝑓 = M(G4𝐷 ) . (7)

Σ4𝐷 , 𝑐4𝐷 and𝛼4𝐷 respectively represent the initial covariance, color,
and opacity of the Gaussian primitive in 4D space. Similar to 3D
Gaussian, we employ quaternion rotation 𝑞4𝐷 = (𝑞𝑎, 𝑞𝑏 , 𝑞𝑐 , 𝑞𝑑 ) and
scaling vectors 𝑠4𝐷= (𝑠𝑥 , 𝑠𝑦, 𝑠𝑧 ) to represent covariance, and utilize
SH (Spherical Harmonics) coefficients to depict view-dependent
color.

To address complex temporal scenarios such as object appear-
ance and disappearance, each Gaussian primitive should have a
lifespan to indicate how long it can survive in the temporal domain.
In order to effectively integrate the Scale-aware Residual Field M
with our 4D Gaussian primitives and leverage the spatiotempo-
ral characteristics of M, we employ a tiny MLP F𝑤 to perform

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anon. Submission Id: 4096

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Sample at 

(c)3D space
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, , : Residuals of Initial Attributes for 4D Gaussian

+

( )

Figure 2: The overall pipeline of SaRO-GS. (a)In 4D space, we simultaneously optimize a set of 4D Gaussian primitives and a
scale-aware Residual Field M. When combined withM, each Gaussian primitive generates a residual feature and a lifespan 𝜎 .
They both represent the temporal characteristics of the Gaussian primitive. (b)Given a sampling time 𝑡0, we can compute the
survival status 𝑔(𝑡0) of the Gaussian and decode the residual feature of the Gaussian at time 𝑡0 using an MLP, yielding residual
of atteibutes. Finally, we combine these residuals with the initial attributes of the Gaussian in 4D space to get the 3D Gaussian
representation.(c) Once we obtain the representation of the 3D Gaussian, we can generate rendered images using Gaussian
Splatting.
inference on 𝑓𝑖 and compute the lifespan 𝜎𝑖 of G4𝐷

𝑖
:

𝜎𝑖 = F𝑤 (𝑓𝑖 ) = F𝑤 (M(G4𝐷
𝑖 )) . (8)

Therefore, in our 4D space, each Gaussian primitive G4𝐷
𝑖

can obtain
a residual feature 𝑓𝑖 and a lifespan 𝜎𝑖 throughM. {G4𝐷

𝑖
, 𝑓𝑖 , 𝜎𝑖 } fully

represents both the initial attributes and temporal characteristics
of a Gaussian primitive in 4D space.

Once the sampling time 𝑡0 are given, we need to project the
Gaussian primitives from 4D space to 3D space, as shown in Fig.
2(b). We first need to examine whether G4𝐷

𝑖
still survives at the

current sampling time 𝑡0. We adopt a Gaussian-like state function
𝛾 (𝑡) to model the state of G4𝐷

𝑖
as it varies with the sampling time 𝑡 :

𝛾𝑖 (𝑡) = 𝑒−𝑘
𝑡−𝜏𝑖
𝜎𝑖

2

. (9)
Where 𝑡 represents the sampling time, and 𝜏𝑖 represents the tempo-
ral position of G4𝐷

𝑖
. In practice, 𝑘 is set to 4. As the sampling time

𝑡 gradually moves away from the temporal position of G4𝐷
𝑖

, 𝛾 (𝑡)
decreases from 1. When the sampling time reaches the Gaussian
lifespan 𝜎𝑖 , 𝛾 (𝑡) will decrease to 0.01, indicating that G4𝐷

𝑖
is nearly

inactive at 𝑡 , which means it should be invisible when projected
into 3D space. So for a given sampling time 𝑡0, We can utilize this
state function to represent the opacity of G4𝐷

𝑖
in 3D space after

projection:
𝛼3𝐷𝑖 = 𝛼4𝐷𝑖 × 𝛾𝑖 (𝑡0) (10)

Apart from opacity, other features of G4𝐷
𝑖

also vary with sam-
pling time 𝑡 when projected into 3D space. We can utilize a set of
MLPs F𝜃 to decode the residual feature 𝑓𝑖 of G4𝐷

𝑖
at the sampling

time 𝑡 , thereby obtaining the residual of the projected attributes as
they vary with the sampling time 𝑡 .

Δ𝜇𝑖 (𝑡),ΔΣ𝑖 (𝑡),Δ𝑐𝑖 (𝑡) = F𝜃 (𝑓 (G4𝐷
𝑖 ), 𝑡 − 𝜏𝑖 ) (11)

Δ𝜇𝑖 (𝑡),ΔΣ𝑖 (𝑡) and Δ𝑐𝑖 (𝑡) respectively represent the residuals of
position, covariance, and color. Here we decode using 𝑡 − 𝜏𝑖 instead
of just 𝑡 , as we aim to obtain the residual relative to the initial
attribute of G4𝐷

𝑖
in 4D space, where G4𝐷

𝑖
is temporally positioned

using 𝜏𝑖 .
Therefore , we can obtain the attributes of projected G3𝐷

𝑖
at a

given time 𝑡0:
𝜇3𝐷𝑖 = 𝜇4𝐷𝑖 [: 3] + Δ𝜇𝑖 (𝑡0), (12)

Σ3𝐷𝑖 = Σ4𝐷𝑖 + ΔΣ𝑖 (𝑡0), (13)

𝑐3𝐷𝑖 = 𝑐4𝐷𝑖 + Δ𝑐𝑖 (𝑡0). (14)
𝜇4𝐷
𝑖

[: 3] represents extracting the xyz components of 𝜇4𝐷
𝑖

as the
initial 3D location, and ΔΣ𝑖 can be decomposed into ΔΣ𝑖 [: 3] and
ΔΣ𝑖 [3 :], representing the residuals of the three-dimensional scal-
ing vector and quaternion rotation about G4𝐷

𝑖
, respectively. The

changes to Σ4𝐷
𝑖

and 𝑐4𝐷
𝑖

are achieved by adjusting the correspond-
ing quaternion rotation, scaling vectors, and SH coefficients.

Therefore, according to Eq. [8-14], Gaussian primitives in 4D
space evolve within their lifespan as the sampling time varies, pro-
jecting into 3D space at a given sampling time. Then, based on Eq.
34, we employ 3DGS to render 3D Gaussians, obtaining rendered
images from a given camera viewpoint, as shown in Fig. 2(c).

4.2 Scale-aware Residual Field
To fully integrate the spatiotemporal information of the scene and
save computational resources, we adopt hexplanes to represent our
Scale-aware Residual FieldM, which consists of spatial-only planes
and spatiotemporal planes, as described in Sec. 3.2.

However, neglecting the size of Gaussian primitives and solely
projecting them onto planes based on their 4D positions for feature
extraction would lead to incorrect residual features. First, Gaussian

4
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Figure 3: The impact of scale is not taken into account in
Gaussian self-splitting. (a)When size information is consid-
ered, the features of the split Gaussian remain similar to its
parent Gaussian. (b)Otherwise, the split Gaussian will have
features different from its parent Gaussian
primitives can be approximated as ellipsoids. Therefore, when pro-
jecting a Gaussian primitive onto a spatial-only plane, we obtain
an elliptical region instead of a single point, as in the current NeRF-
based approach. Thus, the corresponding feature for a Gaussian
primitive should be a combination of all the areas it occupies in
the plane. Secondly, if we follow the self-splitting strategy of 3DGS
and split a large Gaussian primitive into smaller ones, they would
have different residual features, significantly deviating from those
of their parent primitive, which contradicts our original intention,
as shown in Fig. 3. So, finding an appropriate method to encode the
region projected by Gaussian is crucial.

We propose a scale-aware Residual Field to address the aforemen-
tioned issue, which decompose the 4D space into three spatial-only
planes 𝑃𝑠𝑜 and three spatiotemporal planes 𝑃𝑠𝑡 . Given that the size
of Gaussian primitives impacts their projection only within the
spatial-only plane 𝑃𝑠𝑜 , we specifically consider only employing
scale-aware encoding within them, as shown in Fig. 2.

For every spatial-only planes 𝑃𝑖, 𝑗 , we employ a MipMap stack
to represent features at different spatial scales in the scene. The
level 0 of the MipMap stack 𝑃0

𝑖, 𝑗
is a feature map with shape𝑀 ×

𝑁 × 𝑁 ,which has the smallest spatial scale ¥𝑠0 among all levels.
And remaining levels 𝑃𝑙

𝑖, 𝑗
in the Mipmap stack are obtained by

computing thumbnails based on the features of the previous level,
where the width and height are reduced by a factor of 2 each. Taking
𝑃𝑥,𝑦 as an example, the relationship between their spatial scale is
as follows:

¥𝑠0𝑥 =
B𝑥
𝑚𝑎𝑥 − B𝑥

𝑚𝑖𝑛

𝑁
¥𝑠0𝑦 =

B𝑦
𝑚𝑎𝑥 − B𝑦

𝑚𝑖𝑛

𝑁

¥𝑠𝑙+1 = 2 × ¥𝑠𝑙 𝑙 ∈ [0, 𝐿 − 1]
(15)

The variables B𝑚𝑎𝑥 and B𝑚𝑖𝑛 respectively represent the maximum
and minimum values of the scene’s bounding box and ¥𝑠𝑙 is the
spatial scale of level 𝑙 in the MipMap stack. In practice, we only
store and optimize the features in level 0 MipMap 𝑃0𝑥,𝑦 , while the
remaining levels are dynamically computed and generated during
forward inference. This way, we possess the capability to encode
features at different spatial scales within the scene.

Meanwhile, for a Gaussian primitive with a scaling s in 4D space,
when projected onto the spatial-only plane 𝑃𝑥,𝑦 , it results in a 2D
ellipse with axes (𝑠𝑥 , 𝑠𝑦).Therefore, based on the projected axes of
the Gaussian primitive on 𝑃𝑥,𝑦 and the corresponding base spatial
scale ¥𝑠0𝑥,𝑦 of the MipMap stack, we can determine the spatial scale
level associated with this Gaussian primitive:

𝑙𝑥 = 𝑙𝑜𝑔2( 𝑠𝑥
¥𝑠0𝑥
) 𝑙𝑦 = 𝑙𝑜𝑔2(

𝑠𝑦

¥𝑠0𝑦
) (16)

To maintain the highest possible accuracy, we choose the minimum
value among them as the final spatial level 𝑙 =𝑚𝑖𝑛(𝑙𝑥 , 𝑙𝑦). So now
we can obtain the two MipMap features that are closest to its spatial
level:𝑃 ⌊𝑙 ⌋𝑥,𝑦, 𝑃

⌈𝑙 ⌉
𝑥,𝑦 , and we can obtain the embedding of the Gaussian

primitive with 4D position 𝜇4𝑑 in 𝑃𝑥,𝑦 as:

𝑓𝑥,𝑦 = 𝑇𝑟𝑖𝜓 (𝜋𝑥,𝑦 (𝜇4𝑑 ), 𝑙 ; 𝑃 ⌊𝑙 ⌋𝑥,𝑦, 𝑃
⌈𝑙 ⌉
𝑥,𝑦, ), (17)

Here,𝜓𝑡𝑟𝑖 represents trilinear interpolation in the space formed by
𝑃
⌊𝑙 ⌋
𝑥,𝑦 and 𝑃 ⌈𝑙 ⌉𝑥,𝑦 . The complete expression of the scale-aware residual
feature 𝑓 of G4𝐷 is as follows:

𝑓 (G4𝐷 ) = 𝑓𝑠𝑜 + 𝑓𝑠𝑡

=
∑︁

𝑖, 𝑗∈𝐶𝑠𝑜

𝜓𝑡𝑟𝑖 (𝜋𝑥,𝑦 (𝜇4𝐷 ), 𝑙 ; 𝑃 ⌊𝑙 ⌋𝑥,𝑦, 𝑃
⌈𝑙 ⌉
𝑥,𝑦, )+∑︁

𝑖, 𝑗∈𝐶𝑠𝑡

𝜓𝑏𝑖 (𝜋𝑖, 𝑗 (𝜇4𝐷 ); 𝑃𝑖, 𝑗 )

𝐶𝑠𝑜 ={(𝑥,𝑦), (𝑥, 𝑧), (𝑦, 𝑧)} 𝐶𝑠𝑡 = {(𝑥, 𝑡), (𝑦, 𝑡), (𝑧, 𝑡)}.

(18)

Here,𝜓𝑡𝑟𝑖 ,𝜓𝑏𝑖 represent trilinear interpolation and bilinear inter-
polation respectively. Through experiments, we found that summa-
tion is a more effective way to combine features in our Scale-aware
Residual Field compared to others.

4.3 Adaptive Optimization
Due to the varying temporal locations and lifespans of Gaussian
primitives in this 4D space, each Gaussian primitive is sampled
with different probabilities over observed time. Dynamic primitives,
in order to represent the temporal complexity of the scene, often
have a smaller lifespan, resulting in a lower sampling probability
compared to static primitives. Primitives with less exposure over
the entire temporal domain would have smaller gradients during
the backward propagation of the loss function. The gradient value
is crucial in the 3DGS framework, as it needs to exceed a threshold
to densify the corresponding primitive and optimize the currently
imperfectly reconstructed regions. Hence, applying the same opti-
mization and densification strategy directly to each primitive with
3DGS[14] may lead to optimization imbalance.

To tackle the aforementioned issue, we propose an Adaptive
Optimization strategy, which dynamically adjusts the learning rate
and densify gradient threshold for G4𝐷

𝑖
based on its sampling prob-

ability across the observable time range. Specifically, We can use
𝛾𝑖 (𝑡) of G4𝐷

𝑖
to calculate the temporal integral within the observ-

able range, representing its sampling probability . The larger the
integral, the more the Gaussian primitive’s lifespan intersects with
the observable range, making it more likely to be sampled.
Definite Integral of the Time Domain Distribution. Based on
state function 𝛾𝑖 (𝑡) of G4𝐷

𝑖
, we can compute its integral over the
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time domain.

𝐹 (𝑡) = 𝑃 (𝑥 < 𝑡) =
∫ 𝑡

−∞
𝑒
−𝑘 𝑥−𝜏𝑖

𝜎𝑖

2

𝑑𝑥 (19)

𝐼 = 𝐹 (𝑡𝑒𝑛𝑑 ) − 𝐹 (𝑡𝑠𝑡𝑎𝑟𝑡 ) (20)
𝐹 (𝑡) represents the CDF (cumulative distribution function) of each
Gaussian primitive. Here, 𝐼 denotes the definite integral over the
entire time domain from 𝑡𝑠𝑡𝑎𝑟𝑡 to 𝑡𝑒𝑛𝑑 , where 𝑡𝑠𝑡𝑎𝑟𝑡 and 𝑡𝑒𝑛𝑑 nor-
malize to 0 and 1, respectively.

Since 𝛾𝑖 (𝑡) is a Gaussian-like function, it is challenging to com-
pute precise definite integral values. Inspired by [26], we derive the
approximate cumulative distribution function as:

𝑄 (𝑡) =
∫ 𝑡

−∞

1
√
2𝜋
𝑒−

𝑥2
2 𝑑𝑥 = 1 − 1

𝑒1+𝛼1𝑡3+𝛼2𝑡
(21)

𝐹 (𝑡) =
√
𝜋𝜎𝑖√
𝑘
𝑄 (

√
2𝑘

(𝑡 − 𝜏𝑖 )
𝜎𝑖

) (22)

Here, 𝛼1 = 0.070565992, 𝛼2 = 1.5976. Please refer to the appendix
for details. Therefore, we can obtain the definite integral of Gauss-
ian primitives over the time domain using Eq. 20 with minimal
computational complexity.
Intergral-based Per-Gaussian Optimization Schedule. After
get the temoral intergral of each Gaussian, we can dynamically
adjust the learning rates and gradient thresholds for densification
control on a per-primitive basis, aiming to achieve rapid reconstruc-
tion of dynamic regions:

𝜅𝑖 = 𝜅𝑏𝑎𝑠𝑒 ∗
𝐼𝑖

𝐼𝑚𝑎𝑥
, 𝑙𝑟𝑖 = 𝑙𝑟𝑏𝑎𝑠𝑒 ∗

𝐼𝑚𝑎𝑥

𝐼𝑖
(23)

Here,𝜅𝑖 and 𝑙𝑟𝑖 respectively represent the densification threshold
and the learning rate of G4𝐷

𝑖
, while 𝐼𝑖 and 𝐼𝑚𝑎𝑥 respectively denote

the timeporal integral of G4𝐷
𝑖

and the maximum time-domain in-
tegral among all Gaussian primitives. We adjust its densification
threshold each time densification control is required. Additionally,
for the learning rate, we dynamically adjust it every 50 iterations
based on Eq. 23, involving parameters related to 4D position, scaling,
rotation, and zeroth-order SH coefficients of G4𝐷

𝑖
.

4.4 Loss Function
Regularization term for scaling residuals: When the sampling
time 𝑡 equals the temporal position of G4𝐷

𝑖
, we aim for minimal

variations in the attributes of Gaussian primitives projected into
3D space compared to their initial values in 4D space. Excessive
reliance on attribute residuals during the projection process may
neglect the optimization of their initial values. Additionally, we
strive to minimize the disparity between the initial scaling values of
Gaussian primitives in 4D space and their values in 3D space. This
ensures that the Scale-aware Residual Field can effectively integrate
accurate scale information. To achieve this goal, we propose a
regularization term L𝑆𝑅 concerning scaling residuals:

L𝑆𝑅 (G4𝐷 ) = 1
𝑛

∑︁
𝑖

| |ΔΣ𝑖 (𝜏𝑖 ) [: 3] | |2 (24)

Here, ΔΣ𝑖 (𝜏𝑖 ) [: 3] represents the residuals of scaling of G4𝐷
𝑖

ob-
tained during the projection process when the sampling time is
G4𝐷
𝑖

’s temporal position 𝜏𝑖 , where 𝑛 is the total number of Gaussian
primitives in the current 4D space.

Table 1: Quantitative results on the monocular synthesis
dataset D-NeRF. FPS is measured at 400 × 400 . † denotes a
dynamic Gaussian method. The evaluation of 1 is conducted
at a resolution of 800, while the remaining methods are eval-
uated at 400

Method PSNR(dB)↑ SSIM↑ LPIPS↓ FPS↑ Train Time

D-NeRF[31] 29.67 0.95 0.07 0.06 48h
KPlanes-hybrid[7] 32.36 0.96 - 0.97 52m
TiNeuVox-B[6] 32.67 0.97 0.04 1.5 28m
V4D[9] 33.72 0.98 0.02 2.08 6.9h
HexPlane[5] 31.04 0.97 0.04 2.5 11m 30s

4DGS[45]†1 34.05 0.98 0.02 82 20m
4DGS-Realtime[47]† 34.09 0.98 - - -
Ours 36.13 0.98 0.01 182.29 45m

Total Loss Function Following [14], we use the loss between the
rendered image and the ground truth image, which includes an
L1 term and a L𝐷−𝑆𝑆𝐼𝑀 term. Combined with our regularization
terms, the overall loss function is formulated as:

L = (1 − 𝜆1)L1 + 𝜆1L𝐷−𝑆𝑆𝐼𝑀 + 𝜆2L𝑆𝑅 (25)
The settings for 𝜆1 and 𝜆2 can be referred to in Sec. 5.
5 IMPLEMENTATION DETAILS
We implemented our work using the PyTorch[28] framework and
open-source code based on 3DGS. We utilized the nvidiffrast[15]
library to compute the MipMap stack in the Scale-aware Residual
Field, ensuring computational efficiency. We use Adam optimizer
and retained certain implementations from 3DGS, including the
fast differentiable rasterizer, hyperparameters, and opacity reset
strategy. In the loss function Eq. 25, we set 𝜆1 to 0.2 and 𝜆2 to 0.8.
Detailed hyperparameter settings can be found in the appendix. We
conducted training and testing of our model using a single RTX
3090.

To enhance our rendering speed, we adopted a lossless baking
strategy for themodel during rendering. Since the features extracted
from the Scale-aware Residual Field are independent of the sampling
time, we can pre-compute the features for each Gaussian primitive
in the 4D space. Thus, during rendering, the conversion of Gaussian
primitives from 4D space to 3D space incurs only the overhead of
MLP inference. Additionally, during rendering, for a given sampling
time 𝑡0, we filter out points where the survival status 𝛾 (𝑡0) < 0.001.
These filtered points indicate that they are inactive and invisible
at time 𝑡0), thereby reducing the computational overhead during
MLP Decoder and Splatting. After testing, our baking strategy has
enabled us to double our rendering speed.

6 EXPERIMENTS
6.1 Datasets
Synthetic Dataset.We chose D-NeRF[31] as our evaluation dataset
for monocular scenes. D-NeRF is a monocular synthetic dataset
consisting of eight scenes with large-scale movements and real non-
Lambertian material dynamic objects, which imposes a challenge
on model performance.
Real-world Datasets.We selected Plenoptic Video dataset to eval-
uate our performance in multi-view real dynamic scenes. Plenoptic
Video dataset consists of six real-world scenes, each captured by
15-20 cameras. Each scene in the dataset encompasses complex
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Figure 4: Qualitative result on the D-NeRF dataset. It can be
observed that our method outperforms others in the recon-
struction of details.

Table 2: Quantitative results on Plenoptic Video dataset. FPS
is measured at 1352 × 1014. † denotes a dynamic Gaussian
method.1 excludes the Coffee Martini scene.

Method PSNR(dB)↑ DSSIM↓ LPIPS↓ FPS

KPlanes-hybrid[7] 31.63 - - 0.3
Mix-Voxels-L[41] 31.34 0.017 0.096 16.7
NeRFPlayer[35] 30.69 0.034 0.111 0.045
HyperReel[1] 31.1 0.037 0.096 2.00
StreamRF[17] 31.04 - 0.040 8.3
HexPlane[5]1 31.71 0.014 0.075 -

4DGS-Realtime[47]† 32.01 0.014 - 114
Spacetime-Gs[18]† 32.05 0.026 0.044 140
4DGS[45]† 31.15 0.016 0.049 30
Ours 32.15 0.014 0.044 40

movements and occurrences of object appearance and disappear-
ance. This dataset allows for a comprehensive evaluation of the
model’s reconstruction capability in complex temporal scenes.

6.2 Results
We have employed a variety of evaluation metrics to assess our
model. For rendering quality, we utilize PSNR, SSIM, DSSIM, and
LPIPS, and for rendering speed, we measure FPS. All evaluation
results are averaged across all scenes in the dataset.

For monocular scenes in the D-NeRF dataset, we compare our
method against the current state-of-the-art methods[5–7, 9, 31,
45, 47] in the field. The quantitative evaluation results are listed in
Tab. 1. The dynamic scene representation method based on NeRF[5–
7, 9, 31] struggleswith achieving real-time rendering due to the need
for dense ray sampling during rendering. However, our method
achieves a rendering speed of 182 FPS and exhibits considerable
improvement in rendering quality. Compared to existing dynamic
Gaussian methods[45, 47], our approach demonstrates superior
performance in handling complex temporal scenes and achieves
a certain level of enhancement in rendering quality. Qualitative
comparison results can be seen in Fig. 4. In the standup scene, our
method demonstrates better reconstruction of details (such as facial
and hand features).

For multi-view scenes in the Plenoptic Video dataset, our evalu-
ation results are presented in Tab. 2. Our method outperforms all
compared methods in rendering quality while maintaining superior

Table 3: The ablation study results across all scenes in the
D-NeRF dataset.

Method PSNR(dB)↑ SSIM↑
No Scale-aware 35.61 0.98
No temporal prop. 32.29 0.96
No Adaptive Optimization 35.44 0.98
No res-Reg. 35.01 0.98
Full 36.13 0.98

rendering speed, achieving real-time rendering. The NeRF-based
methods[1, 5, 7, 17, 35, 41] have a significant disadvantage in render-
ing speed compared to ours. 4DGS[45] based on deformation fields
has shortcomings in modeling complex temporal situations such
as object appearance and disappearance, which we can effectively
address. Although Spacetime-GS[18] achieves higher rendering
speeds, it is only applicable to multi-view scenes, whereas our
method is suitable for both multi-view and single-view scenarios. A
qualitative comparison of rendering quality with Gaussian methods
can be seen in Fig. 5. Our approach demonstrates more accurate
reconstructions in temporally complex scenes (such as the inverted
coffee scene with details on the heads and hands) and richer de-
tails (such as the circular decorations on the upper garment and
reflections on the clippers in the cut beef scene).

6.3 Ablation Study
Temporal properties of 4D Gaussian. Each Gaussian primitive
in 4D space possesses temporal properties, including temporal po-
sition and lifespan. These Gaussian primitives can be arbitrarily
distributed across the temporal domain, giving us an advantage over
previous deformation-based methods in handling intricate tempo-
ral information. To demonstrate this, we fix the temporal position
of each point to frame 0 and integrate the 3D position of Gaussian
primitives with the sampling time to extract features in the Redisual
field. 3 and Fig. 6, show a notable decline in performance when
temporal position and lifespan are disregarded.
Consideration of Spatial Scale in the Residual Field. In our
Residual field, we take into account the size information of each
Gaussian, improving the accuracy of the features obtained for each
Gaussian and aligning with the splitting of Gaussian primitives. To
evaluate this approach, we refrain from encoding the projection
area in spatial-only planes and conduct assessments on the D-NeRF
dataset. As depicted in Tab. 3 and Fig. 6, not incorporating the size
information of Gaussian primitives results in a reduction in the
reconstruction quality of dynamic scenes.
Adaptive Optimization. To address the imbalance in optimization
between dynamic and static regions in the scene, we introduce
the Adaptive Optimization strategy. Without this strategy, the re-
construction ability of 4D Gaussians for moving regions would
decrease. This is supported by Tab. 3. Without this strategy, Gauss-
ian primitives struggle to distinguish between dynamic and static
regions, leading to artifacts as shown in Fig. 6(e).
Regularization of scaling residuals. We conducted evaluations
without regularization of scaling residuals to validate the effective-
ness of this regularization term. Without this constraint, Gaussian
primitives overly rely on the Scale-aware Residual field, neglecting
optimization of their own initial attributes. Additionally, it leads
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Figure 5: Qualitative results on coffee martinis and cut roasted beef from the Plenoptic Video dataset
(a)GT (b)Full (c)No res-Reg.

(d)No Scale-aware. (e)No Adaptive

Optimization.
(f)No temporal prop.

Figure 6: Qualitative results of the ablation study.

to the utilization of sub-optimized scale information in the Scale-
aware Residual field, resulting in a decrease in model performance,
as shown in Tab. 3 and Fig. 6.

6.4 Limitations
Our method achieves high-quality, real-time reconstruction of tem-
porally complex scenes. However, it has limitations. Firstly, the use
of explicit and implicit mixing, such as 4D space plane decomposi-
tion and MLP inference, may reduce training speed. Secondly, while
applicable to both monocular and multi-view scenarios, accurate
pose estimation is required. Thus, in scenarios lacking precise pose
calibration, such as handheld smartphone videos, performance may
degrade. Enhancing reconstruction quality in such scenarios is a
future optimization direction.
7 DYNAMIC-STATIC SEGMENTATION
Static primitives are observable throughout the entire observation
period, whereas dynamic primitives, aiming to represent the tem-
poral complexity of the scene, are only visible near their temporal
positions. Therefore, dynamic primitives have a shorter lifespan,
while static primitives have a much longer lifespan. Consequently,
we can segment the scene into dynamic and static parts based solely
on their lifespans, without any prior knowledge, as illustrated in Fig.
7. Our method accurately segments dynamic foreground elements

GT Ours render Ours segmentation

Figure 7: Segmentation of dynamic and static scenes.

and dynamic lighting effects (e.g., shadows of people in the image).
This aspect also underscores the interpretability of our method.

8 CONCLUTION
In this paper, we propose SaRO-GS as a novel approach for repre-
senting dynamic scenes, enabling real-time rendering while ensur-
ing high-quality reconstruction, especially in temporally complex
scenes. SaRO-GS utilizes a set of 4D Gaussian primitives to rep-
resent dynamic scenes and leverages 3D Gaussian Splatting for
real-time rendering. Additionally, we propose a Scale-aware Resid-
ual Field to encode the region occupied by Gaussian primitives,
resulting in more accurate features and align with the self-splitting
behavior of Gaussian primitives. Furthermore, we introduce an
Adaptive Optimization strategy to enhance the model’s ability to re-
construct high-frequency temporal information in dynamic scenes.
Experimental results in both monocular and multi-view settings
demonstrate that our approach achieves state-of-the-art rendering
quality while enabling real-time rendering.
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