
Supplementary Material224

MLP Binary Connect Architecture225

Dropout p = 0.2
Fully Connected Layer (units = 2048, bias = False)

ReLU
Batch Normalization Layer (gain = 1, bias = 0)

Dropout p = 0.2
Fully Connected Layer (units = 2048, bias = False)

ReLU
Batch Normalization Layer (gain = 1, bias = 0)

Dropout p = 0.2
Fully Connected Layer (units = 2048, bias = False)

ReLU
Batch Normalization Layer (gain = 1, bias = 0)

Dropout p = 0.2
Fully Connected Layer (units = 2048, bias = False)

Batch Normalization Layer (gain = 1, bias = 0)
Softmax

VGG Binary Connect Architecture226

Convolutional Layer (channels = 128, kernel-size = 3×3, bias = False, padding = same)
ReLU

Batch Normalization Layer (gain = 1, bias = 0)
Convolutional Layer (channels = 128, kernel-size = 3×3, bias = False, padding = same)

ReLU
Max Pooling Layer (size = 2×2, stride = 2×2)

Batch Normalization Layer (gain = 1, bias = 0)
Convolutional Layer (channels = 256, kernel-size = 3×3, bias = False, padding = same)

ReLU
Batch Normalization Layer (gain = 1, bias = 0)

Convolutional Layer (channels = 256, kernel-size = 3×3, bias = False, padding = same)
ReLU

Max Pooling Layer (size = 2×2, stride = 2×2)
Batch Normalization Layer (gain = 1, bias = 0)

Convolutional Layer (channels = 512, kernel-size = 3×3, bias = False, padding = same)
ReLU

Batch Normalization Layer (gain = 1, bias = 0)
Convolutional Layer (channels = 512, kernel-size = 3×3, bias = False, padding = same)

ReLU
Max Pooling Layer (size = 2×2, stride = 2×2)

Batch Normalization Layer (gain = 1, bias = 0)
Fully Connected Layer (units = 1024, bias = False)

ReLU
Batch Normalization Layer (gain = 1, bias = 0)

Fully Connected Layer (units = 1024, bias = False)
ReLU

Batch Normalization Layer (gain = 1, bias = 0)
Fully Connected Layer (units = 10, bias = False)
Batch Normalization Layer (gain = 1, bias = 0)

Softmax

10



MLP Binary Connect Architecture for Continual Learning227

Fully Connected Layer (units = 100, bias = False)
ReLU

Batch Normalization Layer (gain = 1, bias = 0)
Fully Connected Layer (units = 100, bias = False)

ReLU
Batch Normalization Layer (gain = 1, bias = 0)

Fully Connected Layer (units = 100, bias = False)
ReLU

Batch Normalization Layer (gain = 1, bias = 0)
Softmax

LRNet Architecture (MNIST)228

Convolutional Layer (channels = 32, kernel-size = 5×5, bias = False, padding = same)
Max Pooling Layer (size = 2×2, stride = 2×2)

Batch Normalization Layer (gain = 1, bias = 0)
ReLU

Convolutional Layer (channels = 64, kernel-size = 5×5, bias = False, padding = same)
Max Pooling Layer (size = 2×2, stride = 2×2)

Batch Normalization Layer (gain = 1, bias = 0)
ReLU

Fully Connected Layer (units = 512, bias = False)
Batch Normalization Layer (gain = 1, bias = 0)

ReLU
Fully Connected Layer (units = 10, bias = False)
Batch Normalization Layer (gain = 1, bias = 0)

Softmax

11



LRNet Architecture (CIFAR-10)229

Convolutional Layer (channels = 128, kernel-size = 3×3, bias = False, padding = same)
Batch Normalization Layer (gain = 1, bias = 0)

ReLU
Convolutional Layer (channels = 128, kernel-size = 3×3, bias = False, padding = same)

Batch Normalization Layer (gain = 1, bias = 0)
Max Pooling Layer (size = 2×2, stride = 2×2)

ReLU
Convolutional Layer (channels = 256, kernel-size = 3×3, bias = False, padding = same)

Batch Normalization Layer (gain = 1, bias = 0)
ReLU

Convolutional Layer (channels = 256, kernel-size = 3×3, bias = False, padding = same)
Batch Normalization Layer (gain = 1, bias = 0)
Max Pooling Layer (size = 2×2, stride = 2×2)

ReLU
Convolutional Layer (channels = 512, kernel-size = 3×3, bias = False, padding = same)

Batch Normalization Layer (gain = 1, bias = 0)
ReLU

Convolutional Layer (channels = 512, kernel-size = 3×3, bias = False, padding = same)
Batch Normalization Layer (gain = 1, bias = 0)
Max Pooling Layer (size = 2×2, stride = 2×2)

ReLU
Fully Connected Layer (units = 1024, bias = False)

Batch Normalization Layer (gain = 1, bias = 0)
ReLU

Fully Connected Layer (units = 10, bias = False)
Batch Normalization Layer (gain = 1, bias = 0)

Softmax

Semantic Segmentation using BayesBiNN with augmented dataset230

We generated 1260 images from 30 original images using the rotation, random horizontal flip, random vertical flip231

operations. The result for BayesBiNN with this extended dataset was still very poor and inconsistent with the other232

methods (STE and Full Precision). The results presented in Section 5.4 were to show the extent of difficulty to train233

BayesBiNN for segmentation task as even with such a small dataset and large number of epochs, it was still not even234

able to overfit. Following are some of the images obtained by using BayesBiNN with this bigger dataset:235

(a) Mask example 1 (b) Mask example 2

12


