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Abstract

As a fundamental unsupervised learning task, hierarchical clustering has been
extensively studied in the past decade. In particular, standard metric formulations
as hierarchical k-center, k-means, and k-median received a lot of attention and
the problems have been studied extensively in different models of computation.
Despite all this interest, not many efficient parallel algorithms are known for these
problems. In this paper we introduce a new parallel algorithm for the Euclidean
hierarchical k-median problem that, when using machines with memory s (for
s ∈ Ω(log2(n + ∆ + d))), outputs a hierarchical clustering such that for every
fixed value of k the cost of the solution is at most anO(min{d, log n} log ∆) factor
larger in expectation than that of an optimal solution. Furthermore, we also get
that in for all k simultanuously the cost of the solution is at most an expected
O(min{d, log n} log ∆ log(∆dn)) factor bigger that the corresponding optimal
solution. The algorithm requires in O (logs(nd log(n+ ∆))) rounds. Here d is the
dimension of the data set and ∆ is the ratio between the maximum and minimum
distance of two points in the input dataset. To the best of our knowledge, this is
the first parallel algorithm for the hierarchical k-median problem with theoretical
guarantees. We further complement our theoretical results with an empirical study
of our algorithm that shows its effectiveness in practice.

1 Introduction

Clustering is a central tool in any large scale machine learning library. The goal of clustering is to
group objects into subsets so that similar objects are in the same groups while dissimilar objects are
in different groups. There are many different definitions of clustering depending on the description of
the objects, the similarity measure between objects, as well as the application. While it is impossible
to find the perfect formulation for a clustering problem ([38], see also [19]), the metric version of the
problem has received a lot of attention over the last decades and is a central topic in unsupervised
learning research.

Here we focus on one fundamental metric clustering problem: the hierarchical Euclidean k-median
problem. In this formulation, the input objects are described by vectors and the distance (dissimilarity)
between objects is measured by their Euclidean distance. More formally, given a set P ⊆ Rd, the
objective of the hierarchical k-median problem in its classic formulation [42] is to return an ordering
∗Equal contribution
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c1, . . . , cn of points and a set of n nested partitions P1, . . . ,Pn of P (i.e., for any 1 ≤ i ≤ n,
the (i− 1)-partition is obtained by merging two clusters in the i-partition) such that the following
objective is minimized: the maximum over all 1 ≤ k ≤ n of the ratio of

∑k
i=1

∑
p∈Ci ‖p − ci‖2

to the optimum unconstrained k-median cost, where Ck = {c1, . . . , ck} is the set of centers and
Pk = {C1, . . . , Ck} a k-partition. In this paper, we will provide a slightly different guarantee: instead
of minimizing the maximum ratio, we show that for every fixed k this ratio isO(min{d, log n} log ∆)
in expectation. Our results extend to a slightly weaker bound that holds simultanuously for all k.
We also remark that the above problem formulation implies a similar bound for the variant of the
problem where we do not require an ordering of the centers but instead choose the optimal center for
each cluster of the partition.

Hierarchical clustering, thanks to its ability in explaining the nested structures in real world data, has
been extensively studied in the computer science literature [35, 34, 29, 53, 14, 20, 51, 55, 7]. The
main focus of previous work has been on sequential solutions for the problem and so they are difficult
to apply on large data sets. For this reason, several papers recently proposed scalable hierarchical
clustering algorithms [35, 34, 29, 53, 7, 49, 43]. Nevertheless most prior work has focused only on
scaling the single-linkage algorithm (in fact, efficient MapReduce and Spark algorithms are known
for this problem [35, 34, 7, 58]) for which no objective function is clearly specified.

Another closely related area of research focuses on the k-median and k-means “flat” clustering
problems in the distributed setting where several important results are known [5, 9, 24, 44, 3, 15, 30].
The main idea behind these algorithms is to compute in a distributed way some form of small summary
of the data (such as coresets). However, all algorithms based on this framework use at least k + nε

memory per machine (often significantly more) to solve the problem in O( 1
ε ) rounds. Unfortunately,

this is too much in our setting where we want to solve the problem also for k ∈ Θ(n) (in fact to
solve the hierarchical clustering problem we need to compute a solution even for k = n − 1). To
overcome this problem, in a recent related work [40] Lattanzi et al. provide a parallel algorithm
for the hierarchical Euclidean k-median problem by dividing the data in two clusters iteratively.
Unfortunately, this approach does not provide any theoretical guarantees for the problem (in the
experimental section we actually show that it may return low quality solutions) and its round
complexity is O(log n).
Our Results. In this work we design the first distributed algorithm for the hierarchical Euclidean
k-median problem with provable guarantees. In particular, our algorithm returns an approximate
solution to the problem using memory s ∈ Ω(log2(∆ + n+ d)), O (logs(nd log(n+ ∆))) parallel
rounds, and O(nd/s) machines, where ∆ is the ratio between the maximum and minimum distance
of two points. Note that this implies that our algorithm runs in a constant number of rounds if s ∈ nδ
for any constant δ > 0. Interestingly, our algorithm is easily implementable in standard parallel
frameworks such as MapReduce [22], Hadoop [56], Spark [59] and Dryad [33] etc. and we analyze it
in the standard Massive Parallel Computation (a. k. a. MPC) model [36, 28, 10]. Furthermore, we
complement our theoretical analysis with an experimental study in distributed setting where we show
that our algorithm is significantly faster than parallel hierarchical [40] and flat solutions [5, 15, 24]
for the k-median problem.
Properties, extensions and limitations. Work efficiency. An interesting aspect of our algorithm is
that the total running time of our algorithm across all machines is almost linear. In particular, the
total running time of our algorithm is Õ(nd) so it has almost optimal work efficiency3. To the best of
our knowledge, our algorithm is also the first approximation algorithm having almost linear running
time for the high-dimensional Euclidean k-median problem (at the expense of having an expected
O(min{d, log k} log ∆)-approximation factor).4.

Round Lower Bound. We note here that Theorem 4 in [12] can be easily extended to the Euclidean
k-median problem5 and so to the hierarchical Euclidean k-median problem. Thus, no distributed

3In this section, for the sake of simplicity, we use Õ notation to hide both logn and log ∆ factors. The exact
term are provided in the following sections.

4We remark that for general metric spaces there is a lower bound of Ω(nk) total work to achieve a constant
approximation guarantee for our problem [46]. Furthermore, we note that finding a constant-factor approximation
algorithm for the Euclidean k-median problem in almost linear time would imply an asymptotically better
approximation algorithm for the closest pair problem which is a long standing open problem in algorithm design.
For low-dimensional Euclidean space, near-linear time algorithms are known [17, 18, 39]

5The exact same construction and proof work also for the Euclidean k-median problem.
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algorithm with memory s can output any approximate solution in less than logs n rounds. So our
memory-round complexity trade-off is asymptotically optimal.

Simplicity and Efficiency. Our algorithm is extremely simple to implement. In fact, our results
show that it is possible to approximate the hierarchical Euclidean k-median problem just by using a
sorting algorithm and few aggregation operations. For the same reason, our algorithm is also very
parallelizable and efficient.

Practicality. Besides our theoretical guarantees our algorithm is also very efficient in practice. We
run distributed experiments and we show that the algorithm is more accurate and efficient than
previous parallel algorithms. Furthermore, for k = 10 our algorithm already outperforms the classic
distributed algorithms for flat k-median6 [5, 15, 24] by a factor of 3. For larger k the gap becomes
even larger (for example for k = 1000 our algorithm is an order of magnitude faster)7.

The large k setting. In a recent paper [12] the authors showed for the first time that it is possible
to compute an approximate solution for the Euclidean k-means problem using parallel memory
significantly smaller than k. In particular they provide a bi-criteria algorithm that approximates the
solution of the k-means problem within a factor O((log n log log n)2) using O(k log k log n) centers,
memory-per-machine s ∈ Ω(d log n), and O(logs n) parallel rounds. Our algorithm proves that this
is also possible for the k-median problem. Furthermore our algorithm returns a solution that is not
bi-criteria solving an open question in [12].

Limitations. Our result has two main limitations. First, it relies on the existence of a good tree
embedding that can be computed in a few MPC rounds. As we show in this paper, it is indeed
possible to compute a tree embedding of a d-dimensional Euclidean point set with expected distortion
O(d log ∆) in a constant number of rounds. While there exists a sequential O(log n)-distortion tree
embedding construction of point sets of size n of arbitrary metric spaces [26], it remains an interesting
open problem as to how this could be implemented in a constant number of rounds. Second, the
expected approximation factor of our algorithm is O(min{d, log n} log ∆) and the expectation is for
every fixed k. Nevertheless, in our experimental analysis, we show that in practice the quality of our
solution is comparable to state-of-the-art algorithms while being much faster.

For additional related work we refer the reader to Appendix A.

2 Preliminaries

For two points p, q we use ‖p− q‖ to denote their Euclidean distance. For a point p and set C ⊆ Rd
we define DIST(p, C) = minc∈C ‖p− c‖, i.e., the distance from p to its closest point in C. For two
partitions P1, P2 we say that P1 is nested in P2 if P2 can be obtained from P1 by merging two or more
parts of P1. Given a point set P ⊆ Rd, a set of centers C = {c1, . . . , ck}, and a partition P of P into
k parts {P1, . . . ,Pk}, its k-median cost is COST(P,C,P) =

∑k
i=1

∑
p∈Pi

DIST(p, ci). The points
in C are called the cluster centers. We let OPT(P, k) = minC⊆Rd,|C|=k minP,|P|=k COST(P,C,P)
denote the cost of an optimal k-median solution.

In this paper, we focus on a slight variation of the classic Hierarchical Euclidean k-median problem8,
which for a given point set P ⊆ Rd asks to find an (ordered) sequence of centers C = {c1, . . . , cn}
together with a collection of n nested partitions Π = {P1, . . . ,Pn} of P , such that Pi partition
the entire space and contains i parts. We say that an algorithm for the Hierarchical Euclidean
k-median problem has an approximation guarantee of α if, for every k = 1, . . . , n, the out-
put C,Π defines an α-approximate solution for k-median. That is, for every k ∈ {1, 2, . . . , n}
COST(P, {c1, . . . , ck},Pk) ≤ α · OPT(P, k). Similarly, if the algorithm is randomized then
we say that it has an approximation guarantee of α if the guarantee holds in expectation over
the random hierarchical clustering C,Π output by the algorithm: for every k ∈ {1, 2, . . . , n},
E[COST(P, {c1, . . . , ck},Pk)] ≤ α · OPT(P, k).

6Note that flat clustering is a sub-problem of hierarchical Euclidean k-median problem, in fact our algorithm
solve the problem for all k at the same time

7Note that the large k has many practical applications in spam and abuse [48, 52], near-duplicate detec-
tion [31], compression or reconciliation tasks [50]

8We note here that our results naturally extend to the Prefix Euclidean k-median problem [45], where clusters
are not required to be nested.

3



For simplicity of presentation, here we assume that P ⊆ {0, . . . ,∆}d and then we explain how to
remove this assumption in our theoretical analysis in Appendix. The k-median problem can also be
formulated for discrete metric spaces M = (P,DISTM ), where P is a finite set of points and DISTM
is a metric. For a subset C ⊆ P of the points, we also let DISTM (p, C) = minc∈C DISTM (p, c) be
the distance from the point p to its closest point in C. The objective of the metric k-median problem is
then to find a subset C ⊆ P of size k such that COSTM (P,C) =

∑
p∈P DISTM (p, C) is minimized.

The hierarchical k-median problem is analogously defined.

A (discrete) metric space (P,DISTT ) is called a tree metric, if there exists a positively weighted
tree T = (P,E,w) such that for all pairs p, q ∈ P we have that DISTT (p, q) equals the shortest
path distance between p and q in T . We will be mostly interested in tree metrics that are defined by
restricted hierarchically well separated trees. 9

Definition 2.1 A restricted `-hierarchically well separated tree (RHST) is a positively weighted
rooted tree such that all the leafs are at the same level, all edges at the same level have the same
weight, and the length of the edges decreases by a factor of ` on every root to leaf path.

Throughout the paper, we consider RHSTs with ` = 2, i.e., 2-RHSTs. We therefore simplify notation
and sometimes write RHST for 2-RHST. In the next section, we describe how to embed our point set
P in Euclidean space into the leaf of a RHST. Formally, a metric embedding between two metric
spaces (P,DIST), (P ′,DIST′) is an injective mapping f : P → P ′. To simplify notation and to be
consistent with this definition (and the definition of a metric) we consider instances that contain no
two points within distance 0. However, all our arguments and algorithms generalize to instances that
may have several identical points.

MPC model. We design algorithms for the MPC model [36, 28, 10] that is considered de-facto
the standard theoretical model for large-scale parallel computing. Computation in MPC proceeds in
synchronous parallel rounds over multiple machines. Each machine has memory s. At the beginning
of a computation, data is partitioned across the machines. During each round, machines process data
locally. At the end of a round, machines exchange messages with a restriction that each machine is
allowed to send messages and also receive messages of total size s. The efficiency of an algorithm in
this model is measured by the number of rounds it takes for the algorithm to terminate and by the
size of the memory of every machine. In this paper we focus on the most challenging and practical
regime of small memory. In particular, we only assume to have s ∈ Ω(log2(n+ ∆ + d)).

3 A Work Efficient Sequential Algorithm

In this section we introduce a work efficient sequential algorithm and then in the next section, we
show how to parallelize it in the MPC model. From a high level perspective our algorithm is based
on embedding the input point set into the leaf of a RHST and then solving the problem optimally for
the embedded points. In order to obtain the embedding, we choose a (standard) random quad-tree
embedding of the input points into a hierarchically well separated tree. We then show that a simple
greedy algorithm solves the problem optimally on the induced tree metric. Unfortunately, a naive
implementation of our greedy algorithm would result in large parallel and sequential running time. So
we modify our greedy algorithm and we show that it can be implemented using only few aggregation
operations combined with sorting.

3.1 Quadtree Embedding into a 2-RHST

The first step of our algorithm is to embed the points in a restricted 2-hierarchically separated
tree. Interestingly, we observe that using standard embedding techniques it is possible to embed
all the points in the datasets in a 2-RHST by incurring only a small distortion. Furthermore, in
this construction every point can compute its own position in the embedding independently just by
knowing its own coordinated and a random shift r that is applied to all the points.

Given that the construction of the embedding is standard we defer it to Appendix F. Now we
present formally the main property of the embedding that will be useful for our algorithm. Before

9Our definition is slightly more restricted than the standard notion of `-HST (see, for example, [6]), because
we require that all edges at the same level have the same cost (rather than all descendants of a node) and that the
cost decreases by the same factor.
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stating the property we need to introduce some additional notation. For two points p, q in the RHST
T , we use DISTT (p, q) to denote their (shortest-path) distance. Similarly we let DISTT (p, C) =
minc∈C DISTT (p, c). We now define COSTT (P,C) :=

∑
p∈P DISTT (p, C) to be the cost of a set

of centers C with respect to the tree metric. We use OPTT (P, k) := minC⊆Rd,|C|=k COSTT (P,C)
to denote the cost of optimal solution with respect to a given RHST T . Recall that OPT(P, k) denotes
the cost of an optimal solution with respect to the original Euclidean distances. Now we are ready to
state the main result of this section whose proof is presented in Appendix F.

Theorem 3.1 Let P ⊆ {0, . . . ,∆}d be a point set. There exists a procedure that constructs a
2-RHST tree T in time O(nd log ∆) such that for the its optimum solution C∗T,k using k centers, we
have E[COST(P,C∗T,k)] = O(d · log ∆) · OPT(P, k). Furthermore all the input points are mapped

to leaves of the RHST. In addition, we have that E[maxk
COST(P,C∗T,k)

OPT(P,k) ] = O(d · log ∆ log(dn∆)).

3.2 Optimal Algorithms for k-Median on 2-RHST

In this subsection, we design two optimal sequential algorithms for hierarchical k-median on a
2-RHST metric. This combined with our 2-RHST embedding will give us an efficient approximation
algorithm. We first show that a simple greedy algorithm (see Algorithm 1) finds the optimum solution.
The greedy algorithm chooses, at each step, the point that leads to the largest decrease in the cost.
Then we modify the algorithm to be more amenable to parallel implementation and to run in almost
linear time.

3.2.1 A Greedy Algorithm for 2-RHST

We start by providing the pseudo-code for our algorithm in Algorithm 1 and state the main property
of our greedy algorithm (whose proof is deferred to Appendix G ).

Theorem 3.2 For any set of points P ⊆ {0, . . . ,∆}d and distance function DISTT defined by an
2-RHST T , Algorithm 1 returns an optimum solution for the hierarchical k-median problem.

Algorithm 1 GREEDY alg. for hier. k-median on
2-RHST

Input: Set of points P , cost function COSTT de-
fined
by a 2-RHST T

1: Set S0 ← ∅
2: Set P0 ← {P}
3: Label all internal nodes of the RHST as unla-

belled
4: for i = 1 to n do
5: Let ci = argminx∈P COSTT (P, x∪Si−1)
6: Label the highest unlabelled ancestor of ci

with ci
7: Si is obtained by adding ci to Si−1

8: Define Pi as the clustering obtained by as-
signing all points to the cluster centered at
their closest labelled ancestor.

9: end for
Output: return c1, . . . , cn,P1, . . . ,Pn

Proof.(Sketch) First observe that by the cluster
assignment in line (8) the returned partitions
{P1, . . . ,Pn} are nested. It remains to show
that for every k, the partition Pk with centers
c1, . . . , ck is optimal. The proof is by induction
on the height of the tree T . For the base case,
when T is of height 0, the statement is clear: In
that case the instance consists of a single point
so COSTT (P, S) = 0 if S 6= ∅.
For the inductive step we make two fundamental
observations. First, we observe that in a 2-RHST
metric the cost of a solution can be decomposed
as a sum of the cost of individual subtrees. Sec-
ond, we also show that the cost of each subtree
is roughly independent of the choice made by
the algorithm in other subtrees. So combining
these two facts, with the fact that greedy is op-
timal for all the subtrees of
we can conclude our inductive arguments. 2

3.2.2 Quasi Linear Time Algorithm

In this subsection we show how to change the previously presented algorithm (Algorithm 1) to obtain
an almost linear-time algorithm that can be easily parallelized. The algorithm will output a list of
centers and an implicit description of a list of nested partitions. The list of centers as well as the
partitions will be identical to that of the previous algorithm. Hence, we will focus on the optimality
of the centers wrt. the hierarchical k-median problem.
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As a first step we modify Algorithm 1 to reduce its sequential dependencies. The downside of
Algorithm 1 is that the selection to open the i-th point depends on the previously chosen points, i.e.,
Si−1. The main idea is to remove this dependency and to make the decision dependent on other
parameters that can be efficiently precomputed. Before describing our result we introduce some
additional notation. We say that a node in the (2-RHST) tree is at level i if the subtree rooted at this
node is of height i. We remark that with this convention a leaf is at level 0 and the root is at the
maximum level h. Let S be a set of centers and x be a point in P \ S. We refer to the ancestor of x at
level i by ai(x) and, with some abuse of notation, we denote with pi(x) the number of points in the
subtree of ai(x) for 0 ≤ i ≤ h. We also write Ai(x) ⊆ P for the set of points in the subtree of node
ai(x). Finally, we let `(x) ∈ {1, . . . , h} be the highest level ` for which S ∩A`(x) = ∅. For clarity,
when it is clear from the context, we drop the x and use ai, Ai, pi, `.

Our first key observation is that the distance of a point x to its nearest center only depends on `. This
is true because i) the distance of x to the point y ∈ S ∩ A`+1 is exactly twice the distance of x to
a`+1, which is 2

∑`−1
i=0 2i = 2(2` − 1) = 2`+1 − 2. ii) The distance to any other point w ∈ S is at

least 2`+2 − 2 since their common ancestor is at least at level `+ 1. Therefore,

Observation 3.3 The distance DIST(x, S) of a point x to its nearest center in S only depends on
`(x). More precisely, DISTT (x, S) = 2`(x)+1 − 2.

In addition, we observe that the benefit of opening x (denoted by BENF(x)) only depends on the
number of nodes in close subtrees, p1, . . . , p`. In fact opening x only affects the cost of the points in
A`. This is true because any point w that is in A`+1 ∩ S is at least as close to x as to any other point
in A`+1 and not in A`. Now, consider a point y in Ai for 0 ≤ i ≤ `. The cost of y after opening x is
2i+1 − 2, and before opening x its cost was 2`+1 − 2. Furthermore, we can precisely compute the
number of points in Ai and not in Ai−1, it equals pi − pi−1. So we get:

Lemma 3.4 The benefit of opening point x only depends on p1(x), . . . , p`(x)(x) and is BENF(x) =∑`(x)
i=0 (pi(x)− pi−1(x)) · (2`(x)+1 − 2i+1) , where for simplicity we assume p−1(x) = 0.

These simple observations significantly reduces the dependency of computing the benefit of opening
a point x from the set of centers S, which is the main step of Algorithm 1. In fact, the BENF(x) value
does not depend on the full structure of S but only on `(x). Therefore, we can compute BENF(x)
for all ` before opening the centers and use only those values to make our selection of the centers.
We denote this by BENF(x, `), i.e., BENF(x, `) =

∑`
i=0(pi(x)− pi−1(x)) · (2`+1 − 2i+1) , for all

points x and 0 ≤ ` ≤ h.

Now, to select the centers we can design an alternative algorithm based only on the BENF(x, `) values.
In fact we can sort all the BENF(x, `) in an ordered list L and go over them from the highest value to
the lowest. We show that it is sufficient to prune the list L by removing a pair (x, `) in the following
two cases:
– There is another point with larger benefit in A`. In this case we need to update our sorted list by
removing (x, `) from the ordering L. In general to deal with this case for each subtree rooted at level
` for all possible ` we preserve only one pair (x, `) with highest benefit.
– For point x, collect all pairs (x, `) that remained after the previous pruning step. Identify the pair
with the maximum value of ` and prune all other collected pairs.

After these two steps, the ordering L can be used to obtain our final solution for Hierarchical k-median
(resp. k-median) by returning the centers in the same order as in L (resp. the top k centers of L). The
pseudo-code is presented in Algorithm 2.

Importantly, we show that the output sequence of centers and the implicitly defined partitions of
Algorithm 2 are the same as the output of Algorithm 1. This is intuitively true because the pruning
rules identify at which level x is a good candidate for the greedy algorithm and then we sort the x
based on their score at that level. Note that in this algorithm we only output the partition implicitly
because outputting them explicitly will take Ω(n2) time. The full proof of this argument is presented
in Appendix H.

Theorem 3.5 Algorithm 2 finds an optimum solution for the hierarchical k-median problem on
RHSTs in time O(n log2(∆ + n)).
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4 Euclidean k-Median in the MPC Model

Algorithm 2 Quasi-linear alg. for hier. k-median
on RHST

Input: Set of points P , cost function COSTT de-
fined by a 2-RHST T

1: ∀x ∈ P, 0 ≤ ` ≤ h, compute BENF(x, `)
2: for 0 ≤ ` ≤ h do
3: for subtree T ′ ⊆ T rooted at level ` do
4: Let x ∈ T ′ be the point maximizing

BENF(x, `)
5: for y ∈ T ′ do
6: C(x,`) ← C(x,`) ∪ {y}
7: If y 6= x delete BENF(y, `)
8: end for
9: end for

10: end for
11: For every x keep only the pair (x, `) with

maximum ` and its cluster C(x,`).
12: Sort all pairs (x, `) according to BENF(x, `)

and let (ci, `i) be the pair in position i.
13: Implicitly define the i-th partition Pi =
{P1, . . . , Pi} as follows: Pj = C(cj ,`j) \
∪iz=j+1C(cz,`z) for 1 ≤ j ≤ i.

Output: Return the ordering of the points
c1, . . . , cn as centers and the clusters C(ci,`i)

∀i to implicitly define the partitions.

In this section we present our main results in the
MPC model. The algorithm that we use is the
same as Algorithm 2, but we implement each
step in the MPC model. Our algorithm is based
on basic operations: summation, computing the
maximum and sorting a list of elements. All
these operations can be done efficiently in the
MPC model using [28]. We provide the details
on the implementation of our algorithm along
with its theoretical performance guarantees.

Theorem 4.1 There is a distributed algorithm
that uses memory s ∈ Ω(d log(∆) + log2(∆ +
n)) and computes a solution for the hierarchical
Euclidean k-median problem such that for ev-
ery fixed k the k-clustering of the hierarchy has
an expected approximation factor ofO(d log ∆).
Furthermore, the expected maximum approxima-
tion factor (over all k) is O(d log ∆ log(∆dn)).
The algorithm uses O (logs(n log ∆)) parallel
rounds and O((n log ∆)/s) machines in the
MPC model. Furthermore the total running
time of the algorithm across all the machine
is O(nd log(∆ + n)).

Proof. Our distributed algorithm consists of a
parallel implementation of Algorithm 2 that we
run on the embedding described in Section 3.1.
This gives us an expected approximation factor
of O(d log ∆), because from Theorem 3.5 we
know that Algorithm 2 solves the problem op-
timally on 2-RHST and from Theorem 3.1 we
know that we loose a factor O(d log ∆) in expectation in our embedding step.

The details for the distributed implementation of this algorithm in the MPC model is as follows. In
the implementation we need to be able to compute the embedding, compute p`(x) for all points x,
compute BENF, discard the useless BENF pairs and sort the values. First, note that we can compute the
embedding in parallel for each of the points because the embedding only depends on their coordinates
and a uniform random shift. Then to compute p`(x) and BENF for all nodes we just need to be able to
compute weighted sums efficiently. This can be done using memory s ∈ Ω(d log ∆+log2(∆+n)) in
O(logs(n log ∆)) MPC rounds with O((n log ∆)/s) machine and total running time of O(nd log ∆)
using the algorithm in [28]. Then we need to sort the computed BENF values which can be done
similar to be previous step using [28] with the same bounds as before. To apply the filter we just
need to be able to find the maximum in a list of values and we can again do this using memory
s ∈ Ω(log2(∆ + n)) in O(logs(n log ∆)) MPC rounds using the algorithm in [28]. Note that after
computing the maximum we can also construct the sets C(x,`) by outputting as C(x,`) all nodes
sharing the same ancestor of x at level `, and this can be done in O(1) rounds as well. Finally we can
also do sorting with the same bound using the same techniques with total running time of O(n log n).
2

We remark that we can speed up the algorithm for datasets of large dimension, by reducing the
dimension from d to O(log n) by losing a small constant factor in the approximation ratio[21] and
achieve the following result, the details are presented in the full version. We also remark that the
guarantee on the expected maximum approximation ratio (over all k) from Theorem 3.1 carries over
to this theorem and the following corollary.

Corollary 4.2 There is a distributed algorithm that uses memory s ∈ Ω(log2(∆ + n +
d)) and computes a solution for the hierarchical Euclidean k-median problem such that
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Figure 1: In this plot, we compare our algorithm (OURALGO), and LLLM. The results are presented in for
KDD Cup (a), SONG (b), US Census (c). All the numbers are reported for 5 runs (average value and variance).
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Figure 2: In this plot, we compare our algorithm (OURALGO), k-median++ seeding (KM++ Seed), BEL,
PLSH, and EIM. The results are presented in for KDD Cup (a), SONG (b), Us Census (c). All the numbers are
reported for 5 runs (average value and variance).
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Figure 3: Figure (a), (c) compares the running time for our algorithm (OURALGO), k-median++ seeding
(KM++ Seed), BEL, PLSH, and CSZ on HIGGS and US Census datasets, respectively. In (b) we focus on our
algorithm and k-median++ seeding on HIGGS dataset to further highlight their differences.

for every fixed k the k-clustering of the hierarchy has an expected approximation factor of
O(min (d, log n) log ∆ log(nd∆)). The algorithm uses O (logs(nd log(n+ ∆))) parallel rounds
and O(nd log(n+ ∆)/s) machines in the MPC model. Furthermore the total running time of the
algorithm across all the machine is O(nd(log(n + ∆))). Finally the algorithm returns a solution
also for the prefix k-median clustering and the hierarchical k-median clustering problems.

5 Empirical Evaluation

In this section we empirically evaluate our algorithm with both hierarchical and non-hierarchical
algorithms. We report the expected value and the variance over 5 runs for all the randomized
algorithms. We evaluate the algorithms on the following data sets from UCI Machine Learning
Repository [23]; KDD Cup (a.k.a Intrusion, n = 31, 029; d = 35),YearPredictionMSD (a.k.a
SONG, n = 515, 345; d = 90),US Census Data (1990) (n = 2, 458, 285; d = 29),and HIGGS
(n = 11, 000, 000; d = 28).
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5.1 Distributed Hierarchical Algorithms

Dataset m=1x 10x 100x
KDD Cup 9.58 13.5 26.9

SONG 2.32 5.26 19.3
US Census 1.72 3.10 6.71

Table 1: Distributed hierarchical algorithms running time
comparison for various number of machines. The running
time of the LLLM baseline divided by the running time of
our algorithm with the same amount of machine used.

We compare our algorithm with
LLLM [41] - an algorithm for hi-
erarchical k-median problem in dis-
tributed setting. In Fig. 1 we com-
pare the quality of the produced solu-
tion. We observe that the algorithms
are comparable and our algorithm out
performs LLLM by 2 − 3% on av-
erage. The running time of the the
LLLM algorithm divided by the run-
ning time of our algorithm is presented in Table 1. Our algorithm is significantly faster (up to a factor
10− 26 depending on the dataset) and the difference increases with number of the machines used.

5.2 Distributed Algorithms

Our algorithm can be also used for the (non-hierarchical) k-median problem. In order to assess its
quality, we compare it with sequential and distributed algorithms for the (non-hierarchical) k-median
problem. i) We compare the quality of the computed set of centers and the sequential running time
with both sequential and distributed algorithms for the k-median problem, ii) we compare the running
time with distributed algorithms in a distributed setting, iii) we run our algorithm on massive datasets
of with tens of billions of nodes and report the speedup gained by using more machines. Notice that
the baselines do not scale to this size of data, therefore we cannot compare the performance.

Baselines. We compare our algorithm (without dimensionality reduction) with a well-known se-
quential algorithm: k-median++ seeding; and four distributed algorithms: PLSH [12], EIM [25],
BEL [4], CSZ [15]. Description of these algorithms and the details of the setting used for running the
algorithms are provided in Appendix B.

Quality and Sequential Running Time Comparison. Our algorithm is 40, 41, 300 times faster
than k-median++, BEL, and PLSH, respectively for census dataset for k = 10, 000. Also it is
significantly faster than CSZ 10. In figure Fig. 3 we compare the running time of these four algorithms
for different k11 (recall that we compute the solution for all 1 ≤ k ≤ n at the same time). The plots
are similar for other datasets and are presented in Appendix C. Let us focus on the quality of the
solution. The results are presented in Fig. 2. Note that due to the slow running time and memory
consumption of the PLSH, CSZ, and EIM we were not able to run it in some cases. The results
suggest that our algorithm provides comparable results.

Distributed Running Time Comparison. Now we focus on the running time of OURALGO, BEL,
EIM, and CSZ algorithms in distributed setting for HIGGS dataset. We compare the running time
of the baselines with our algorithm with the same amount of machine used for k=10 to 10, 000. We
present the running time of the baselines divided by the running time of our algorithm. The results are
presented in Table 2 in Appendix. Our algorithm is significantly faster than all baselines. For small
values of k, e.g: k = 10, we are faster by a factor 3.2− 60.2, 50− 182, and 65− 1380 compared
to BEL, EIM, and CSZ, respectively. Moreover, for k = 1, 000 we are 12.08− 71.2, 2082− 3091,
46− 941 times faster compared to BEL, EIM, and CSZ, respectively. Also for k = 10, 000 we are
41.17− 126 and 171− 708 times faster than BEL and CSZ, respectively.

Scalability on Large Datasets. To provide an empirical scalability analysis of our algorithms over
large datasets, we expanded the HIGGS dataset so as to experiment on datasets of size almost 100
millions, 1 billion, and 10 billions (see Appendix E for a more detailed description of the generation
process). As depicted in Fig. 5 in Appendix K, the speed-ups achieved by our algorithm is significant
when increasing the number of machines.

10The missing values are due to the slow running time of CSZ.
11EIM is slower that rest of the algorithms and its running time is presented in the Appendix.
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6 Conclusions
We present the first distributed approximation algorithm for Euclidean Hierarchical k-Median problem
in the MPC model. Interestingly our algorithm even works in the setting where each machine has
very limited memory s ∈ Ω(log2(∆ + n + d)) and it is work efficient. In the future, it would be
interesting to obtain similar results for other clustering problems and to improve the approximation
factor of our algorithm. We believe that the core ideas used in this work can extend to the general
k-clustering problem (e.g., k-means and higher powers). To be more precise, if we are given a RHST
that increases the distances by at most a factor of g(n), then we believe that our approach construct a
g(n) approximate solution, for any function g. The difficulty here is to construct such RHST.
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A Additional Related Works

Additional Related Work. The k-median problem has also been extensively studied for tree
metrics (see e.g. [54, 11] and references therein) where exact polynomial-time algorithms exist. We
remark that we focus on the special case of hierarchically separating trees, which we can exploit to
get faster algorithms. Indeed previous work on tree metrics only give nearly linear running time if k
is a constant.

Somewhat related to our work is the quadtree-based coreset construction in [27]. The resulting
coreset can be computed in O(n log ∆) time and may be interpreted as a bi-criteria approximation,
i.e., it uses more than k centers to achieve an approximation. We also believe that the construction in
[13], which is based on randomly shifted quadtrees, can be modified to efficiently get a bi-criteria
approximation. A closely related problem is the k-medoid problem, that is as k-median with the
constraint that the centers are restricted to be from the input points. For this problem, a number of
algorithms have been developed (see, for example, [37, 47]), but unfortunately they are sequential
and their running times do not scale in our setting.

We also remark that the question of obtaining an efficient distributed algorithm for hierarchical
clustering has been studied in a series of recent paper [8, 40, 57]. Although no result was known for
hierarchical Euclidean median before this work. Finally, we note that the HSTs have been exploited
to design efficient algorithm for fair clustering [2], it is an interesting open question to extend our
results in their settings.

Interesting results are also known for the robust variant of k-median with outliers [16] and for the
k-means problem [3].

B Description of Baseline Algorithms and Experiments Setup

In this section for the sake of completeness we present a general overview of the baseline algorithms.
Notice that this provides the reader with some of the ideas used in these algorithms. The imple-
mentation used is exactly the algorithm presented in the respective papers. Notice that we used
the k-median++ seeding as the offline algorithm used for both EIM and BEL algorithms since its
performs well in practice and its running time is of O(nkd). Moreover, it suffices for the machines to
have memory 1G for all the distributed algorithm for HIGGS dataset.

• Our implementation of k-median++ seeding - an adaptation of k-means++ seeding [1] for
the k-median problem - works as follow. The algorithm first samples a point uniformly at
random from the input points (i.e. P ). Then in the next k − 1 iterations, it picks the next
center from P with probability proportional to the distance to the nearest of the current
centers. It is known that this seeding produces an O(log k)-approximate solution. In the
experiments we use our own implementation of k-median++.

• PLSH [12] algorithm (code by authors of PLSH). This algorithm first finds a bicriteria
solution based on LSH and then samples a set of k elements from it. In the implementation
to obtain k centers from the bi-criteria approximation, the centers are chosen uniformly at
random from it. We thank the authors for helping us with experiments using their code.

• Our implementation of EIM [25] algorithm. This algorithm has two phases. The first phase
starts with two sets S = ∅, H = ∅, R, where R at the beginning is equal to the set of input
points. In each iteration of the first phase two set of input elements are sampled and added
to H , S. Then for each point in S the closets point in H is computed and based on that a
threshold value is computed. Then for each point currently in R the closest point to any
point in H is computed and the point is removed it the computed minimum distance is
lower than the threshold. The iterations are repeated till size of R is below a certain value
depending on k, n. Then a weighted coreset over H ∪R is computed and the final solution
is computed based on it using any offline algorithm.

• Our implementation of BEL [4] algorithm. This algorithm divides the input into m part,
wherem is the number of machines. Then runs any offline algorithm and creates an weighted
coreset based on the offline algorithms solution.
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Figure 4: comparison between the running time of our algorithm with k-median++ seeding, BEL, CSZ, and
PLSH for SONG (a) and KDDCUP (b) datasets.

comparison with BEL
H
HHHHk

m 1x 10x 100x

10 3.2 12.45 60.2
25 3.75 12.61 61.3
50 4.01 14.7 62.0

100 4.36 15.3 62.4
1000 12.08 25.1 71.2
10000 41.17 87.6 126

comparison with EIM
H

HHHHk
m 1x 10x 100x

10 50.4 60.5 182
25 90.6 72.2 192
50 144.4 110 262

100 258 330 452
1000 - 2082 3091

10000 - - -

comparison with CSZ
H
HHHHk

m 1x 10x 100x

10 65.3 276.6 1380
25 59.33 278 1483
50 69.3 258 1375

100 41.67 176.67 1341
1000 46.67 145 941.67

10000 171.5 233 708.33
Table 2: Distributed running time comparison for various number of centers in the solution k and
number of machines m. The running time of the BEL (first table), EIM (second table), and CSZ
(third table) baselines divided by the running time of our algorithm with the same amount of machine
used. The empty fields are due to slow running time of the baseline.

• Our implementation of LLLM [41] algorithm. This algorithm is distributed and hierarchical,
it divides each cluster into two until the size of all the clusters are one. It guarantees that the
number of parallel rounds is O(log n∆) but it does not provide a theoratical guarantee.

C Further Sequential Comparisons

Fig. 4 presents comparisons between the running time of our algorithm with k-median++ seeding.
BEL, and PLSH for KDD Cup and SONG datasets. The running time of our algorithm is at least
a factor 125, 437, and 3121 faster than EIM even for k = 100 for KDDCUP, SONG, and Census
datasets, respectively. The gap increases by increasing k, therefore we do not add EIM results to the
plots. These results are expected and is supported by the theoretical analysis of our algorithm.

D Coreset Comparisons

One of the ideas to improve the quality of the solution discussed in various works (e.g., [4]) is to
construct a coreset, and then apply possibly slower algorithms that provide solutions with better
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PPPPPPPk
dataset 100 1000

KDD CUP 1136790 371302
Song 762199000 648547000

Census 15123100 10104100

PPPPPPPdataset
k 100 1000

KDD CUP 1311390 436409
Song 805580000 668776000

Census 16761500 10679170
Table 3: In this table, we compare the quality of the solution of our algorithm (left table) and
BEL(right table) after applying the greedy improvements. All the numbers are reported for 5 runs.

PPPPPPPdataset
k 100 1000

KDD CUP 3.52 3.91
Song 1.11 4.53

Census 1.99 12.6
Table 4: In this table, we compare the running time if BEL divided by the running time of our
algorithm after applying the greedy improvements. All the numbers are reported for 5 runs.

quality on the coreset. One such algorithm is k-median++ followed by greedy improvement steps
likes Lloyds algorithm. In the BEL algorithm [4], authors after constructing the coreset use this
technique to improve the quality of the solution. Notice that since the size of the coreset is smaller
than the original input, the running time of these greedy steps are better than applying the same
technique on the entire input. Each step of the Lloyds-style algorithm is as follows:

• Assign each point to the closest center.

• For each center, solve the 1-median problem on the points that are assigned to it.

We apply the same Idea to our approach as well. We first use our algorithm to create a solution of
size c · k for some constant c. Then we let the weight of each point in this solution to be the number
of points in the subtree in the tree embedding that this points is opened in. Therefore, we achieve a
weighted coreset of size ck and then we run greedy improvement on the solution of size k produced
by our algorithm.

Here we compare the quality and the running time of this approach with BEL algorithm. We run
BEL algorithm on 100 machine, therefore the size of the produced coreset is 100k. Similarly we
let c = 100, so the size of our coreset is also 100k. We run three rounds of greedy improvements
for both algorithms. We present the running time of the BEL divided by the running time of our
algorithm in Table 4. We also present the quality of the solution in Table 3. We observe that the
quality of the solutions are very comparable while our algorithm is noticeably faster.

E Description of the Massive Datasets

The synthetic datasets are obtained from the HIGGS dataset. Let n = 11 million and d = 28 be
respectively the number of points and the number of dimensions of the HIGGS dataset. The datasets
are generated by copying each point c times. The i-th copy of a given point is defined as follows: the
first d coordinates are the same as the original point. Then d+ 1 coordinate is appended and set to i
for the i-th copy. We create three datasets for c = 10, 100, 1000.

F Construction of the embedding and missing proofs of Section 3.1

In this section for completeness we present a (standard) random embedding of an input point set with
coordinates from {0, . . . ,∆}d into a restricted 2-hierarchically separated T (see, for example [32]).
We start by describing a deterministic embedding that uses a quadtree structure. We start with a
d-dimensional axis-aligned cube of side length ∆. This cube corresponds to the root of the tree.
We then split the box into 2d subcubes of equal size. Each non-empty subcube corresponds to one
node on the next layer of the tree and is connected by an edge of length ∆

√
d/2, half the maximum
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distance of two points inside the cube. Now we apply this procedure recursively: Non-empty cubes12

of side length ∆/2i correspond to nodes in the tree with hop distance i from the root. We subdivide
each such cube into subcubes of side length ∆/2i+1 and connect each non-empty subcube to the
node corresponding to its containing cube using an edge of length

√
d∆/2i+1. The partition stops

when the side length of the cube is 1 and so each cube contains a single point. This defines our
deterministic embedding into a 2-RHST by mapping each input point to the corresponding leaf.
Now we randomize the embedding. This is simply done by adding the same random shift r chosen
uniformly at random from [0,∆]d to all input points. Then we employ the above process starting
with an initial box of side length 2∆.

Note that every point can compute its position in the embedding independently in fact it only need to
have access to its own coordinate and the uniform random shift.

Recall that for two points p, q ∈ {1, . . . ,∆}d we use DISTT (p, q) to denote their (shortest-path)
distance in the resulting tree T . We now show some interesting properties of our embedding.

Lemma F.1 Let p, q ∈ {1, . . . ,∆}d be two points. Then

‖p− q‖2 ≤ DISTT (p, q) and
E[DISTT (p, q)] = O(d · log ∆) · ‖p− q‖2.

Proof. We observe that if p = (p1, . . . , pd) and q = (q1, . . . , qd) are in different subcells of the
quadtree of side length ∆/2i+1 then their distance in the tree is at least

√
d∆/2i. Next we observe

that there exists a coordinate i such that |pi − qi| ≥ ‖p− q‖2/
√
d. This implies that for every i with

∆/2i+1 < ‖p− q‖2/
√
d we have that p and q are in different cells, which implies the first inequality.

Next we prove the second item. Observe that we can view our random shift s as independently
shifting each dimension by a random value from [0,∆]. This implies that the probability that two
points are separated in dimension j in the quadtree cells of side length ∆/2i is min{1, |pj−qj |·2

i

∆ }.
By the union bound, the probability that they are separated in any dimension is at most ‖p−q‖1·2

i

∆ . If
the points are separated in the quadtree cells of side length ∆/2i then there are two edges of length√
d∆/2i−1 on their unique connecting path. We obtain for h = log ∆ + 1 that

E[DISTT (p, q)] ≤ 2

h∑
i=0

√
d ·∆
2i

· ‖p− q‖1 · 2
i

∆

≤ 2 · (h+ 1) ·
√
d · ‖p− q‖1.

Finally, the result follows since ‖p− q‖1 ≤
√
d‖p− q‖2. 2

Theorem 3.1 Let P ⊆ {0, . . . ,∆}d be a point set. There exists a procedure that constructs a
2-RHST tree T in time O(nd log ∆) such that for the its optimum solution C∗T,k using k centers, we
have E[COST(P,C∗T,k)] = O(d · log ∆) · OPT(P, k). Furthermore all the input points are mapped

to leaves of the RHST. In addition, we have that E[maxk
COST(P,C∗T,k)

OPT(P,k) ] = O(d · log ∆ log(dn∆)).

Proof. Let C∗ be the optimal solution on the input data set. By the second item of the previous lemma
and linearity of expectation we get E[COSTT (P,C∗)] ≤ O(d log ∆) ·OPT(P, k). By the first item of
the previous lemma we then get E[COST(P,C∗T,k)] ≤ E[COSTT (P,C∗T,k)] ≤ E[COSTT (P,C∗)] =

O(d · log ∆ · OPT(P, k)).

In order to prove the second statement, observe that the cost of any non-trivial solution is
at least 1 and at most d∆n. Let k1, k2, . . . , km be the sequence such that ki is the largest
number of centers such that the optimal ki-median cost is at least 2i. We observe that the
expected maximum of the m non-negative random variables COST(P,C∗T,ki)/OPT(P, k) is at

12We ignore here degenerate cases that may arise when a point lies on the boundary of the cell, since in the
final embedding we will randomly shift the point set and this event will happen with probability 0.
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most m · maxk E[COST(P,C∗T,ki)/OPT(P, ki)]. By the first item of the theorem this quan-
tity is O(md log ∆)). Now observe that for any i and any k with ki > k > ki−1 we have
COST(P,CT,k) = O(COST(P,CT,ki−1)) since COST(P,CT,k) is non-increasing in k and we have
2OPT(P, k) ≤ OPT(P, ki) by the choice of the ki. This implies that COST(P,C∗T,k)/OPT(P, k) =

O(COST(P,C∗T,ki)/OPT(P, ki)). This implies the second part of the theorem.

Finally we note that the running time is O(nd log ∆), since it consist of log ∆ + 1 times of mapping
all the points to the nodes of the tree. Also mapping each node is simply dividing all its coordinates
by 2i for layer i. We also note that this mapping is easily parallelizable because, in order to compute
the mapping for a specific node, we only need to know its coordinates and the random shift r. 2

G Missing proof of Section 3.2.1

Theorem 3.2 For any set of points P ⊆ {0, . . . ,∆}d and distance function DISTT defined by an
2-RHST T , Algorithm 1 returns an optimum solution for the hierarchical k-median problem.

Proof. The proof is by induction on the height of the tree T . For the base case, when T is of height
0, the statement is clear: in that case the instance consists of a single point so COSTT (P, S) = 0 if
S 6= ∅.
For the inductive step, suppose that the statement is true for all RHSTs of height less than h and
consider an RHST T of height h. We use the following notation:

• Let C be the set of children of the root of T .
• For a child y ∈ C, let Ty denote the sub-tree rooted at y, let Py denote the subset of

leave-nodes in P , and let py = |Py|.
• Finally, let D be the sum of edge-lengths from the root to a leaf in T .

A key observation is that, by the definition of RHSTs, we have DISTT (x, x′) = 2D for points x ∈ Py
and x′ ∈ Py′ from different sub-trees y 6= y′ ∈ C. Therefore, when Algorithm 1 selects gy centers in
the sub-tree Ty for some child y ∈ C, it makes the same selection as if it was ran on the instance
consisting of only the points in Py. Now, fix a child y ∈ C and consider running Algorithm 1 on
the subinstance (corresponding to the sub-tree Ty) defined by the set of points Py, cost function
COSTTy

, and the number of centers equal to py(Note that in this instance the number of centers is
equal to the number of nodes in Py). Let x(y)

1 , . . . , x
(y)
py denote the returned centers indexed in the

order they were selected by the greedy algorithm. Then, if we let gy be the number of centers that the
greedy Algorithm 1 selects in Py , the solution returned by Algorithm 1 on the whole instance equals⋃
y∈C:gy>0{x

(y)
1 , . . . , x

(y)
gy } . Moreover, by the induction hypothesis (using that Ty has height h− 1),

we have that {x(y)
1 , . . . , x

(y)
i } is an optimal selection of i ∈ {1, 2, . . . , py} centers to the instance

on points Py and cost metric COSTTy . Now another important observation, that follows from the
definition RHSTs, is that the cost of a solution S decomposes:

COSTT (P, S) =
∑

y∈C:S∩Py 6=∅

COSTTy
(Py, S ∩ Py)+

+2D ·
∑

y∈C:S∩Py=∅

py .

Thus an optimal solution must optimally select the centers in each subinstance corresponding to
a sub-tree. Therefore, since greedy is optimal on each subinstance, any solution that for y ∈ C

selects oy centers13 from sub-tree Ty has cost at least COSTT

(
P,
⋃
y∈C:oy>0{x

(y)
1 , . . . , x

(y)
oy }

)
. To

understand the cost of such a solution, for y ∈ C and i ∈ {1, . . . , py}, define the “cost decrease”
achieved by adding the center x(y)

i to the set {x(y)
1 , . . . , x

(y)
i−1} of centers to be

d
(y)
i = COSTTy

(Py, {x(y)
1 , . . . , x

(y)
i−1})− COSTTy

(Py, {x(y)
1 , . . . , x

(y)
i−1, x

(y)
i }) ,

13Note that oy can potentially be different than gy because oy is the number of centers in y selected by the
optimal solution while gy is the number of centers selected by the greedy algorithm.
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where for notational convenience we let COSTTy (Py, ∅) = 2D · py . Then,

COSTT

P, ⋃
y∈C:oy>0

{x(y)
1 , . . . , x(y)

oy }

 =

= 2D · |P | −
∑
y∈C

oy∑
i=1

d
(y)
i .

Now to conclude the inductive step, observe that the greedy selection criteria implies that d(y)
1 ≥

d
(y)
2 ≥ . . . ≥ d

(y)
py for y ∈ C. Hence, the greedy algorithm select in each subtree a solution of

minimum cost. But now using the fact that the cost of solution can be expressed as cost of the solution
in the subtrees it follows that Algorithm 1 returns a solution that contains the centers in an order that
maximizes at every step the value d(y)

i which, by the above expression, minimize the the cost.

Finally, we note that the partitions induce a hierarchical clustering because every time we open a new
center all the points in the sub-tree rooted at the new label node are assigned to it. In fact, suppose
that this is false then there is another node in the sub-tree that is already label. But this is impossible
by construction because we always label the highest unlabelled ancestor in the tree and so an already
labelled node cannot be at a lower level of a newly labelled node. 2

H Missing proof of Section 3.2

We start by showing the. following lemma:

Lemma H.1 Algorithm 2 and Algorithm 1 output the same solution.

Proof. Suppose by contradiction that the two algorithms return different ordering of the centers. In
particular, let {v1

1 , v
1
2 , . . . } the ordering in which points are selected by Algorithm 1 and {v2

1 , v
2
2 , . . . }

the ordering obtained after sorting by Algorithm 2 and let i be the first index for which v1
i 6= v2

i .
Recall that during the execution of the two algorithms we sort by breaking ties consistently(for
example by looking at points ids). Our proof strategy is to show that if v1

i is selected by Algorithm 1
over v2

i , this contradicts the fact that v2
i is the i-th element in the ordering Algorithm 2.

Now, let ` be the largest number such that A`(v1
i ) does not contain any node in {v2

1 , v
2
2 , . . . , v

2
i−1}

and let `′ be the largest number such that A`′(v2
i ) does not contain any node in {v2

1 , v
2
2 , . . . , v

2
i−1}.

We note that there are two nodes vx ∈ A`(v
1
i ) and vy ∈ A`′(v

2
i ) for which BENF(vx, `

′) and
BENF(vy, `

′) have not been discarded by Algorithm 2. This is true because in the first filtering
Algorithm 2 does not discard the maximum benefit elements in the subtrees rooted a`(v1

i ) and
a`′(v

2
i ). And in addition, at any level larger than `(`′) no element in A`(v1

i ) (A`′(v2
i )) is the element

of maximum benefit by definition of ` and by the fact that Algorithm 2 selected {v2
1 , v

2
2 , . . . , v

2
i−1}.

So the maximum benefit elements in the subtrees rooted a`(v1
i ) and a`′(v2

i ) are not discarded even in
this second phase.

Now, if vy 6= v2
i Algorithm 2 would. have select vy over v2

i because after filtering we know by the
above observations that vy is the element with maximum benefit in A`′(v2

i ). For the same reason
we also have that BENF(vx, `) ≥ BENF(v1

i , `). In addition given that Algorithm 2 selects v2
i as i-th

center we have BENF(v2
i , `
′) ≥ BENF(vx, `) ≥ BENF(v1

i , `). But now, by the definition of BENF
and by observation 3.3 and lemma 3.4 this imply that the cost of {v1

1 , v
1
2 , . . . , v

1
i−1, v

2
i } is smaller

than the cost {v1
1 , v

1
2 , . . . , v

1
i−1, v

1
i } or they are the same but the ties are broken in favor of v2

i . So
Algorithm 1 will select v2

i over v1
i leading to a contradiction. So the two orderings and the two

solutions are identical.

For the partition we note that the also in the new algorithm the points are assigned to the closest
labelled ancestor and so the partitions are equivalent. 2

We are now ready to show that Algorithm 2 has the desired properties.
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Theorem 3.5 Algorithm 2 finds an optimum solution for the hierarchical k-median problem on
RHSTs in time O(n log2(∆ + n)).

Proof. The fact that Algorithm 2 finds the optimum solution follows from combining Lemma H.1
and Theorem 3.2. Furthermore, all the BENF (Line 1) can be compute in time O(n log2 ∆), since we
have to compute O(n log ∆) many and each is a sum of O(log ∆) values. Now consider some level
` in the tree embedding. The total overall number of pairs (·, `) in each layer is exactly n. Therefore
computing the maximum (Line 4), deleting the rest (Line 6) and construct the sets C(x,`) takes O(n)
time for each layer and O(n log ∆) time in total. The second filtering step (Line 10) can also be done
in time O(n log ∆) since it finds the maximum elements in n lists (one for each element) and each
list is of length O(log(∆)). Finally, we have that after filtering at most one pair (x, ·) for each point
x remains. So we can sort the remaining pairs (at most n many) in time O(n log n), which concludes
the lemma. 2

I Results in the General Space

In this section we address the assumption over the space of the input points, P ⊆ {0, . . . ,∆}d.

First observe that given a general instance P ⊆ Rd and a rough estimate of the optimum solution
(poly(n)), one can achieve an instance P ⊆ {0, . . . ,∆}d for some ∆ ∈ poly(n) by losing a factor
1 + 1/poly(n) in the approximation guarantee in linear time. Unfortunately such estimate of the
optimum solution might not be achievable in some cases. Therefore we explain an alternative idea.

The only part in our approach that is using the assumption of P ⊆ {0, . . . ,∆}d is the tree embedding
step, i.e., 2-RHST. We present how to construct such embedding for P ⊆ Rd. To this end, we first
compute an upper bound MAXDIST on the maximum distance between two points within a factor of
2. This can be done by selecting any point and by computing the maximum distance between such
point and any other point in the input. Then multiply this distance by 2. The root of the tree represents
an axis-aligned cube of side length 2MAXDIST centered at x, we apply the same construction as
before to construct each height of the 2-RHST. We continue until every cube contains at most a
single point. This results in a tree where all leaves are at the same height, the height is at most
H = O(log(d∆′)) where ∆′ is the ratio between the maximum and minimum distance of two points.
Moreover to achieve that the length of the edges at height ` is 2`, we can divide the value of all the
edges in the tree by the length of the edges at height zero. Recall that all the edges at the same height
have the same value.

This ideas enables to get the results presented in the paper with the same bound but ∆ is replaced by
d∆′. Notice that since in all the bounds ∆ only appears in log function, this change does not affect
the performance significantly.

J Reducing Dimension in Distributed Setting

The dimensionality reduction is obtained by basically multiplying an n-by-d matrix (representing the
input points) with a random d-by-O(log n) matrix. This can be done using memory s ∈ Ω(d log n)
in O(logs(nd log n)) MPC rounds with O((nd log n)/s) machines and a total running time of
O(nd log n) similar to algorithms in [28].

K Parallel Speed-up

In this section, we describe our empirical results on the speed-up obtained by increasing the number
of machines. We consider artificial datasets of sizes 100 millions, 1 billion and 10 billions points. We
give the relative running time as the number of machine increases in Table 5.
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Figure 5: Speed-up for the massive datasets of size almost 100 millions, 1 billion, and 10 billion.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] Please refer to the Introduction.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] This work

is mostly a new clustering algorithm improving performance of previous work with no
clear societal impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] The links to the
datasets are provided. We also submit the code with supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] The number of machines used are
reported.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

22



5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

23


	Introduction
	Preliminaries
	A Work Efficient Sequential Algorithm
	Quadtree Embedding into a 2-RHST
	Optimal Algorithms for k-Median on 2-RHST
	A Greedy Algorithm for 2-RHST
	Quasi Linear Time Algorithm


	Euclidean k-Median in the MPC Model
	Empirical Evaluation
	Distributed Hierarchical Algorithms
	Distributed Algorithms

	Conclusions
	Additional Related Works
	Description of Baseline Algorithms and Experiments Setup
	Further Sequential Comparisons
	Coreset Comparisons
	Description of the Massive Datasets
	Construction of the embedding and missing proofs of section:Embedding
	Missing proof of sec:greedy
	Missing proof of sec:seq
	Results in the General Space
	Reducing Dimension in Distributed Setting
	Parallel Speed-up

