
Published as a conference paper at ICLR 2025

DIFFUSION TRANSFORMERS FOR TABULAR DATA
TIME SERIES GENERATION

Fabrizio Garuti1,2,†, Enver Sangineto2,∗, Simone Luetto3, Lorenzo Forni1& Rita Cucchiara2
1 Prometeia Associazione, Bologna, Italy, 2 University of Modena and Reggio Emilia, Italy,
3 Prometeia SpA, Bologna, Italy.
†fabrizio.garuti@prometeia.com, * enver.sangineto@unimore.it

ABSTRACT

Tabular data generation has recently attracted a growing interest due to its different
application scenarios. However, generating time series of tabular data, where each
element of the series depends on the others, remains a largely unexplored domain.
This gap is probably due to the difficulty of jointly solving different problems, the
main of which are the heterogeneity of tabular data (a problem common to non-
time-dependent approaches) and the variable length of a time series. In this paper,
we propose a Diffusion Transformers (DiTs) based approach for tabular data series
generation. Inspired by the recent success of DiTs in image and video generation,
we extend this framework to deal with heterogeneous data and variable-length se-
quences. Using extensive experiments on six datasets, we show that the proposed
approach outperforms previous work by a large margin.

1 INTRODUCTION

Time series of tabular data are time-dependent sequences of tabular rows, where each row is usually
composed of a set of both numerical and categorical fields. Tabular data time series are widespread
in many real-life applications, and they can represent, e.g., the temporal sequence of the financial
transactions of a given bank user or the clinical data of a patient during her hospitalization. Gen-
erating time series of tabular data is particularly important due to the limited availability of public
datasets in this domain. For instance, despite private banks usually own huge datasets of financial
transactions of their clients, they rarely make these data public. A generator trained on a real dataset
can synthesize new data without violating privacy and legal constraints. Besides privacy preservation
(Jordon et al., 2018; Abdelhameed et al., 2018; Assefa et al., 2020; Efimov et al., 2020; Hernandez
et al., 2022; Qian et al., 2023), other common applications of (non necessarily time dependent) tab-
ular data generation include: imputing missing values (Zheng & Charoenphakdee, 2022; Gulati &
Roysdon, 2023; Borisov et al., 2023; Zhang et al., 2024), data augmentation and class balancing of
real training datasets (Che et al., 2017; Choi et al., 2017; Xu et al., 2019; Kim et al., 2022; Rizzato
et al., 2023; Fonseca & Bacao, 2023), and promoting fairness (van Breugel et al., 2021). However,
despite the impressive success of generative AI methods for images, videos or text, generating tab-
ular data is still a challenging task due to different reasons. The first problem is the lack of huge
unsupervised or weakly supervised datasets for training. For instance, Stable Diffusion (Rombach
et al., 2022) was trained on LAION, a weakly supervised dataset of 400 million image-text pairs
crawled from the web, while tabular data generation models need to be trained on datasets which
are several orders of magnitude smaller. The second reason which makes tabular data generation
difficult is the heterogeneity of their input space. In fact, while, for instance, images are composed
of numerical pixel values, with a high correlation between adjacent pixels, and textual sentences are
sequences of categorical words, tabular data usually contain both numerical and categorical fields
(e.g., the transaction amount and the transaction type). Thus, a generative model for tabular data
must jointly synthesize both numerical and categorical values, and its training must handle this in-
homogeneity (Sec. 2). In case of time series of tabular data, which is the topic addressed in this
paper, the additional temporal dimension further increases this difficulty introducing the necessity
to model the statistical dependencies among the tabular rows the series is composed of, as well as
the need to deal with a variable-length input.

1

Published as a conference paper at ICLR 2025

TabGPT (Padhi et al., 2021) and REaLTabFormer (Solatorio & Dupriez, 2023) are among the very
few generative deep learning methods for time series of tabular data with heterogeneous field values,
and they are both based on a Transformer (Vaswani et al., 2017) trained autoregressively to predict
the next input token. Specifically, both methods convert the numerical fields into categorical fea-
tures, creating field-specific token vocabularies. A time series is then represented as a sequence of
concatenated tokens, which are predicted by the network autoregressively. Despite this strategy is
effective, the main drawback is the limited diversity of the generated sequences. In fact, an uncon-
ditional generation of a time series starts with a specific “start-of-sequence” token and proceeds by
selecting the next token using the posterior on the vocabulary computed by the network. However,
even when a non-deterministic sampling strategy is used (e.g., randomly drawing from the posterior
on the next token), an autoregressive (AR) network tends to generate similar patterns when it is not
conditioned on a specific user query. For instance, there is no unconditional sampling mechanism in
TabGPT, since it can only predict the future evolution of an initial real sequence provided as query.

In this paper, we follow a different direction and we use a Diffusion Model (DM) based paradigm,
which is known to be particularly effective in covering multi-modal data distributions (Ho et al.,
2020). DMs have recently been applied to the generation of single-row tabular data (Kim et al., 2022;
Kotelnikov et al., 2023; Lee et al., 2023; Kim et al., 2023; Zhang et al., 2024), empirically showing
their superiority both in terms of diversity and realism with respect to other generation paradigms
(Zhang et al., 2024). However, none of the existing DM based single-row generation approaches
can directly be used to synthesize tabular data time series. Indeed, these methods assume relatively
short, fixed-length input sequences and use denoising networks based on MultiLayer Perceptrons
(MLPs). To solve these problems, we propose to use a Diffusion Transformer (DiT) (Peebles & Xie,
2023), which enjoys the benefits of both worlds: it is a Transformer, which can naturally deal with
sequences, and it is a DM, which can generate data with a high diversity and realism.

We call our method TabDiT (Tabular Diffusion Transformer) and we follow the Latent Diffusion
Model (LDM) (Rombach et al., 2022; Peebles & Xie, 2023) framework (Sec. 2), where DMs are
trained on the latent space of a pre-trained and frozen variational autoencoder (VAE (Kingma &
Welling, 2014)). Very recently, TabSyn (Zhang et al., 2024) exploits a similar LDM paradigm for
single-row tabular data generation (Sec. 2). In TabSyn, both categorical and numerical field values
are represented as token embeddings, which are fed to a Transformer based VAE. The latent space
of this VAE is used as the input space of an MLP-based denoising network. However, TabSyn can-
not be used for tabular data time series generation because both its VAE and its denoising network
cannot deal with long, variable-length sequences. To solve these issues, we propose to decompose
the representation problem by simplifying the VAE latent space and using the denoising network
to combine independent latent representations. Specifically, since time series training datasets are
usually too small to train a VAE to learn complex dynamics with variable length, we split each time
series in a set of independent tabular rows which are separately compressed by our VAE. In this way,
the variational training is simplified and the time series chunking acts as data augmentation. Thus,
differently from previous LDM work, our VAE latent space does not holistically represent a domain
sample (i.e., a time series), but only its components. Modeling the combination of a sequence of
embedding vectors in this latent space is delegated to the Transformer denoising network, which
is responsible of learning the time-dependent distribution of the time series. Moreover, differently
from DM-based single tabular row generation methods, we propose an AR VAE decoder, in which
the generation of the next field value depends on the previously generated values of the same row,
which improves the overall consistency when compared with a standard parallel VAE decoder. Fur-
thermore, since the representation of heterogeneous tabular fields is still a largely unsolved problem,
we propose a variable-range decimal representation of the numerical field values, based on a se-
quence of digits preceded by a magnitude order prefix. This representation is a trade-off between
a lossless coding and the length of the sequence (Sec. 4). Finally, to generate variable-length time
series, we follow FiT (Lu et al., 2024), a very recent LDM which deals with variable-resolution im-
age generation by padding the sequence of embedding vectors fed to the DiT. However, at inference
time, the image resolution is sampled in FiT independently of the noise vectors fed to the DiT, which
is a reasonable choice since the resolution of an image is largely independent of its content. Con-
versely, a time series of, e.g., financial transactions conditioned on the attributes of a specific bank
client, can be longer or shorter depending on the client and how they use their bank account. For
this reason, we use the denoising network to also predict the generated sequence length, jointly
with its content, and we do so by forcing our DiT to explicitly generate the padding vectors defining
the end of the time series.

2

Published as a conference paper at ICLR 2025

Due to the lack of a unified evaluation protocol for tabular data time series generation, we collect
different public datasets and we propose an evaluation metric which extends single-row metrics to
the time-series domain. For the specific case of unconditional generation, TabDiT is, to the best
of our knowledge, the first deep learning method for unconditional generation of heterogeneous
tabular data time series. In this case, we compare TabDiT with a strong AR baseline, which we
implemented by merging the (discriminative) hierarchical architecture proposed in (Padhi et al.,
2021; Luetto et al., 2023), with some of the architectural solutions we propose in this paper. In all
the experiments, TabDiT significantly outperforms all the compared baselines, usually by a large
margin. In summary, our contributions are the following.

• We propose a DiT-like approach for tabular data time series generation, in which a Trans-
former denoising network combines latent embeddings of a non-holistic VAE.

• We propose an AR VAE decoder to model intra-row statistical dependencies and a variable-
range decimal representation of the numerical field values.

• We propose to generate variable-length time series by explicit padding prediction.
• We propose a metric for the evaluation of tabular data time series generation, and we empir-

ically validate TabDiT using different public datasets, showing the superiority of TabDiT
with respect to the state of the art.

• TabDiT can be used in both a conditional and an unconditional scenario, and it is the first
deep learning method for unconditional heterogeneous tabular data time series generation.

2 RELATED WORK

Diffusion Models. DMs have been popularized by Ho et al. (2020); Dhariwal & Nichol (2021),
who showed that they can beat GANs (Goodfellow et al., 2014) in generating images with a higher
realism and diversity, reducing the mode-collapse problems of GANs. Stable Diffusion (Rombach
et al., 2022) first introduced the LDM paradigm (Sec. 1), where training is split in two phases. In
the first stage, a VAE is used to compress the input image. In the second stage, a DM is trained on
the VAE latent space. DiT (Peebles & Xie, 2023) adopts this paradigm and shows that the U-Net
architecture (Ronneberger et al., 2015) used in Stable Diffusion is not crucial and it can be replaced
by a Transformer. Since a U-Net is based on image-specific inductive biases (implemented with
convolutional layers), we adopt DiT as our basic framework. Very recently, FiT (Lu et al., 2024)
extended DiT to deal with variable-resolution images, by padding the embedding sequence up to
a maximum length. We adopt a similar solution to generate variable-length time series. However,
in FiT the padding vectors are masked in the attention layers and ignored both at training and at
inference time, and the image resolution is sampled independently of the noise vectors. In contrast,
we force our DiT to explicitly generate padding vectors, in this way directly deciding about the
length of the specific sequence it is generating.

Single-row tabular data generation. Early methods for generating single-row tabular data include
CTGAN (Xu et al., 2019) and TableGAN (Park et al., 2018), based on GANs, and TVAE (Xu et al.,
2019), based on VAEs. VAEs have also been employed more recently in other works, such as, for
instance, GOGGLE (Liu et al., 2023), where they are used jointly with Graph Neural Networks.
TabMT (Gulati & Roysdon, 2023) adopts a Transformer with bidirectional attention to model sta-
tistical dependencies among different fields of a row. In GReaT (Borisov et al., 2023), a tabular row
is represented using natural language and a Large Language Model (LLM) is used to conditionally
generate new rows. However, the authors do not provide any mechanism for fully-unconditional
sampling. Moreover, the LLM maximum input length limits the dataset size which can be used
(Zhang et al., 2024). Finally, tabular field names and values are frequently based on jargon terms
and dataset-specific abbreviations, which are usually out-of-distribution for an LLM (Narayan et al.,
2022; Luetto et al., 2023).

Most of the recent literature on single-row tabular data generation has adopted a DM paradigm
(Kim et al., 2022; Kotelnikov et al., 2023; Lee et al., 2023; Kim et al., 2023; Zhang et al., 2024),
and different works mainly differ by the way in which they deal with numerical and categorical
features. For instance, both TabDDPM (Kotelnikov et al., 2023) and CoDi (Lee et al., 2023) use a
standard Gaussian diffusion process (Ho et al., 2020) for the numerical features and a multinomial
diffusion process (Hoogeboom et al., 2021) for the categorical ones. Specifically, CoDi uses a

3

Published as a conference paper at ICLR 2025

categorical and a numerical specific denoising network which are conditioned from each other. In
STaSy (Kim et al., 2023), both numerical and categorical features are treated as numerical and a
self-paced learning strategy (Kumar et al., 2010) is proposed for training. Different from previous
work, we propose a variable-range decimal representation that converts numerical features into a
sequence of categorical values and allows both categorical and numerical features to be uniformly
represented as a sequence of tokens. TabSyn (Zhang et al., 2024) is the work which is the closest
to our paper because it is also based on an LDM paradigm (Sec. 1). However, TabSyn cannot be
used for time series of tabular data because both its VAE and its MLP-based denoising network
cannot deal with variable length sequences. For this reason, in this paper we propose a non-holistic
VAE, which compresses only a chunk of the input sample (i.e., an individual row rather than an
entire time series). In this way, most of the representation complexity is placed on our DiT-based
denoising network, which is responsible of generating temporally coherent sequences by combining
VAE compressed embedding vectors. Finally, differently from TabSyn and other DM-based tabular
data generation methods (Kim et al., 2022; Kotelnikov et al., 2023; Lee et al., 2023; Kim et al.,
2023), we use an AR VAE decoder and we explicitly predict the time series length.

Tabular data sequence generation. SDV (Patki et al., 2016) is a non-deep-learning method based
on Gaussian Copulas to model inter-field dependencies in tabular data. TabGPT (Padhi et al., 2021)
(Sec. 1) is a forecasting model, which can complete a real time series but it lacks a sampling mech-
anism for generation from scratch. Moreover, it is necessary to train a specific model for each bank
client. In contrast, REaLTabFormer (Solatorio & Dupriez, 2023) has a similar AR Transformer ar-
chitecture but it focuses on conditional generation, in which a time series is generated depending,
e.g., on the attributes of a specific bank client, described by a “parent table” (Sec. 3). In REaLTab-
Former, numerical values are represented as a fixed sequence of digits. We also represent numerical
values as a sequence of digits, but our representation depends on the magnitude order of the specific
value, which results in shorter sequences and a reduced decoding error (Sec. 4.1). Differently from
(Padhi et al., 2021; Solatorio & Dupriez, 2023), our proposal is based on a DM, and it can be used
for both conditional and unconditional generation tasks.

3 PRELIMINARIES

Diffusion Transformer. The LDM paradigm (Rombach et al., 2022) is based on two separated
training stages: the first using a VAE and the second using a Gaussian DM. The main goal of the
VAE is to compress the initial input space. Specifically, in DiT (Peebles & Xie, 2023), an image x is
compressed into a smaller spatial representation using the VAE encoder z = E(x). The VAE latent
representation z is then “patchified” into a sequence sss = [zzz1, ..., zzzk]. Note that grouping “pixels” of
z into patches is a procedure external to the VAE, which holistically compresses the entire image.
Then, random noise is added to sss and its corrupted version is fed to a Transformer-based denoising
network (DiT) which is trained to reverse the diffusion process. More specifically, given a sample sss0
extracted from the real data distribution (defined on the VAE latent space, sss0 ∼ q(sss0)), and a prefixed
noise schedule (ᾱ1, ..., ᾱT), the DM iteratively adds Gaussian noise for T diffusion steps: q(ssst|sss0) =
N (ssst;

√
ᾱtsss0, (1 − ᾱt)III), t = 1, ..., T . Using the reparametrization trick, ssst can be obtained by:

ssst =
√
ᾱtsss0 +

√
1− ᾱtϵϵϵt, where ϵϵϵt ∼ N (000, III) is a noise vector. A denoising network is trained

to invert this process by learning the reverse process: pθθθ(ssst−1|ssst) = N (ssst−1;µθθθ(ssst, t), σθθθ(ssst, t)III).
Training is based on minimizing the variational lower bound (VLB) (Kingma & Welling, 2014),
which can be simplified to the following loss function (Ho et al., 2020):

L(θθθ)Simple = Esss0∼q(sss0),ϵϵϵ∼N (000,III),t∼U({1,...,T})
[
||ϵϵϵt − ϵθθθ(ssst, t)||22

]
, (1)

where µθθθ(·) is reparametrized into a noise prediction network ϵθθθ(·). Following (Nichol & Dhariwal,
2021), DiT predicts also the noise variance (σθθθ(·)), which is used to compute the KL-divergence of
the VLB in closed form. However, for simplicity, we do not predict the noise variance.

At inference time, a latent zT is sampled and fed to the DiT network, which follows the reverse-
process sampling chain for T steps until z0 is generated. Finally, the VAE decoder D(·) decodes
z0 into a synthetic image. For condional generation, DiT encodes the conditional information (e.g.,
the desired class label of the image) using a small MLP. The latter regresses, for each DiT block,
the parameters of the adaptive layer norm (βββ,γγγ) and the scaling parameters (ααα) used in the residual
connections. In (Peebles & Xie, 2023), this is called adaLN-Zero block conditioning and it is used
also to represent the timestep t.

4

Published as a conference paper at ICLR 2025

Problem formulation. Tabular data are characterized by a set of field names (or attributes) A =
{a1, ..., ak}, where each aj ∈ A is either a categorical or a numerical attribute. A tabular row
rrr = [v1, ..., vk] is a sequence of k field values, one per attribute. If aj is a numerical attribute, then
vj ∈ R, otherwise vj ∈ Vj , where Vj is an attribute-specific vocabulary. A time series is a variable-
length, time-dependent sequence of rows xxx = [rrr1, ..., rrrτ]. Given a training set X = {xxx1, ...,xxxN}
empirically representing the real data distribution q(xxx), in unconditional tabular data time series
generation the goal is to train a generator which can synthesize time series following q(xxx). Moreover,
inspired by (Solatorio & Dupriez, 2023), for the conditional generation case, we assume to have
a “parent” table P associated with the elements in X . A tabular row uuu = [w1, ..., wh] in P is
associated with a sequence xxxi ∈ X and it describes some characteristics that affect the nature of xxxi.
For instance, if xxxi ∈ X is the history of the transactions of the i-th bank client, the corresponding
row in P could describe the attributes (e.g., the age, the gender, etc.) of this client. In a conditional
generation task, given uuu, the goal is to generate a synthetic time series according to q(xxx|uuu).

4 METHOD

In this section we present our approach, starting from an unconditional generation scenario, which
we will later extend to the conditional case. Our first goal is to simplify the VAE latent space: since
the time series have a variable length and a complex dynamics, rather than representing their dis-
tribution using a variational approach (Kingma & Welling, 2014), we use our VAE to separately
compress only individual tabular rows, and then we combine multiple, independent latent represen-
tations of rows using the DiT-based DM. In more detail, our VAE encoder Eϕϕϕ represents a tabular
row rrr with a latent vector zzz = Eϕϕϕ(rrr), zzz ∈ Z , which is decoded using the VAE decoder Dφφφ. The
parameters ΦΦΦ = [ϕϕϕ,φφφ] of Eϕϕϕ and Dφφφ are trained with a convex combination of a reconstruction loss
and a KL-divergence (Kingma & Welling, 2014). The training set is R = {rrr1, ..., rrrM}, where each
rrrj ∈ R is a row extracted from one of the time series xxxi ∈ X . Note that M >> N and that the
rows in R are supposed to be i.i.d., i.e., we treat the samples in R as independent from each other.
Hence, the semantic space of our VAE (Z = Rd) will not embed any time-dependency among the
rows of the same time series, since Eϕϕϕ and Dφφφ cannot observe this relation.

x

r 1 r ?

Encoder ?? Encoder ??

...

z1 z?...

DiT blocks

Timestep t

MLP Encoder C?

+

MLP

adaLN-Zero block
conditioning

Decoder D?

[Star t]

...

(a) Denoising
 network

(b) VAE

...

p p

Encoder ?? Encoder ??

...

z?+1 z?...

...

max

Var EncoderMean Encoder

Encoder ??

Cross Attention

? , ? , ?

F? (st , t)

Figure 1: A schematic illustration of the denoising (a) and the VAE (b) network of TabDiT.

Fig. 1 shows the proposed framework, which includes Eϕϕϕ, Dφφφ and our DiT-based denoising network
Fθθθ. At training time, the latter takes as input a sequence of latent row representations of a specific
time series. In more detail, given xxxi ∈ X , xxxi = [rrr1, ..., rrrτ], we compute sss0 = [zzz1, ..., zzzτ] =
[Eϕϕϕ(rrr1), ..., Eϕϕϕ(rrrτ)] and we use sss0 as explained in Sec. 3 to train Fθθθ, where Fθθθ(ssst, t) implements
ϵθθθ(ssst, t). The timestep t is first encoded using a small MLP and then its embedding vector is used to
condition Fθθθ (see later). Note that sss0 is a time dependent sequence of row embeddings, thus the real
data distribution q(sss0) we use to train Fθθθ does include the statistical dependencies among tabular
rows of a same time series. In other words, while Z represents only individual rows, we use Fθθθ to
combine independent vectors lying in this space into a sequence of time-dependent final-embedding
vectors representing an entire time series.

Conditional generation. In a conditional generation task, we want to condition Fθθθ using a row
uuu of a parent table P (Sec. 3). To do so, we first encode uuu using a specific encoder Cψψψ . The
architecture and the field value representations of Cψψψ are the same as Eϕϕϕ (Sec. 4.1). However,
Cψψψ is disjoint from the VAE and it is trained jointly with Fθθθ. The output vector ccc = Cψψψ(uuu) is
summed with the embedding vector of the timestep t and fed to the MLP of the adaLN-Zero block

5

Published as a conference paper at ICLR 2025

conditioning mechanism (Sec. 3). Moreover, following most of the image generation DM literature,
in the conditional generation scenario we also use Classifier-Free Guidance (CFG). Specifically, if
the denoising network output is interpreted as the score function (Song et al., 2021), then the DM
conditional sampling procedure can be formulated as (Peebles & Xie, 2023):

F̂θθθ(ssst, t,uuu) = Fθθθ(ssst, t, ∅) + s · (Fθθθ(ssst, t,uuu)−Fθθθ(ssst, t, ∅)), (2)

where Fθθθ(ssst, t, ∅) is the unconditional prediction of the network and s > 1 indicates the scale of
the guidance (s = 1 corresponds to no CFG). At training time, for each sample xxxi, with probability
pd ∈ [0, 1] the condition uuu is dropped and the network is trained unconditionally.

4.1 ENCODING AND DECODING IN THE VAE LATENT SPACE

Field value representations. For categorical attributes aj , we use a widely adopted tokenization
approach (Zhang et al., 2024; Luetto et al., 2023; Padhi et al., 2021), in which each possible value
vj ∈ Vj is associated with a token and a lookup table of token embeddings transforms these tokens
into the initial embedding vectors of Eϕϕϕ. However, how to represent numerical values (vj ∈ R) in
a way which is coherent with categorical feature tokens is still an open problem (Sec. 2) and each
method adopts a specific solution (see App. A). For instance, REaLTabFormer (Solatorio & Dupriez,
2023) converts vj into a sequence of digits and then treats each digit as a categorical feature. If the
maximum possible value in X for the attribute aj is vmaxj

, and assuming, for simplicity, that aj can
only take on positive integer values, then vj is converted into a sequence L = [D1, ..., Dp], where
each Dk ∈ {’0’, ..., ’9’} corresponds to a digit in the decimal representation of vj and p is a fixed
sequence length corresponding to the number of digits necessary to represent vmaxj

. Importantly,
if the decimal representation of vj requires less than p digits, the sequence is left-padded with zeros
(Solatorio & Dupriez, 2023). This representation is lossless (App. A), but it leads to very long
sequences which are frequently full of zeros. Indeed, the value distribution for aj is usually a
Gaussian with very long tails. For instance, the “amount” field of a bank transaction can range from
tens of millions to a few cents, but most values are smaller than 1,000 (e.g., 35$).

To solve this problem, we propose a variable-range representation using a small, fixed number of
digits preceded by a magnitude order. For simplicity, let us assume that vj is a positive integer, thus:

vj =

m∑
k=0

bk10
k, DR(vj) = [bmbm−1...b0], (3)

where m is the largest exponent and DR(vj) is the representation of vj by means of a sequence of
digits (e.g., [35967]). Then, we represent vj using a sequence Q defined as follows:

Q = [O,Dm, Dm−1, ..., Dm−n+1]. (4)

In Eq. (4), O is the magnitude order prefix and it corresponds to m in Eq. (3). Specifically, in the
tabular data domain we can assume that vj < 1010, hence, m ∈ {0, ..., 9} and O ∈ {’0’, ..., ’9’} is
the token corresponding to m. The value of O is the first one that will be generated by Dφφφ when
decoding the sequence representing a numerical value, which corresponds to predict its magni-
tude order (m). We then encode the n most significant digits of vj using Dm, Dm−1, ..., Dm−n+1,
where Dk ∈ {’0’, ..., ’9’} (m ≤ k ≤ m − n + 1) is the token corresponding to the digit bk,
and [bmbm−1...bm−n+1] ⊆ DR(vj) is the (m-depending) range we represent. For instance, if
vj = 35967 and n = 4, then Q = [’4’, ’3’, ’5’, ’9’, ’6’]. Once decoded, Q can be used to com-
pute the (possibly truncated) value of vj . For instance, using Q = [’4’, ’3’, ’5’, ’9’, ’6’], we get:
v̂j = 3 ∗ 104 + 5 ∗ 103 + 9 ∗ 102 + 6 ∗ 10 = 35960. We use n = 4 regardless of attribute or
dataset, and this value was chosen in preliminary studies as a trade-off between the length of the
resulting sequences Q and the amount of truncated information (more details in App. A). On the
other hand, if m < n (the most frequent case), no truncation is necessary and we right-pad Q with
zeros. For instance, if vj = 35, then we use Q = [’1’, ’3’, ’5’, ’0’, ’0’]. At decoding time, O is the
first token generated by Dφφφ, which is converted into m. If m < n, the last n−m−1 tokens in Q are
ignored because they are zero-padding digits (e.g., in Q = [’1’, ’3’, ’5’, ’0’, ’0’], this corresponds to

6

Published as a conference paper at ICLR 2025

the last 2 elements of Q). This implies that possible generation errors in the last n −m − 1 tokens
are ignored. More formally, using our representation, the joint distribution over the tokens that the
decoder should model is restricted to min(n+1,m+2) variables, as opposed to a joint distribution
over p variables (p > m + 2) as in the case of the fixed digit sequence proposed in (Solatorio &
Dupriez, 2023), reducing the overall error probability (see App. A for more details).

Encoder and Decoder Architectures. Given a tabular row rrr, each categorical value is converted
into a token and each numerical value is converted in a sequence Q of n + 1 tokens (see above).
After that, we use attribute-specific lookup tables to represent all the tokens as embedding vectors:
eee1, ...eeeν , where ν is the sum of the number of categorical attributes plus the number of the numerical
attributes multiplied by (n+1). The whole sequence eee1, ...eeeν is fed to Eϕϕϕ, which, following (Zhang
et al., 2024), is composed of two separated towers, respectively computing the mean (µµµ) and log
variance (logσσσ) of the latent representation zzz of rrr in Z . However, differently from (Zhang et al.,
2024), we use multi-head self-attention in Eϕϕϕ because, in preliminary experiments, we found that
this is more effective than single-head attention.

Using the standard VAE reparameterization trick, we obtain: zzz = µµµ+σσσ ·ϵϵϵ, ϵϵϵ ∼ N (000, III), and zzz is fed
to the decoder Dφφφ. Moreover, differently from most DM-based tabular data generation approaches,
we propose an AR decoder which is conditioned on zzz. Specifically, decoding a tabular row rrr starts
with a special token [Start]. Every time the next-token is predicted, it is coded back and fed
to Dφφφ, which is a Transformer with 3 blocks. Each block alternates multi-head causal attention
layers with respect to previously predicted tokens with (multi-head) cross attention layers to the ν
embedding vectors of zzz. For each categorical attribute aj , a final linear layer followed by softmax
computes a posterior over the specific vocabulary Vj . Similarly, if aj is numerical, it computes a
posterior for each of the n + 1 tokens in its variable-range representation Q. At inference time, we
deterministically select a token from each of these posteriors using arg max. Finally, the predicted
value vj is autoregressively encoded into Dφφφ using the same field value representation mechanism
used for the encoder (more details in App. F).

4.2 VARIABLE-LENGTH TIME SERIES

Given two sequences xxxi = [rrr1, ..., rrrτi] and xxxj = [rrr1, ..., rrrτj], xxxi,xxxj ∈ X , their length is usually
different (τi ̸= τj). Following FiT (Lu et al., 2024), we use a maximum length τmax and, for each
xxxi, we append τmax − τi padding rows ppp (see below) to the right side of xxxi. However, in FiT the
padding tokens are used only to pack data into batches of uniform shape for parallel processing,
and are ignored during the forward pass using a masked attention (basically, they are not used).
Conversely, we use our padding rows to let the network decide the length of the time series it is
generating. To do so, we add an [EoS] token to each categorical vocabulary Vj , included the
vocabulary representing the digits, and we form the special row ppp = [[EoS], ...,[EoS]]. During
VAE training, with probability 0.05 we sample ppp and with 0.95 we sample a real row from R.
During the denoising network training, if τi < τmax, xxxi is padded with ppp, which results in sss0 being
a sequence of τmax latent vectors, where the last vectors correspond to the representation of ppp in Z
and contribute to compute the loss. Finally, at inference time, we randomly sample τmax vectors
zzz1, ..., zzzτmax in Z , which form sssT = [zzz1, ..., zzzτmax], the starting point of the DM sampling chain.
The ending point of the sampling chain sss0 is split in τmax final vectors zzz′1, ..., zzz

′
τmax

which are
individually decoded using Dφφφ. We stop decoding as soon as we meet the first padding row ppp. More
precisely, we stop decoding when we meet the first row containing at least one token [EoS]. In this
way, we use Fθθθ to predict the end of the time series jointly with its content.

5 EXPERIMENTS

5.1 EVALUATION PROTOCOL

Due to the lack of a shared evaluation protocol for tabular data time series generation, we propose
a unified framework which is composed of different public datasets, conditional and unconditional
generation tasks and different metrics. More details are provided in App. C and E.

Datasets. We use six public datasets, whose statistics are provided in App. E. Age1, Age2, Leaving,
taken from (Fursov et al., 2021), and PKDD’99 Financial Dataset, taken from (Berka, 1999), are
composed of bank transaction time series of different real banks with different attributes. Each time

7

Published as a conference paper at ICLR 2025

series is the temporally ordered sequence of bank transactions of a given bank client. On the other
hand, the Rossmann and the Airbnb datasets, used in (Patki et al., 2016; Solatorio & Dupriez, 2023),
are composed of, respectively, historic sales data for different stores and access log data from Airbnb
users. These six datasets are widely different from each other both in terms of their attributes and
their sizes, thus representing very different application scenarios. Two of these datasets, Age1 and
Leaving, do not have an associated parent table, so they are used only for unconditional generation.

Metrics. Since heterogeneous time series generation is a relatively unexplored domain, there is also
a lack of consolidated metrics. For instance, Solatorio & Dupriez (2023) use the Logistic Detection,
which is a discriminative metric based on training a binary classifier to distinguish between real
and generated data, and then using the ROC-AUC scores of the discriminator (the higher the better
↑) on an held-out set of real and synthetic data (App. C). We also adopt this metric in Sec. 5.3 to
compare our results with REaLTabFormer. However, the classifier used in the Logistic Detection
(a Random Forest) takes as input only an individual row of the real/generated time series, thus
this criterion is insufficient to assess, e.g., the temporal coherence of a time series composed of
different rows (e.g., see App. H.3 for a few examples of time series generated by REaLTabFormer
with an incoherent sequence of dates). For this reason, in this paper we extend this metric using a
classifier which takes as input the entire time series instead of individual rows. Inspired by similar
metrics commonly adopted in single-row tabular data generation (Liu et al., 2023), we call our
metric Machine Learning Detection (MLD) and we measure the discriminator accuracy (the lower
the better ↓, because it means that the discriminator struggles in separating the real from the synthetic
distribution). To emphasize the difference with respect to the Logistic Detection used in Solatorio &
Dupriez (2023), use the suffix “SR” (single row) for the latter (LD-SR) and the suffix “TS” (MLD-
TS) to indicate that our MLD metric depends on the entire time series. More specifically, in MLD-TS
we use CatBoost (Prokhorenkova et al., 2018) as the classifier, because it is one of the most common
non-deep learning based methods for heterogeneous tabular data discriminative tasks (Luetto et al.,
2023; Gorishniy et al., 2021; Chen & Guestrin, 2016), jointly with a standard library (Christ et al.,
2018) extracting a fixed-size feature vector from a time series (Luetto et al., 2023). We provide
more details on these metrics in App. C, where we also introduce an additional metric based on the
Machine Learning Efficiency (MLE) (Zhang et al., 2024; Kotelnikov et al., 2023).

5.2 ABLATION

In Tab. 1 we use Age2, which, among the six datasets, is both one of the largest in terms of number
of time series and one of the most complex for different types of attributes. The results in Tab. 1
are based on an unconditional generation task and evaluate the contribution of each component of
our method. The last row, TabDiT, refers to the full method as described in Sec. 4, while all the
other rows refer to our full-model with one missing component. For instance, Parallel VAE refers to
a standard, non-AR VAE decoder, in which all the fields of a tabular row are predicted in parallel.
No cross-att VAE differs from the VAE introduced in Sec. 4.1 because in Dφφφ we remove the cross
attention layers to zzz, and zzz is directly fed to Dφφφ in place of the [Start] token. In all the other
entries of the table we use our AR VAE as described in Sec. 4.1. Fixed digit seq corresponds to the
numerical value representation proposed in REaLTabFormer (Solatorio & Dupriez, 2023), in which
we use p = 7 digits (Sec. 4.1), which are enough to represent all the numerical values in Age2.
In Quantize, we follow TabGPT (Padhi et al., 2021) and we convert each numerical feature into a
categorical one, using quantization and a field specific vocabulary. In Linear transf, we follow Tab-
Syn (Zhang et al., 2024), where numerical features are predicted using a linear transformation of the
corresponding last-layer token embedding of the VAE decoder. We refer to App. A for more details
on these representations. In all the variants, we always use a coherent numerical value representa-
tion in the corresponding VAE encoder. We also evaluated hybrid solutions, where VAE encoders
and decoders have different representations of the numerical values, but we always obtained worse
results than in cases of coherent representations. Moreover, in W/o length pred we follow FiT (Lu
et al., 2024) and we use a masked attention which completely ignores the padding rows. In this case,
at testing time the sequence length is randomly sampled using a mono-modal Gaussian distribution
fitted on the length of the training time series. Finally, AR Baseline is a (strong) baseline based on a
purely AR Transformer which we use to validate the effectiveness of the DM paradigm (see below).

In our AR Baseline, we modify the hierarchical discriminative architecture proposed in (Padhi
et al., 2021) and adopted also in (Luetto et al., 2023) to create an AR generative model. Specifically,
we use a causal attention in the “Sequence Transformer” and we replace the “Field Transformer”

8

Published as a conference paper at ICLR 2025

Table 1: Ablation study on the Age2 dataset.
Method Parallel VAE No cross-att VAE Fixed digit seq Quantize Linear transf W/o length pred AR Baseline TabDiT

MLD-TS ↓ 62.2 51.2 64.0 83.8 83.7 61.0 68.3 50.8

with one of the towers of our VAE encoder architecture. Moreover, we use our AR VAE decoder
architecture to predict the output sequence. Note that we use the VAE architectural components but
we do not use variational training and the entire network is trained end-to-end using only a next-
token prediction task, following (Padhi et al., 2021; Solatorio & Dupriez, 2023). The numerical
features are represented using our variable-range decimal representation. In short, this baseline is a
purely AR Transformer where we merged the hierarchical architecture used in (Padhi et al., 2021;
Luetto et al., 2023) with our decoding scheme and our feature value representation.

Tab. 1 shows that all the components of the proposed method are important, since their individual
removal always leads to a significant decrement of the MLD. Specifically, the numerical value rep-
resentation has a high impact on the results. For instance, both Linear transf, adopted in (Zhang
et al., 2024), and Quantize, used in (Padhi et al., 2021), lead to a drastic worsening of results. On the
other hand, our AR Baseline, which is based on the same input representation and shares important
architectural details with TabDiT, is largely outperformed by the latter, showing the advantage of our
LDM-based approach. Finally, the difference between No cross-att VAE and the full method is sub-
tle, showing that the cross attention layers in Dφφφ can be replaced by directly feeding zzz to the decoder,
as long as the latter has an AR architecture (see App. D.3 for additional ablation experiments).

5.3 MAIN EXPERIMENTS

Following the protocol adopted in (Solatorio & Dupriez, 2023), all the experiments of this section
have been repeated three times with different random splits of the samples between the generator
training data, the discriminators’ training data and the testing data (see App. C and E for more
details). For each experiment, we report the means and the standard deviations of the MLD-TS and
the LD-SR metrics. In App. D.1 we show additional experiments using other metrics App. C.

Unconditional generation. We are not aware of any unconditional generative model for time se-
ries of heterogeneous tabular data with public code or published results. Indeed, REaLTabFormer
is a conditional method, while TabGPT is a forecasting model, both lacking of an unconditional
sampling mechanism (Sec. 1 and 2). For this reason, we can only compare TabDiT with our AR
Baseline (Sec. 5.2). The unconditional results in Tab. 2 and 3 show that TabDiT outperforms the
AR Baseline in all the datasets by a large margin. For instance, in the largest dataset (Age1), Tab-
DiT improves the MLD-TS score by more than 27 points compared to the AR baseline. On Age2,
TabDiT outperforms the AR Baseline by more than 17 points, achieving an almost ideal situation in
which the real and the generated distributions cannot be distinguished by each other (discrimination
accuracy = 50.43%, very close to the chance level). Note that the Age2 results are slightly different
from those reported in Tab. 1 because they were obtained averaging 3 different runs.

Conditional generation. We indicate with “child gt-cond” the conditional generation task in which
the parent table row uuu, used for conditioning, is a ground truth, real row extracted from the testing
dataset (Sec. 3). Specifically, we use all the elements uuu ∈ Ptest (Sec. 3) to condition the generator
networks. Moreover, to make a comparison with Solatorio & Dupriez (2023) possible, we also fol-
low their protocol and we indicate with “child” the conditional generation task on the time series (xxx)
where also the conditioning information (uuu) is automatically generated. Specifically, in our case, we
generateuuu by training a dedicated DiT-based denoising network and a corresponding AR VAE on P .
These networks have the same structure and are trained using the same approach described in Sec. 4
but using P instead of X (more details in App. B). Finally, in (Solatorio & Dupriez, 2023) “merged”
indicates the evaluation of the joint probability of generating both xxx and uuu. Using MLD-TS and LD-
SR, this is obtained by concatenating uuu with either xxx or with its individual rows rrr, respectively, and
then feeding the result to the corresponding discriminator (see App. C). In Tab. 4, we indicate with
* the results of REaLTabFormer and SDV which we report from (Solatorio & Dupriez, 2023), while
in all the other cases they have been reproduced by us using the corresponding public available
code. Specifically, while using REaLTabFormer with a real data-conditioning task (“child gt-cond”)

9

Published as a conference paper at ICLR 2025

is easy, that was not possible for SDV. The choice of REaLTabFormer and SDV follows (Solatorio
& Dupriez, 2023), where the selected baselines are those which have open-sourced models.

The results in Tab. 4 confirm the results in Tab. 2 and 3. Across all datasets and tasks, and with
both metrics, TabDiT outperforms all the baselines by a large margin, often approaching the lower
bound of 50% MLD-TS accuracy. In the “child gt-cond” task, AR Baseline is the second best most
of the time, while in “child” and “merged” the second best is REaLTabFormer. We believe that the
reason of this discrepancy is most likely due to the fact that both the “child” and the “merged” task
evaluation depend on the quality of the single-row parent generation, in which REaLTabFormer gets
better results (see App. B). Finally, in App. D.1 we present additional experiments using the MLE
(Sec. 5.1), where we also show how the generated data can be effectively used to replace real data for
classification tasks (Sec. 1), and in App. D.2 we extend the results of this section to larger datasets.

Table 2: Unconditional generation results on Rossmann, Airbnb and PKDD’99.

Rossmann Airbnb PKDD’99 Financial
Method MLD-TS ↓ LD-SR ↑ MLD-TS ↓ LD-SR ↑ MLD-TS ↓ LD-SR ↑

AR Baseline (ours) 97.80±2.20 49.97±3.26 77.23±1.46 56.43±2.80 92.87±1.68 71.93±1.34

TabDiT (ours) 82.60±3.92 77.07±5.37 55.07±3.52 78.07±2.77 85.53±4.18 79.10±6.09

Table 3: Unconditional generation results on Age2, Age1 and Leaving.

Age2 Age1 Leaving
Method MLD-TS ↓ LD-SR ↑ MLD-TS ↓ LD-SR ↑ MLD-TS ↓ LD-SR ↑

AR Baseline (ours) 67.53±0.75 83.47±0.38 91.20±0.46 74.23±1.06 69.43±4.02 75.33±2.86

TabDiT (ours) 50.43±1.85 87.00±1.54 63.93±3.20 76.00±4.25 62.33±0.99 75.63±4.20

Table 4: Conditional generation results. * Values reported from Solatorio & Dupriez (2023).

Rossmann Airbnb Age2 PKDD’99 Financial
Method Task MLD-TS ↓ LD-SR ↑ MLD-TS ↓ LD-SR ↑ MLD-TS ↓ LD-SR ↑ MLD-TS ↓ LD-SR ↑

SDV child 99.63 ±0.64 6.53*±0.39 93.30 ±0.61 0.00*±0.00 96.03 ±0.11 44.80±1.73 97.95 ±1.42 6.53±0.58

merged 100.00 ±0.00 2.80*±0.25 94.40 ±1.65 0.00*±0.00 96.27 ±0.06 37.63±1.47 98.12 ±1.17 8.77±0.59

REaLTabFormer
child gt-cond 98.90±1.10 60.63±2.65 63.63±1.20 86.17 ±1.29 66.77 ±0.42 77.90±0.85 97.87±0.59 21.97±0.55

child 64.83 ±1.33 52.08 *±0.89 57.77 ±0.67 30.48*±0.79 52.97 ±2.32 77.30 ±0.92 59.33 ±3.82 21.50±0.72

merged 74.43 ±8.85 28.33 *±2.31 76.97 ±2.04 21.43 *±1.10 52.10 ±2.17 75.53 ±0.65 58.77 ±3.05 26.00±1.61

AR Baseline child gt-cond 95.57 ±1.96 71.60 ±2.42 57.97 ±1.72 82.77±0.49 69.97±0.90 80.73 ±0.59 68.33 ±4.37 81.13 ±1.51

child 99.63±0.64 36.03±8.79 82.33±1.53 62.53 ±3.93 79.03±1.62 65.83±3.95 79.07±6.23 67.60 ±4.36

(ours) merged 99.63±0.64 19.70±6.80 93.50±1.30 8.53±2.49 81.30±0.78 48.03±3.61 83.33±5.75 38.73 ±4.22

TabDiT (ours)
child gt-cond 72.20±1.10 82.90±1.32 51.10±2.60 98.07±0.25 51.40±2.95 84.60±1.87 59.50±10.53 81.20±2.71

child 64.03±0.64 80.13±3.02 49.33±1.18 81.10±0.98 50.47±1.71 84.70±1.21 51.80±6.44 79.13±3.04

merged 71.83±2.77 38.63±1.04 54.63±0.85 47.37±2.68 51.53±3.04 78.93±0.64 54.03±3.95 53.20±0.66

6 CONCLUSIONS

We presented TabDiT, an LDM approach for tabular data time series generation. Differently from the
common LDM paradigm, where an entity domain is holistically represented in the VAE latent space,
we split our time series in individual tabular rows, which are compressed independently one from the
others. This simplifies the variational learning task and avoids the need to represent variable length
sequences in the VAE latent space. Then, a DiT denoising network combines embedding vectors
defined in this space into final sequences, in this way modeling their temporal dynamics. Moreover,
our DiT explicitly predicts the end of the generated time series to jointly model its content and its
length. Furthermore, we proposed an Autoregressive VAE decoder and a variable-range decimal
representation of the numerical values to encode and decode heterogeneous field values. Using
extensive experiments with six different datasets, we showed the effectiveness of TabDiT, which
largely outperfoms the other baselines in both conditional and unconditional tasks. Specifically,
TabDiT is the first network showing results for unconditional generation of time series of tabular
data with heterogeneous field values.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This work was partially supported by the EU Horizon project ELIAS (No. 101120237). We thank
the Data Science team of Prometeia S.p.A. for their valuable collaboration and for providing useful
discussions and insights that contributed to this work.

REFERENCES

Saad A. Abdelhameed, Sherin M. Moussa, and Mohamed E. Khalifa. Privacy-preserving tabular
data publishing: A comprehensive evaluation from web to cloud. Computers & Security, 72:
74–95, 2018.

Samuel A. Assefa, Danial Dervovic, Mahmoud Mahfouz, Robert E. Tillman, Prashant Reddy, and
Manuela Veloso. Generating synthetic data in finance: opportunities, challenges and pitfalls. In
Proceedings of the First ACM International Conference on AI in Finance, ICAIF, 2020.

Petr Berka. Workshop notes on Discovery Challenge PKDD’99. 1999. https://sorry.vse.
cz/˜berka/challenge/pkdd1999/berka.htm.

Vadim Borisov, Kathrin Sessler, Tobias Leemann, Martin Pawelczyk, and Gjergji Kasneci. Lan-
guage models are realistic tabular data generators. In ICLR, 2023.

Zhengping Che, Yu Cheng, Shuangfei Zhai, Zhaonan Sun, and Yan Liu. Boosting deep learning risk
prediction with generative adversarial networks for electronic health records. In IEEE Interna-
tional Conference on Data Mining (ICDM), 2017.

Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016.

Edward Choi, Siddharth Biswal, Bradley Malin, Jon Duke, Walter F. Stewart, and Jimeng Sun. Gen-
erating multi-label discrete patient records using generative adversarial networks. In Proceedings
of the 2nd Machine Learning for Healthcare Conference, 2017.

Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas W. Kempa-Liehr. Time series feature
extraction on basis of scalable hypothesis tests (tsfresh – a python package). Neurocomputing,
307:72–77, 2018.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image synthesis.
In NeurIPS, 2021.

Dmitry Efimov, Di Xu, Luyang Kong, Alexey Nefedov, and Archana Anandakrishnan. Using gen-
erative adversarial networks to synthesize artificial financial datasets. arXiv:2002.02271, 2020.

Joao Fonseca and Fernando Bacao. Tabular and latent space synthetic data generation: a literature
review. Journal of Big Data, 10(1), 2023.

Ivan Fursov, Matvey Morozov, Nina Kaploukhaya, Elizaveta Kovtun, Rodrigo Rivera-Castro, Gleb
Gusev, Dmitry Babaev, Ivan Kireev, Alexey Zaytsev, and Evgeny Burnaev. Adversarial attacks
on deep models for financial transaction records. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining (KDD), 2021.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NeurIPS, 2014.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. In NeurIPS, 2021.

Manbir S Gulati and Paul F Roysdon. TabMT: Generating tabular data with masked transformers.
In NeurIPS, 2023.

Mikel Hernandez, Gorka Epelde, Ane Alberdi, Rodrigo Cilla, and Debbie Rankin. Synthetic data
generation for tabular health records: A systematic review. Neurocomputing, 493:28–45, 2022.

11

https://sorry.vse.cz/~berka/challenge/pkdd1999/berka.htm
https://sorry.vse.cz/~berka/challenge/pkdd1999/berka.htm

Published as a conference paper at ICLR 2025

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS,
2020.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
and multinomial diffusion: Learning categorical distributions. In NeurIPS, 2021.

James Jordon, Jinsung Yoon, and Mihaela van der Schaar. PATE-GAN: Generating Synthetic Data
with Differential Privacy Guarantees. In ICLR, 2018.

Jayoung Kim, Chaejeong Lee, Yehjin Shin, Sewon Park, Minjung Kim, Noseong Park, and Jihoon
Cho. SOS: Score-based Oversampling for Tabular Data. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD), 2022.

Jayoung Kim, Chaejeong Lee, and Noseong Park. Stasy: Score-based tabular data synthesis. In
ICLR, 2023.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In ICLR, 2014.

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. TabDDPM: modelling
tabular data with diffusion models. In ICML, 2023.

M. Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable models. In
NeurIPS, 2010.

Chaejeong Lee, Jayoung Kim, and Noseong Park. CoDi: co-evolving contrastive diffusion models
for mixed-type tabular synthesis. In ICML, 2023.

Tennison Liu, Zhaozhi Qian, Jeroen Berrevoets, and Mihaela van der Schaar. GOGGLE: Generative
modelling for tabular data by learning relational structure. In ICLR, 2023.

Zeyu Lu, Zidong Wang, Di Huang, Chengyue Wu, Xihui Liu, Wanli Ouyang, and Lei Bai. FiT:
Flexible Vision Transformer for Diffusion Model. arXiv:2402.12376, 2024.

Simone Luetto, Fabrizio Garuti, Enver Sangineto, Lorenzo Forni, and Rita Cucchiara. One trans-
former for all time series: Representing and training with time-dependent heterogeneous tabular
data. arXiv:2302.06375, 2023.

Avanika Narayan, Ines Chami, Laurel Orr, and Christopher Ré. Can foundation models wrangle
your data? Proc. VLDB Endowment, 16(4):738–746, 2022.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In ICML, 2021.

Inkit Padhi, Yair Schiff, Igor Melnyk, Mattia Rigotti, Youssef Mroueh, Pierre L. Dognin, Jerret
Ross, Ravi Nair, and Erik Altman. Tabular transformers for modeling multivariate time series. In
IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 2021.

Noseong Park, Mahmoud Mohammadi, Kshitij Gorde, Sushil Jajodia, Hongkyu Park, and Young-
min Kim. Data synthesis based on generative adversarial networks. Proceedings of the VLDB
Endowment, 11(10):1071–1083, 2018.

Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. The synthetic data vault. In IEEE Interna-
tional Conference on Data Science and Advanced Analytics (DSAA), 2016.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In ICCV, 2023.

Liudmila Ostroumova Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush,
and Andrey Gulin. Catboost: unbiased boosting with categorical features. In NeurIPS, 2018.

Zhaozhi Qian, Bogdan-Constantin Cebere, and Mihaela van der Schaar. Synthcity: facilitating
innovative use cases of synthetic data in different data modalities. arXiv:2301.07573, 2023.

Matteo Rizzato, Julien Wallart, Christophe Geissler, Nicolas Morizet, and Noureddine Boumlaik.
Generative adversarial networks applied to synthetic financial scenarios generation. Physica A:
Statistical Mechanics and its Applications, 623, 2023. ISSN 0378-4371.

12

Published as a conference paper at ICLR 2025

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In Medical Image Computing and Computer-Assisted Intervention (MIC-
CAI), 2015.

Aivin V. Solatorio and Olivier Dupriez. REaLTabFormer: Generating realistic relational and tabular
data using transformers. arXiv:2302.02041, 2023.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In ICLR, 2021.

Boris van Breugel, Trent Kyono, Jeroen Berrevoets, and Mihaela van der Schaar. Decaf: Generating
fair synthetic data using causally-aware generative networks. In NeurIPS, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tabular
data using conditional gan. In NeurIPS, 2019.

Hengrui Zhang, Jiani Zhang, Zhengyuan Shen, Balasubramaniam Srinivasan, Xiao Qin, Christos
Faloutsos, Huzefa Rangwala, and George Karypis. Mixed-type tabular data synthesis with score-
based diffusion in latent space. In ICLR, 2024.

Shuhan Zheng and Nontawat Charoenphakdee. Diffusion models for missing value imputation in
tabular data. In NeurIPS Table Representation Learning (TRL) Workshop, 2022.

A NUMERICAL VALUE REPRESENTATIONS

In this section, we provide more details on the numerical value representation approaches used by
previous work and in our ablation analysis in Sec. 5.2, as well as on our variable-range representa-
tion. For clarity, we adopt the same terminology and numerical examples used in Sec. 4.1.

TabGPT (Padhi et al., 2021) applies a quantization which associates vj with a bin value B, which is
then treated as a categorical feature. The disadvantage of this representation is an information loss
due to the difference between the decoded bin B and the actual value vj . Indeed, B corresponds
to the center of the numerical interval assigned to the B-th bin during the quantization phase. This
coding-decoding scheme corresponds to the entry Quantize in Tab. 1.

TabSyn (Zhang et al., 2024) applies a linear transformation when coding vj and another linear
transformation (i.e., a linear regression) when decoding back the embedding vector of the last-layer
decoder to vj . However, also this solution is sub-optimal, because linear regression struggles in
respecting some implicit value distribution constraints. For instance, if the admissible values for
aj are only integers, a linear regression layer may predict a number with a decimal point. This
coding-decoding scheme corresponds to the entry Linear transf in Tab. 1.

Finally, Fixed digit seq in Tab. 1 corresponds to the sequence of digits L (see Sec. 4.1) used in
REaLTabFormer (Solatorio & Dupriez, 2023). We believe that one of the reasons why this rep-
resentation is sub-optimal with respect to our variable-range decimal representation Q (Sec. 4.1
and 5.2) is that its longer length leads, on average, to a more difficult decoding problem. For in-
stance, in the Age2 dataset, the “amount” attribute needs p = 7 digits to represent vmaxj

. Thus,
the length of L is p = 7. When the VAE decoder should decode a numerical value, the probability
of error is given by the (complement of the) joint distribution of all the digits of its representation
L. For instance, if the target value is vj = 35, then, the decoder should generate this sequence:
L = [’0’, ’0’, ’0’, ’0’, ’0’, ’3’, ’5’]. The probability of error when generating L is:

PL = 1− PL(L) = 1−
p∏
k=1

PL(Dk|D1, ..., Dk−1), (5)

13

Published as a conference paper at ICLR 2025

which, in case of vj = 35, is:

1− [PL(’0’)PL(’0’|’0’)PL(’0’|’0’, ’0’)PL(’0’|’0’, ’0’, ’0’)
PL(’0’|’0’, ’0’, ’0’, ’0’)PL(’3’|’0’, ’0’, ’0’, ’0’, ’0’)

PL(’5’|’3’, ’0’, ’0’, ’0’, ’0’, ’0’)].
(6)

On the other hand, in case of Q (Sec. 4.1), since we use an AR decoding, once the magnitude order
prefix O has been generated, we can convert O in its corresponding value m (Eq. (3)) and use m to
ignore possible zero-padding tokens on the right side of the sequence. Specifically, if m < n, the
probability of error is given by:

PQ = 1− PQ(Q) = 1− [PQ(O)

m∏
k=0

PQ(Dm−k|O,Dm, ..., Dm−k+1)], (7)

which, in case of vj = 35, Q = [’1’, ’3’, ’5’, ’0’, ’0’], and m = 1, is:

1− [PQ(’1’)PQ(’3’|’1’)PQ(’5’|’1’, ’3’)]. (8)

The comparison between Eq. (6) and Eq. (8) intuitively shows that Q is much easier to generate than
L if vj is small. More formally, if we assume that all the digit generations have, on average, the same
probability to be correct, i.e., that, on average: PQ(O) = PL(D1) and PL(Dk|D1, ..., Dk−1) =
PQ(Dm−k|O,Dm, ..., Dm−k+1), then, if m < p− 2, from Eq. (5) and (7) follows that PL > PQ.

The proposed representation can be easily extended to negative numbers and non-integer values. For
instance, if the admissible values for aj include negative numbers, then we prepend in Q a token S
corresponding to the sign of vj : Q = [S,O,Dm, Dm−1, ..., Dm−n+1], where S ∈ {’-’, ’+’}. Note
that, in case of negative numbers, also L should be extended to include S (Solatorio & Dupriez,
2023). On the other hand, in case of rational numbers, L needs to be extended to include a token
representing the decimal point (Solatorio & Dupriez, 2023), while our variable-range representation
Q remains unchanged. For instance, if vj = 3.5, then we have Q = [’0’, ’3’, ’5’, ’0’, ’0’].

Finally, we provide below more details on how n was chosen. We used the Age2 dataset (Fursov
et al., 2021), adopted for most of our ablation studies. For each numerical values vj in Age2, we
compute DR(vj) (Eq. (3)) and we remove from DR(vj) the possible subsequence of only zeros
on its right (e.g., from [87600] we remove [00]). Note that these all-zero subsequences do not lead
to any truncation error. Let Significant(vj) be the part of DR(vj) that remains after this cut (e.g.,
in the previous example, Significant(vj) = [876]). Finally, we computed the average (µS) and the
standard deviation (σS) of the lengths of all the sequences Significant(vj) in the training dataset,
getting µS = 2.26 and σS = 0.47, respectively. The value n = 4 was chosen as the first integer
greater than µS + 2σS . In this way, most of the training data in Age2 do not need any truncation
when represented using Q. The value n = 4 was used in all the other datasets. In App. H.1 we show
some qualitative results which compare to each other the distributions of some numerical values
generated using the representations presented in this section.

B TABDIT FOR SINGLE TABULAR ROW GENERATION

Generating single tabular rows is out of the scope of this paper, in which we focus on the (more
challenging) generation of time series. However, following the protocol proposed in (Solatorio
& Dupriez, 2023), in Sec. 5.3 we show conditional experiments where the “parent” row table uuu
is automatically generated (tasks “child” and “merged”). In order to generate a row uuu following
the empirical distribution in P (Sec. 3), we adapted our TabDiT to a single row generation task.
Specifically, we train a parent-table dedicated VAE encoder EPϕϕϕP

and decoder DP
φφφP

, as well as a
dedicated DiT-based denoising network FP

θθθP
. These networks all have the same structure as those

used for time series generation (Sec. 4), including the same number of layers and parameters. The
only difference is that the sequence of embedding vectors fed to FP

θθθP
corresponds to individual field

14

Published as a conference paper at ICLR 2025

Table 5: Parent generation results using the LD-SR ↑ metric (mean and standard deviation over three
runs). * These values are reported from Solatorio & Dupriez (2023).

Method Rossmann Airbnb Age2 PKDD’99 Financial
SDV 31.77* ±3.41 7.37* ±0.72 55.97 ±2.14 37.87 ±2.59

REaLTabFormer 81.04 * ±4.54 89.65* ±1.92 98.13 ±2.73 98.70 ±2.17

AR Baseline (ours) 52.47 ±9.31 13.33 ±3.12 63.03 ±3.36 62.97 ±8.13

SR-TabDiT (ours) 91.60 ±3.80 84.53 ±0.45 91.90 ±0.92 81.77 ±4.72

value embeddings of a single tabular row in the VAE latent space. Specifically, if yyy = EPϕϕϕP
(uuu)

is the latent representation of uuu = [w1, ..., wh] ∈ P , we split yyy in h separate vectors, yyy1, ..., yyyh,
corresponding to the final embeddings of the field values w1, ..., wh in the last-layer of EPϕϕϕP

. Then,
the sequence of embeddings used in the forward process for training FP

θθθP
is sss0 = [yyy1, ..., yyyh]. The

rest of the training and sampling procedures follows the method presented in Sec. 4. We call this
method Single Row TabDiT (SR-TabDiT).

For the AR Baseline, uuu is simply concatenated on the left-side of xxx, and we autoregressively gener-
ate the sequence [uuu,xxx] starting from a [SoS] token. Tab. 5 shows the results on the “parent” (alone)
generation task following the protocol used in (Solatorio & Dupriez, 2023). In most datasets, RE-
aLTabFormer beats SR-TabDiT, which is the second best. However, as mentioned above, the goal
of this paper is to propose a time series generation approach, and we have developed a single-row
generation model only to make a comparison with REaLTabFormer possible using the “child” and
the “merged” tasks proposed in that paper. Note also that we have not optimized our method for this
task and, most likely, simply reducing the number of layers and parameters of SR-TabDiT may help
in regularizing training. However, we leave the study of how to better adapt TabDiT to a single-row
generation task as future work. Moreover, note that in Tab. 4, TabDiT largely outperforms REaLTab-
Former also in the “child” and the “merged” tasks despite it is conditioned on generated parent rows
with a lower quality compared to REaLTabFormer. Indeed, success on these tasks necessarily de-
pends on the quality of the row uuu that was generated before the conditional process. Finally, we note
that in Tab. 4, in most datasets the AR Baseline beats REaLTabFormer in the “child gt-cond” task,
in which the parent row is not generated, but underperfoms REaLTabFormer in the “child” and the
“merged” tasks. Most likely, the reason is that also our AR Baseline is disadvantaged due to a lower
quality parent row generation.

C METRICS

Besides the discriminative metrics described in Sec. 5.1, in the single-row tabular data generation
literature there are many other evaluation metrics, which however we do not believe suitable for
the time series domain. For instance, low-order statistics include statistics computed either using
the values of an individual tabular attribute or statistics such as the pair-wise correlation between
the values of two numerical attributes (Zhang et al., 2024). However, in a time series composed
of dozens of rows, each row composed of different fields, statistics on a single field or pairs of
fields are not very informative. Similarly, we do not use high-order statistics (e.g., α-precision and
β-recall) (Zhang et al., 2024), because they are single-row criteria and they usually use a fragile
nearest-neighbor like approach in the data space to estimate the distribution coverage.

On the other hand, we believe that the most useful metric is the MLD-TS proposed in Sec. 5.1, for
which we provide below additional details. The CatBoost (Prokhorenkova et al., 2018) discriminator
is trained using a balanced dataset composed of both real and synthetic data (separately generated
by each compared generative method). Then, a separate testing set, also composed of 50% real and
50% generated data, is used to assess the discriminator accuracy. Real training and testing data do
not include data used to train the generator. Thus, basically the real data are split in: samples used to
train the generator, samples used (jointly with synthetic data) to train the discriminator, and samples
used (jointly with other synthetic data) to test the discriminator. We randomly change these three
splits in each of the run used to compute the results in Sec. 5.3.1

1The evaluation protocol code is available at: https://github.com/fabriziogaruti/TabDiT

15

 https://github.com/fabriziogaruti/TabDiT

Published as a conference paper at ICLR 2025

We use the same training-testing protocol for the Logistic Detection, which, following (Solatorio &
Dupriez, 2023), is defined as: LD-SR = 100× (1− µRA), where:

µRA =
1

F

F∑
i=1

max(0.5, ROC −AUC)× 2− 1. (9)

In Eq. (9), ROC and AUC indicate the ROC-AUC scores, computed using a Random Forest trained
and tested using single tabular rows. F = 3 is the number of cross-validation folds, in which
training and testing of the discriminator is repeated F times, keeping fixed the generator weights.
We use this metric with its corresponding publicly available code (Solatorio & Dupriez, 2023) for
a fair comparison with REaLTabFormer (Solatorio & Dupriez, 2023) and SDV (Patki et al., 2016).
Specifically, in the conditional generation scenario, we follow (Solatorio & Dupriez, 2023) and we
evaluate the LD-SR for the “merged” task by concatenating uuu with all the rows rrr extracted from a
generated time series xxx. The Random Forest is then trained and tested on this “augmented” rows. In
case of MLD-TS, we concatenate uuu with the fixed-dimension feature vector extracted from xxx using
the feature extraction library (Christ et al., 2018) (Sec. 5.1), and we use the “augmented” feature
vector to train and test CatBoost.

Finally, we introduce an additional metric based on the Machine Learning Efficiency (MLE) (Zhang
et al., 2024; Kotelnikov et al., 2023), which is based on the accuracy of a classifier trained on gener-
ated data and evaluated on a real data testing set. MLE can also be used to simulate an application
scenario in which, for instance, the generated data are used to replace real data (e.g., because pro-
tected by privacy or legal constraints, see Sec. 1) in training and testing public machine learning
methods. In this case, the classifier accuracy, when trained with synthetic data (only) is usually
upper bounded by the accuracy of the same classifier trained on the real data. Similarly to MLD-TS,
we adapt this metric (which we refer to as MLE-TS) to our time series domain using CatBoost as
the classifier, fed using a fixed-size feature vector extracted from a given time series (Christ et al.,
2018) (Sec. 5.1). For simplicity, we always use binary classification tasks, whose lower bound is
50% (chance level), and in App. D.1 we show how these tasks can be formulated selecting specific
attributes of the parent table to be used as target labels.

D ADDITIONAL EXPERIMENTS

D.1 MACHINE LEARNING EFFICIENCY

In this section, we show additional experiments using the MLE-TS metric introduced in App. C.
Since this metric is based on training a classifier to predict a target label, we can use MLE-TS only
to evaluate conditional generations, where these labels can be extracted from the parent table of the
corresponding dataset (individual time series or rows are not labeled). Moreover, the “merged” task
cannot be used in this case because, as defined in (Solatorio & Dupriez, 2023), at inference time,
it involves the concatenation of the generated data with the conditioning parent table (App. C), the
latter used to extract the ground truth target labels. Specifically:

• In Rossmann, we use the binary attribute “Promo2”, indicating the presence of a promo in
that store.

• In Airbnb, we use the attribute “n sessions” which indicates the number of sessions opened
by a user. We binarize this attribute predicting whether the user has opened more than 20
sessions (n sessions >= 20).

• In Age2, we use the attribute “age”, indicating the age of a customer. In particular, we
predict whether the customer is over 30 years old (age > 30).

• In PKDD’99 Financial, we use the attribute “region” which indicates the region a customer
belongs to. We predict whether the customer is located in Moravia or in Bohemia (including
Prague).

In Tab. 6, “Original” indicates that the classifier has been trained on real data and tested on real data,
and it is an ideal value of the expected accuracy when the same classifier is trained on synthetic data.
In the same table, “child” and “child gt-cond” refer to the tasks used in Tab. 4. Specifically, in both

16

Published as a conference paper at ICLR 2025

cases the classifier is trained with the generated data and tested on real data. However, in case of
“child gt-cond”, we use the real parent table row values as the classification target labels (see above).
Conversely, in case of “child”, we use the generated parent table rows. This is because, in a realistic
scenario, the “child” task corresponds to a situation in which the parent table data are missing and
they are generated as well (Sec. 5.3), thus we coherently use the synthetic parent table values to
label the corresponding generated time series. The real time series are always labeled with their
corresponding real parent table values.

The results in Tab. 6 confirm those reported in Tab. 4, showing that TabDiT significantly outperforms
all the other baselines in all the datasets. Specifically, in Age2, TabDiT even surpasses the ideal
“Original” accuracy (61.57 versus 60.07), being very close to the ideal case in all the other datasets.
We believe that these results show the effectiveness of the synthetic time series generated by our
method, which can potentially be used to replace real data in machine learning tasks when, e.g., the
real data cannot be made public.

Table 6: Conditional generation results using the MLE-TS ↑ metric (mean and standard deviation
over three runs).

Method Task Rossmann Airbnb Age2 PKDD’99 Financial
Original - 66.70 ±8.90 100.00 ±0.00 60.07 ±1.74 61.67 ±2.95

SDV child 54.10 ±2.60 93.97 ±1.37 54.43 ±1.95 61.30 ±4.81

REaLTabFormer child gt-cond 53.33±2.25 60.87±3.10 54.53±1.42 61.10±2.44

child 53.37±5.88 61.97±1.57 54.97±1.80 61.47±8.29

AR Baseline child gt-cond 59.27 ±1.27 100.00 ±0.00 58.23±1.96 62.03 ±5.41

(ours) child 50.37±9.26 59.90±2.46 55.77±4.11 60.73±3.54

TabDiT (ours) child gt-cond 64.43±10.19 100.00±0.00 61.57±3.05 61.30±1.76

child 65.93±9.22 99.63±0.40 61.23±2.55 62.60±3.82

D.2 LARGER SCALE EXPERIMENTS

In this section, we use a much larger dataset to show the potentialities of our method to be scaled.
Since, as far as we know, heterogeneous time series datasets considerably larger than those used
in Sec. 5 are not publicly available, we used a private dataset which we call Large Scale Bank
Data, and which was provided by an international bank2. Large Scale Bank Data consists of several
hundred million real bank account transactions of private customers. From this dataset, we randomly
selected 100K client bank accounts, corresponding to approximately 87.3M transactions (i.e., rows),
which we use to train TabDiT and the AR Baseline. Moreover, we selected another set of 10K bank
accounts (not included in the training set) for evaluation. Furthermore, with Large Scale Bank Data
we use longer time series, setting τmax = 100, which corresponds to an average of one month of
bank transactions of a given customer (see App. E for more details).

In Tab. 7, we compare TabDiT with AR Baseline using the “child gt-cond” task. Note that we were
not able to use REaLTabFormer on this large-scale datasets for computational reasons. Indeed the
long length of the time series (τmax = 100), combined with the larger number of time series fields
(9, as reported in Tab. 9), led to memory usage and time complexity problems during training with
REaLTabFormer. Conversely, both the hierarchical architecture of AR Baseline (Sec. 5.2) and our
LDM approach (Sec. 1) allow a much faster and lower memory consumption training, which made
possible to use a huge dataset like Large Scale Bank Data.

In Tab. 7 we report the MLD-TS, the LD-SR, and the MLE-TS metric values. These results show that
TabDiT significantly outperforms AR Baseline. Moreover, even when using a large-scale dataset,
TabDiT approaches the lower bound of 50% MLD-TS accuracy, achieves a score higher than 80%
LD-SR, and is able to approach the upper bound of MLE-TS obtained using the real data.

2For both privacy and commercial reasons, this dataset cannot be released.

17

Published as a conference paper at ICLR 2025

Table 7: Large scale conditional experiments using the “child gt-cond” task and Large Scale Bank
Data.

Method MLD-TS ↓ LD-SR ↑ MLE-TS ↑
Original - - 73.22

AR Baseline (ours) 58.03 83.33 70.41
TabDiT (ours) 56.77 83.72 71.38

Table 8: PKDD’99 Financial dataset. Analysis of the influence of the CFG hyperparameter values
using the MLD-TS ↓ metric (mean and standard deviation over three runs).

pdpdpd s = 1s = 1s = 1 s = 2s = 2s = 2 s = 3s = 3s = 3 s = 4s = 4s = 4 s = 5s = 5s = 5

0.001 83.33 ±3.61 72.67 ±3.52 78.33 ±7.86 71.13 ±9.38 69.33 ±7.92

0.005 80.47 ±8.02 73.00 ±8.84 72.47 ±14.95 59.50 ±10.53 75.00 ±12.30

0.010 77.87 ±10.40 70.80 ±10.83 69.50 ±13.95 76.83 ±6.40 73.97 ±9.51

0.100 80.67 ±4.74 71.10 ±19.11 69.13 ±12.90 66.77 ±12.79 69.63 ±16.61

D.3 ADDITIONAL ABLATIONS

In this section we present additional ablation studies. In Tab. 8, we use the “child gt-cond” task to
investigate the influence of the CFG and its hyperparameter values s and pd (Sec. 4). For these ex-
periments we use PKDD’99 Financial dataset instead of Age2 (used in all other ablations) because,
on Age2, TabDiT achieves a nearly ideal MLD-TS score (∼ 50%) even without CFG, so there is
no room for improvement. In Tab. 8, the scale value s = 1 corresponds to non CFG (see Eq. (2)),
and the results reported in the table clearly shows that CFG is beneficial for conditional generation
of tabular data time series, a finding which is aligned with the empirical importance of CFG in
the image generation literature (Peebles & Xie, 2023). Using these results, we selected the values
pd = 0.005 and s = 4 and we used these hyperparameter values in all the datasets and conditional
tasks. Although a dataset-dependent hyperparameter tuning may likely lead to even better results,
we opted for a simpler and computationally less expensive solution based on dataset-agnostic CFG
hyperparameters.

For training our VAE we adopt the scheduling proposed in (Zhang et al., 2024), where the recon-
struction loss and the KL-divergence loss are balanced using a coefficient β which weights the
importance of the latter. The value of β starts from an initial βmax and, during training, it is pro-
gressively and adaptively reduced. We refer to (Zhang et al., 2024) for more details. In Fig. 2 we
use Age2 to show the impact of βmax, which is evaluated jointly with the number of diffusion steps
T of the denoising network (Sec. 3). We evaluate the values of βmax and T jointly because they
are strongly related to each other. This ablation shows that using a relatively small number of dif-
fusion steps (e.g., greater than 100) is sufficient to get good results, and that there is no significant
improvement with very long trajectories. Conversely, a higher value of βmax, corresponding to a
higher regularization of the latent space, improves the results. In all the datasets and tasks, we use
200 diffusion steps and βmax = 5.

E DATASETS

In Tab. 9 we report the main characteristics of the datasets used in our experiments. We use six real-
world public datasets: Age23, Age14, Leaving5, the PKDD’99 Financial dataset6, the Rossmann
store sales dataset7 and the Airbnb new user bookings dataset8. The first three datasets have been

3Age2 dataset (Fursov et al., 2021)
4Age1 dataset (Fursov et al., 2021)
5Leaving dataset (Fursov et al., 2021)
6PKDD’99 Financial dataset (Berka, 1999)
7Rossmann store sales dataset (Solatorio & Dupriez, 2023)
8Airbnb new user bookings dataset (Solatorio & Dupriez, 2023)

18

https://github.com/fursovia/adversarial_sber
https://github.com/fursovia/adversarial_sber
https://github.com/fursovia/adversarial_sber
https://sorry.vse.cz/~berka/challenge/pkdd1999/berka.htm
https://www.kaggle.com/competitions/rossmann-store-sales/data
https://www.kaggle.com/competitions/airbnb-recruiting-new-user-bookings/data

Published as a conference paper at ICLR 2025

50 100 200 500

Diffusion steps

50

51

52

53

54

M
LD

-T
S

max

1
2
5
10

Figure 2: Age2 dataset. Analysis of the influence of the number of diffusion time steps T jointly
with the βmax value using the MLD-TS ↓ metric.

Table 9: Dataset statistics.

Age2 Age1 Leaving PKDD’99 Rossmann Airbnb Large Scale
Financial Bank Data

Total dataset rows 3,652,757 44,117,905 490,513 1,056,320 68,015 192,596 96,040,010
Total time series 43,289 50,000 5,000 4,500 1,115 10,000 110,000
Training samples 38,961 45,000 4,000 3,600 892 8,000 100,000
Testing samples 4,328 5,000 1,000 900 223 2,000 10,000
τmax 50 50 50 50 61 50 100
Time series fields 3 3 6 6 8 5 9
Time series numerical fields 1 1 1 2 2 1 1
Time series categorical fields 1 2 4 3 5 4 7
Time series date/time fields 1 0 1 1 1 0 1
Parent fields 4 0 0 5 9 16 8
Parent numerical fields 2 0 0 0 1 2 0
Parent categorical fields 2 0 0 4 8 11 8
Parent date/time fields 0 0 0 1 0 3 0

previously used in Fursov et al. (2021), while the last two datasets have been used in Solatorio &
Dupriez (2023). Age2, PKDD’99 Financial, Rossmann and Airbnb include both parent and time
series data, and they can be used for the conditional generation tasks. Conversely, Age1 and Leav-
ing do not include the parent table, thus we used them only for the unconditional generation task.
Original source, copyright, and license information are available in the links in the footnotes.

In Rossmann and Airbnb, we use the same training and testing splits created in (Solatorio & Dupriez,
2023). Specifically, in Rossmann, we use 80% of the store data and their associated sales records for
training the generator. We use the remaining stores as the testing data (see App. C for more details
on how testing data are split for training the discriminators). Again following (Solatorio & Dupriez,
2023), we limit the data used in the experiments from the years 2015-2016 onwards, spanning 2
months of sales data per store. Moreover, in the Airbnb dataset, we consider a random sample of
10,000 users for the experiment. We take 8,000 as part of our training data, and we assess the metrics
using the 2,000 users in the testing data. We also limit the users considered to those having at most
50 sessions in the data. Regarding Age2, Age1, Leaving and PKDD’99 Financial, we use the entire
datasets, without any data filtering. The only exception is for the PKDD’99 Financial parent table
where we used the following fields: district id, frequency, city, region, and the account creation date.

Tab. 9 also includes the statistics of Large Scale Bank Data (App. D.2). In our experiments with this
dataset, we used both its parent table and its time series, without any data filtering.

19

Published as a conference paper at ICLR 2025

Table 10: Dataset-specific hyperparameter values.

Age2 Age1 Leaving PKDD’99 Rossmann Airbnb Large Scale
Financial Bank Data

TabDiT VAE Training epochs 50 5 100 50 2,000 300 3
Training iterations 175,950 215,100 43,200 49,150 120,000 40,800 378,800

TabDiT Training epochs 150 150 2,000 2,000 4,000 800 180
Denoising network Training iterations 45,750 52,800 64,000 58,000 28,000 50,400 118,400

SR-TabDiT VAE Training epochs 1,000 - - 5,000 6,000 20,000 -
Training iterations 39,000 - - 20,000 6,000 180,000 -

SR-TabDiT Denoising Training epochs 1,000 - - 3,000 6,000 3,000 -
network Training iterations 170,000 - - 54,000 54,000 120,000 -

Table 11: Dataset-independent hyperparameter values for the VAE.

Hyperparameter Value
Optimizer AdamW
Learning rate 5e-05
Training dropout 0.1
Batch size 1,024
Model size (parameters) 2M
VAE Encoder Transformer layers 3
VAE Encoder Transformer heads 8
VAE Encoder hidden size 72
VAE Decoder Transformer layers 3
VAE Decoder Transformer heads 8
VAE Encoder hidden size 72
VAE latent space size (d) 792
βmax 5
βmin 0.05
λ 0.7
patience 5

F IMPLEMENTATION DETAILS

In this section, we provide additional implementation details jointly with the values of the hyperpa-
rameters used our experiments. Tab. 10 shows the number of training epochs and iterations for both
the VAE and the denoising network (TabDiT and SR-TabDiT). Since Large Scale Bank Data was
used only for a “child gt-cond” task, we did not train a SR-TabDiT with this dataset.

The model hyperparameter values in Tab. 11 and 12 are shared by all the datasets. Moreover, both
TabDiT and SR-TabDiT share the same hyperparameter values, both for the VAE and the denoising
network.

Tab. 11 shows the VAE hyperparameters. The encoder Eϕϕϕ and decoder Dφφφ of the VAE architecture
have the same number of layers and the same number of heads, and the same hidden size. The latent
space size of the VAE is the same as the DiT-based denoising network Fϕϕϕ hidden size d, in order to
have the denoising network work directly in the latent space of the VAE model.

The DiT-based denoising network Fϕϕϕ hyperparameters are detailed in Tab. 12. Most of the hyper-
parameter values are borrowed by the Dit-B model presented in (Peebles & Xie, 2023). We use a
standard frequency-based positional embedding, the same as DiT, the only difference being that we
have a single dimension input (the time series length) rather than a 2D image. The main hyperpa-
rameter of the denoising network that we change is the number of diffusion steps (T), which needs
to be adapted to our tabular data time series domain (see App. D.3).

20

Published as a conference paper at ICLR 2025

Table 12: Dataset-independent hyperparameter values of the denoising network.

Hyperparameter Value
Optimizer AdamW
Positional encoding frequency-based
Learning rate 1e-04
Dropout 0.1
Batch size 128
Model size (parameters) 140M
DiT depth 12
DiT num heads 12
Hidden size (d) 792
Diffusion steps 200
pd 0.005
s 4

Table 13: Dataset-specific total training time (measured in hours).

Age2 Age1 Leaving PKDD’99 Rossmann Airbnb Large Scale
Financial Bank Data

VAE 3h 3h 1h 3h 2h 2h 8h
Denoising network 5h 5h 5h 5h 3h 3h 26h

G COMPUTING RESOURCES

All the experiments presented in this paper have been performed on an internal compute node com-
posed of:

• 2 CPUs AMD EPYC 7282 16-Core, for a total of 32 physical and 64 logical cores,

• 256 Gb RAM,

• 4 GPUs Nvidia RTX A6000, each with 48 Gb of memory each, for a total of 192 Gb.

Table 13 shows the training time for the VAE and the denoising network on each dataset.

H QUALITATIVE RESULTS

H.1 NUMERICAL FIELD REPRESENTATIONS

In this section, we show some qualitative results using the numerical representation methods eval-
uated in Tab. 1 and presented in detail in App. A. Specifically, we use the Airbnb dataset and we
select the “secs elapsed” attribute. This is the field with the highest variability, with values ranging
from 0 to 1.8M, a mean of 3.3K and a standard deviation of approximately 13K.

In Fig. 3 to 6 we compare to each other the distributions of all evaluated numerical representations.
In every plot, the x axis is based on a logarithmic scale and a fixed number of 50 bins for both
the real and the generated numerical values. For each bin, in the y axis we show the percentage of
tabular rows that contain numerical values that belong to that bin.

In Quantize (Fig. 3), the “secs elapsed” field values are quantized using equal-size bins of 360
seconds (1 hour) and we generate the bin center. As depicted in the figure, this method struggles
in representing small numerical values, which are all grouped in a few bins. On the other hand, the
Linear transf representation (Fig. 4) tends to under-sample the tails of the distribution. In the last
two figures, we qualitatively evaluate the Fixed digit seq (Fig. 5) and our variable-range decimal
representation (Fig. 6). The corresponding distributions show that our variable-range representation
is more accurate in reproducing numerical values. As mentioned in App. A, we believe that one of

21

Published as a conference paper at ICLR 2025

the reasons why the Fixed digit seq representation is sub-optimal is that its longer length leads, on
average, to a more difficult decoding problem.

100 101 102 103 104 105 106

secs_elapsed (log)

0

5

10

15

20

25

30

Nr
 o

f t
ab

ul
ar

 ro
w

(p
er

c.
)

Tabular row
real
generated

Figure 3: Real and generated distributions of
the values of the “secs elapsed” attribute using
Quantize as the numerical field value represen-
tation.

100 101 102 103 104 105 106

secs_elapsed (log)

0

2

4

6

8

10

Nr
 o

f t
ab

ul
ar

 ro
w

(p
er

c.
)

Tabular row
real
generated

Figure 4: Real and generated distributions of
“secs elapsed” using Linear transf.

100 101 102 103 104 105 106

secs_elapsed (log)

0

1

2

3

4

5

6

7

Nr
 o

f t
ab

ul
ar

 ro
w

(p
er

c.
)

Tabular row
real
generated

Figure 5: Real and generated distributions of
“secs elapsed” using Fixed digit seq.

100 101 102 103 104 105 106 107

secs_elapsed (log)

0

1

2

3

4

5

6

7

Nr
 o

f t
ab

ul
ar

 ro
w

(p
er

c.
)

Tabular row
real
generated

Figure 6: Real and generated distributions of
“secs elapsed” using variable-range decimal
representation.

H.2 TIME SERIES LENGTH

In Fig. 7 and 8 we show the distribution of the real and the generated time series lengths on Airbnb.
In the first plot, we use the W/o length pred (Sec. 5.2) method: at inference time the sequence length
is randomly sampled using a mono-modal Gaussian distribution fitted on the length of the training
time series. On the other hand, in Fig. 8 we use our padding rows (Sec. 4.2) to predict the time
series length. Fig. 7 and 8 show that, in the latter case, the time series length distribution is more
accurately reproduced.

22

Published as a conference paper at ICLR 2025

Fig. 9 and 10 show the distributions of the difference between the real and the generated time series
length using a “child gt-cond” task. Specifically, given a real parent table uuu, representing a client of
the Airbnb dataset, we generate a time series x̂xx using both our full method (Fig. 10) and W/o length
pred (Fig. 9). In both cases we compute the difference between the length of the generated series
x̂xx (τx̂xx) and the length of the real time series xxx (τxxx) associated with uuu. The shorter the difference,
the better the method in predicting the real length. Fig. 9 and 10 show these differences for the
two methods. Specifically, in Fig. 9, since τx̂xx is sampled from a mono-modal Gaussian fitted on the
training set (Sec. 4.2), it is independent of uuu. As a result, the denoising network cannot predict the
correct time series length. On the other hand, Fig. 10 shows that, in case of our full-method, the
distribution of the difference between τx̂xx and τxxx is very close to zero, showing the effectiveness of
predicting the series length jointly with its content (Sec. 1).

0 10 20 30 40 50

Time serie length

0

1

2

3

4

5

6

7

8

Nr
 o

f t
im

e
se

rie
s (

pe
rc

.)

Time serie
real
generated

Figure 7: Distribution of the lengths of the real
and the generated time series, using W/o length
pred method.

0 10 20 30 40 50

Time serie length

0

1

2

3

4

5

6

7

8

Nr
 o

f t
im

e
se

rie
s (

pe
rc

.)

Time serie
real
generated

Figure 8: Distribution of the lengths of the
real and the generated time series, using our
padding row generation (sec. 4.2).

40 20 0 20 40

Time serie length difference (x x)

0

1

2

3

4

5

Nr
 o

f t
im

e
se

rie
s (

pe
rc

.)

Figure 9: Distribution of the differences be-
tween the real and the generated time series
lengths when using W/o length pred.

40 20 0 20 40

Time serie length difference (x x)

0

20

40

60

80

Nr
 o

f t
im

e
se

rie
s (

pe
rc

.)

Figure 10: Distribution of the differences be-
tween the real and the generated time series
lengths when using padding row prediction.

23

Published as a conference paper at ICLR 2025

H.3 TIME SERIES EXAMPLES

In this section, we show some examples of real and generated time series to qualitatively evaluate
the generation results. We use the “child gt-cond” task on the PKDD’99 Financial dataset and on
the Airbnb dataset. We also use the unconditional generation task on the Leaving dataset.

In the conditional task (Fig. 11-Fig. 16), we first provide an example of a real parent table row,
used as the conditional ground truth information, then we show the first ten rows of the correspond-
ing real time series, and finally the generated one. In these examples, we compare TabDiT with
REaLTabFormer. In the unconditional task, we provide the first ten rows of a real time series ex-
ample (Fig. 17), a time series example generated using TabDiT (Fig. 18), and a time series example
generated using AR baseline (Fig. 19).

The results in Fig. 13 and Fig. 19 show that both REaLTabFormer and the AR baseline make some
errors in generating correctly time-ordered dates in the time series. This may be an important error
in real-world applications.

Figure 11: PKDD’99 Financial dataset: an example of a real time series and its corresponding real
parent table row.

Figure 12: PKDD’99 Financial dataset: an example of a generated time series conditioned on a
ground truth parent table row using TabDiT.

24

Published as a conference paper at ICLR 2025

Figure 13: PKDD’99 Financial dataset: an example of a generated time series conditioned on a
ground truth parent table row using REaLTabFormer. The sequence of the dates is not chronologi-
cally ordered.

Figure 14: Airbnb dataset: an example of a real time series and a real parent table row.

Figure 15: Airbnb dataset: an example of a generated time series conditioned on a ground truth
parent table row using TabDiT.

25

Published as a conference paper at ICLR 2025

Figure 16: Airbnb dataset: an example of a generated time series conditioned on a ground truth
parent table row using REaLTabFormer.

Figure 17: Leaving (unconditional task): an example of a real time series.

Figure 18: Leaving (unconditional task): an example of a generated time series using TabDiT.

Figure 19: Leaving (unconditional task): an example of a generated time series using AR baseline.
The sequence of the dates is not chronologically ordered.

26

	Introduction
	Related Work
	Preliminaries
	Method
	Encoding and decoding in the VAE latent space
	Variable-length time series

	Experiments
	Evaluation Protocol
	Ablation
	Main experiments

	Conclusions
	Numerical value representations
	TabDiT for single tabular row generation
	Metrics
	Additional experiments
	Machine Learning Efficiency
	Larger scale experiments
	Additional ablations

	Datasets
	Implementation details
	Computing resources
	Qualitative results
	Numerical field representations
	Time series length
	Time series examples

