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Abstract

Recent works have shown that tackling offline reinforcement learning (RL) with a conditional
policy produces promising results. Decision Transformers (DT) have shown promising
results in offline reinforcement learning by leveraging sequence modeling. However, standard
DT methods rely on return-to-go (RTG) tokens, which are heuristically defined and often
suboptimal for goal-conditioned tasks. In this work, we introduce Quasimetric Decision
Transformer (QuaD), a novel approach that replaces RTG with learned quasimetric distances,
providing a more structured and theoretically grounded guidance signal for long-horizon
decision-making. We explore two quasimetric formulations: interval quasimetric embeddings
(IQE) and metric residual networks (MRN), and integrate them into DTs. Extensive
evaluations on the AntMaze benchmark demonstrate that QuaD outperforms standard
Decision Transformers, achieving state-of-the-art success rates and improved generalization
to unseen goals. Our results suggest that quasimetric guidance is a viable alternative
to RTG, opening new directions for learning structured distance representations
in offline RL.

1 Introduction

Reinforcement Learning (RL) has achieved remarkable success in domains such as robotics (Kormushev
et al., 2013), autonomous driving (Sallab et al., 2017), and game playing (Silver et al., 2016), by enabling
agents to learn optimal policies through trial-and-error interaction with an environment. However, these
successes typically rely on online RL paradigms, which are often impractical in real-world settings due to
sample inefficiency, safety concerns, and computational constraints.

Offline RL addresses these challenges by learning from static datasets of prior interactions without further
environment access (Levine et al., 2020). It enables safe and efficient learning but suffers from the challenge
of distributional shift, where the learned policy encounters out-of-distribution states or actions during
inference (Kumar et al., 2020). A recent family of models, known as Decision Transformers (DTs) (Chen
et al., 2021), has approached RL from a sequence modeling perspective, treating trajectories as sequences to
be predicted via autoregressive transformers. DTs condition action prediction on past states, actions, and a
Return-to-Go (RTG) token, representing the desired cumulative future reward.

While DTs have shown promise, their reliance on RTG presents critical limitations in goal-conditioned RL
(GCRL) environments. In these settings, tasks are framed as reaching a specific goal state, and rewards are
often sparse or binary. Consequently, RTG becomes an arbitrary and uninformative signal during most of the
trajectory, particularly in long-horizon tasks such as AntMaze (Fu et al., 2020), where DTs perform poorly
in medium and large maze configurations. Furthermore, the use of naïve mean squared error (MSE) loss
functions treats all actions equally, failing to emphasize high-value behaviors required for successful goal
completion.

This paper introduces the Quasimetric Decision Transformer (QuaD), a novel approach that replaces
RTG conditioning with a learned quasimetric function d(s, g), which estimates the directional difficulty of
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reaching a goal state g from a current state s. Unlike scalar reward aggregates, quasimetric functions provide
structured and continuous guidance that aligns more naturally with goal-directed behavior. We explore
two such formulations: Interval Quasimetric Embedding (IQE) (Wang & Isola, 2022a) and Metric Residual
Networks (MRN) (Liu et al., 2023), each capturing asymmetric transition difficulty in high-dimensional
spaces.

In addition, we augment the DT training objective with value-aware loss functions, including Advantage-
Weighted Regression (AWR) (Peng et al., 2019) and DDPG with Behavior Cloning (DDPG+BC) (Lillicrap
et al., 2016), to prioritize high-value actions and address the limitations of MSE. Through extensive experiments
on the AntMaze benchmark, we demonstrate that QuaD significantly outperforms baseline DTs, behavior
cloning, and value-based methods, particularly in sparse-reward and long-horizon tasks.

In summary, our key contributions are:
• We propose replacing RTG in Decision Transformers with a learned quasimetric signal that better reflects

goal-reaching difficulty.
• We introduce value-aware objectives to move beyond imitation learning and enhance goal-directed behavior.
• We evaluate two quasimetric architectures, IQE and MRN, to structure the goal-space representation.
• We conduct experiments showing that QuaD outperforms strong offline RL baselines on challenging

AntMaze tasks.
Our results indicate that structured distance signals and value-guided optimization are essential to bridging
the gap between sequence modeling and effective goal-conditioned RL.

2 Related Work

Our work builds on previous work in learning temporal distances, concepts from goal-conditioned RL and
sequential modeling for reinforcement learning. Our analysis will draw a connection between these prior
methods, a connection which will ultimately result in a new guiding metric for decision transformer for
goal-conditioned environments.

2.1 Goal Conditioned Reinforcement Learning

Goal-conditioned reinforcement learning (GCRL) provides a flexible framework for training policies to
achieve diverse outcomes by conditioning on explicit goal states. Unlike traditional reinforcement learning
(RL), which optimizes for cumulative rewards, GCRL shifts the focus toward reaching specific states in the
environment, making it particularly useful for tasks where defining a dense reward function is challenging or
infeasible. A key challenge in GCRL is learning effective goal-conditioned value functions. Several approaches
leverage hindsight relabeling (Andrychowicz et al., 2017), contrastive learning (Eysenbach et al., 2022), and
state-occupancy matching to improve generalization and robustness. However, many of these methods rely on
bootstrapping with a learned value function, which can introduce instability and inefficiencies, particularly in
long-horizon tasks with sparse rewards (Ghugare et al., 2024). To mitigate the challenges of long-horizon
planning, hierarchical RL (HRL) (Pateria et al., 2021) and subgoal planning (Chane-Sane et al., 2021) have
been explored as extensions to GCRL. HRL methods decompose tasks into subgoals and learn policies that
operate at multiple temporal resolutions, improving sample efficiency and task scalability.

2.2 Transformers for Reinforcement Learning

Transformers have shown remarkable generalization capabilities in fields such as language modeling, image
generation, and representation learning (Vaswani et al., 2017; Devlin et al., 2019; He et al., 2022). Within offline
RL, transformer-based policies treat RL tasks as sequential prediction problems. Decision Transformer (Chen
et al., 2021) models trajectories as sequences and autoregressively predicts actions conditioned on return-to-go,
past states, and actions. The Trajectory Transformer (Janner et al., 2021) demonstrates transformer-based
learning for single-task offline policies. Multi-game Decision Transformer (Lee et al., 2022) and Gato (Reed
et al., 2022) extend transformer-based policies to multi-task and cross-domain applications. However, these
approaches distill expert policies rather than enabling self-improvement. When data are suboptimal or
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adaptation to new tasks is required, multi-game DTs must fine-tune parameters, and Gato must rely on
expert demonstrations. If the model generalizes effectively to out-of-distribution return-to-go values, it can
generate superior policies by prompting higher returns. However, achieving this level of generalization remains
an open challenge in sequential decision-making. DT struggles with robustness to data distribution shifts,
particularly when trained on trajectories generated by suboptimal policies. Research indicates that DT
underperforms in tasks requiring trajectory stitching, integrating suboptimal trajectory segments to create
improved policies(Fujimoto & Gu, 2021; Emmons et al., 2022; Kostrikov et al., 2022). This confirms that
naive return-to-go prompts are insufficient for solving complex sequential decision-making problems.

2.3 Metric Learning in RL and State Abstractions for Decision Making

A fundamental challenge in reinforcement learning (RL) is learning representations that capture meaningful
distances between states. Successor representations and successor features (Dayan, 1993; Barreto et al.,
2017) offer one approach by using temporal difference learning to predict states visited in the future. While
these methods bear similarity to Q-learning (Watkins & Dayan, 1992) in tabular settings, they struggle
with continuous states and actions (Janner et al., 2021; Touati & Ollivier, 2021). To address this, recent
work (Eysenbach et al., 2022; Touati & Ollivier, 2021)has proposed learning representations where inner
products correspond to visitation probabilities. The notion of state-space geometry plays a key role in RL.
Prior work has explored quasimetrics for multi-task planning (Micheli et al., 2020) and parametrizing Q-
functions with improved goal-reaching performance in DDPG (Lillicrap et al., 2016) and HER (Andrychowicz
et al., 2017)). Other approaches define distances based on optimal value functions, the Wasserstein-1
distance (Durugkar et al., 2021), or bisimulation metrics (Hansen-Estruch et al., 2022; Ferns et al., 2011). A
key advantage of quasimetrics is their ability to capture transition difficulty between states while satisfying
the triangle inequality. We utilize a quasimetric that can be easily learned from discounted state occupancy
measures, providing a principled way to model goal-conditioned value functions without assuming symmetry
or other restrictive properties. By leveraging state abstraction techniques and quasimetric learning, our
approach enables improved long-horizon generalization and more effective goal-reaching policies.

2.4 Offline Policy Optimization: AWR vs. DDPG+BC

Recent advances in offline reinforcement learning have explored hybrid methods that combine value-based
learning with supervised behavioral cloning. Two widely studied techniques in this space are Advantage-
Weighted Regression (AWR) and DDPG with Behavior Cloning (DDPG+BC). AWR (Peng et al.,
2019) is a policy optimization technique that estimates advantages using a fixed critic and then performs a
weighted regression to update the policy. Unlike traditional actor-critic methods that rely on gradient-based
policy updates, AWR performs non-parametric advantage-weighted behavioral cloning. This yields a stable
policy improvement method well-suited to offline data, where overestimation of values can be harmful. AWR
introduces a temperature hyperparameter that controls the tradeoff between policy entropy and exploitation
of the learned critic. DDPG+BC (Fujimoto & Gu, 2021) is a modification of the Deep Deterministic Policy
Gradient (DDPG) algorithm (Lillicrap et al., 2016) that incorporates a behavioral cloning regularization term
in the policy loss. This term encourages the learned policy to remain close to the behavior policy observed in
the offline dataset, stabilizing learning and mitigating value overestimation. Unlike AWR, DDPG+BC relies
on backpropagation through both actor and critic networks and supports deterministic policy updates. In our
work, we explore both AWR and DDPG+BC losses within the QuaD framework as alternative optimization
objectives for guiding the transformer’s action predictions. This allows us to study how different forms of
value-aware imitation affect policy learning under quasimetric supervision.

3 Preliminaries

In this section, we introduce notation and preliminary definitions for goal-conditioned RL, the Decision
Transformer (Chen et al., 2021) method and the notion of quasimetrics (Wang & Isola, 2022a;b; Liu et al.,
2023) which will serve as the foundation for this work.
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3.1 Problem Setting

The offline goal-conditioned reinforcement learning (GCRL) problem is defined by a controlled Markov process
M = (S, A, µ, p) (a Markov decision process (MDP) without rewards) along with an unlabeled dataset D.
Here, S denotes the state space, A represents the action space, µ(s) ∈ ∆(S) is the initial state distribution,
and p(s′ | s, a) : S × A → ∆(S) describes the transition dynamics. The notation ∆(X ) refers to the space of
probability distributions over a set X . The dataset D = {τ (n)}N

n=1 consists of N unlabeled trajectories:

τ (n) = (s(n)
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0 , r
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The objective of offline GCRL is to learn a goal-conditioned policy π(a | s, g) : S × S → ∆(A) that enables
an agent to reach any target state g ∈ S from any initial state in the minimum number of time steps. This is
achieved by maximizing the expected return:

Eτ∼p(τ |g)

[
T∑

t=0
γtδg(st)

]
, (1)

where T ∈ N is the episode horizon, γ ∈ (0, 1) is the discount factor, and p(τ | g) is the trajectory distribution
induced by:

p(τ | g) = µ(s0)
T −1∏
t=0

π(at | st, g)p(st+1 | st, at).

Here, δg(s) represents the Dirac delta function, which in a discrete MDP corresponds to the indicator function
1{g}(s). In continuous MDPs, a precise definition requires measure-theoretic notation or distribution theory,
but we omit these details for simplicity.

For any goal g ∈ S, we frame goal-reaching as an inference problem (Borsa et al., 2019; Barreto et al., 2022;
Blier et al., 2021; Eysenbach et al., 2022): given the current state and desired goal, what is the most likely
action to bring the agent closer to that goal? This corresponds to solving the MDP Mg, which extends M
with a goal-conditioned reward function:

rg(s) = (1 − γ)δg(s). (2)

Thus, a goal-conditioned policy π(a | s, g) receives both the current state and goal as inputs, effectively
transforming M into a goal-conditioned MDP, denoted as Mg.

3.2 Revisiting Decision Transformers

Decision Transformer (DT) (Chen et al., 2021) is an influential method that bridges sequence modeling
with decision-making by adapting the transformer architecture (Vaswani et al., 2017) to reinforcement
learning. Unlike traditional reinforcement learning (RL) algorithms that rely on dynamic programming or
policy gradient methods, DT directly learns an autoregressive model from trajectory data using a causal
transformer (Radford et al., 2019). This allows DT to leverage powerful pre-trained architectures developed
for language and vision tasks (Brown et al., 2020; Chowdhery et al., 2023). DT modifies initial trajectories
from the dataset and represents them as :

τ = (R1, s1, a1, R2, s2, a2, . . . , RT , sT , aT ), (3)

where Rt =
∑T

i=t ri is the return-to-go (RTG) from time step t onward. The DT policy is parameterized as:

πDT(at|st, Rt, τt), (4)

where τt = (R0, s0, a0, . . . , Rt−1, st−1, at−1) is the sub-trajectory history before time step t. Training is
performed autoregressively, where the model predicts actions conditioned on the previous state, RTG, and
trajectory history. At test time, DT initializes with a desired return-to-go R0 and an initial state s0. The
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Causal Transformer

Quasimetric Network Quasimetric Network Quasimetric Network

Figure 1: Architecture of the Quasimetric Decision Transformer (QuaD). The model replaces return-
to-go (RTG) with a learned quasimetric function d(st, g), which provides structured goal-aware guidance. The
Quasimetric Network computes dt given the current state st and the goal g, producing a distance embedding.
These embeddings, along with state-goal embeddings sgt and past actions at, are tokenized and processed by
a causal transformer, which autoregressively predicts actions at+1. The quasimetric function enables better
trajectory modeling and generalization in goal-conditioned RL tasks.

generated action is executed, the return is decremented by the achieved reward, and the process continues
until termination. The authors of (Chen et al., 2021) argue that the conditional prediction model is able to
perform policy optimization without using dynamic programming. However, recent works observe that DT
often shows inferior performance compared to dynamic programming based offline RL algorithms when the
offline dataset consists of sub-optimal trajectories (Fujimoto & Gu, 2021; Emmons et al., 2022; Kostrikov
et al., 2022).

3.3 Learning the Quasimetric Distance Function

Within any Markov decision process (MDP), there is an intuitive notion of “distance” between states as the
difficulty of transitioning between them. There are many seemingly reasonable definitions for distance a
priori: likelihood of reaching the goal at a particular time, expected time to reach the goal, likelihood of ever
reaching the goal, etc. (under some policy). The key mathematical structure for a distance to be useful for
reaching goals is that it must satisfy the triangle inequality d(a, c) ≤ d(a, b) + d(b, c): being able to go from
a → b and from b → c means going from a → c can be no harder than both of the aforementioned steps. Such
a distance is called a metric over the state space if it is symmetric and more generally a quasimetric (Wang
& Isola, 2022b;a; Liu et al., 2023).

Definition 3.1. We define a distance function d : S × S → R that satisfies nonnegativity and identity
properties. The set of all such distance functions is given by:

D ≜ {d : S × S → R | d(s, s) = 0, d(s, s′) > 0
for all s ̸= s′ ∈ S}. (5)

A distance function satisfying the triangle inequality is called a quasimetric, and the set of all quasimetrics is:
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Q ≜ {d ∈ D | d(s, g) ≤ d(s, w) + d(w, g)
for all s, g, w ∈ S}. (6)

While prior work on bisimulations (Hansen-Estruch et al., 2022) use a reward function to construct such
a distance, we will aim to leverage a notion of distance that does not require a reward function. For the
correct choice of distance, learning a goal-conditioned value function will correspond to selecting a distance
metric that best enables goal reaching. Such a distance can then be learned with an architecture that directly
enforces metric properties, e.g., metric residual network (MRN)(Liu et al., 2023) and interval quasimetric
embeddings (IQE) (Wang & Isola, 2022b;a). Since the space of value (quasi)metrics impose a strong induction
bias over value functions, using the right metric architecture can enable better combinatorial and temporal
generalization without requiring additional samples (Wang & Isola, 2022b;a; Liu et al., 2023). Unlike a
standard metric, a quasimetric does not necessarily satisfy symmetry, i.e., d(x, y) ̸= d(y, x) in general (Wang
& Isola, 2022a). This asymmetry is particularly useful for modeling goal-conditioned environments where
reaching a state g from s may not have the same difficulty as returning from g to s.

4 Quasimetric Guided Decision Transformer

The Quasimetric Decision Transformer (QuaD) replaces RTG with a learned quasimetric function d(s, g),
which explicitly models the difficulty of reaching a goal state g from a given state s. This quasimetric satisfies
the properties discussed in Section 3.3 and provides a structured distance measure for goal-reaching tasks.

A QuaD trajectory is represented as:

τ = (s1, a1, d(s1, g), s2, a2, d(s2, g), . . . ), (7)

where d(st, g) replaces the return-to-go Rt.

The core idea behind QuaD is that d(s, g) acts as a structured guidance signal, allowing the transformer
model to (1) learn more effective trajectory stitching by minimizing d(s, g) at each step, (2) Generalize to
new goals based on quasimetric-based similarity in state space.

4.1 Quasimetric Models in Goal-Conditioned MDPs

A quasimetric model dθ usually consists of (1) a deep encoder mapping inputs in X to a generic latent space Rd

and (2) a differentiable latent quasimetric head dlatent ∈ (Rd) that computes the quasimetric distance for two
input latents. θ contains both the parameters of the encoder and parameters of the latent head dlatent, if any.
Recent works have proposed many choices of dlatent, which have different properties and performances. We
refer interested readers to (Wang & Isola, 2022b) for an in-depth treatment of such models. The quasimetric
model dθ is optimized as follows:

max
θ

Es∼pstate
g∼pgoal

[dθ(s, g)] (8)

subject to E(s,a,s′,r)∼ptransition [relu(dθ(s, s′) + r)2] ≤ ϵ2,

where ε > 0 is small, and relu(x) prevents dθ(s, s′) from exceeding the transition cost −r ≥ 0. After
optimization, we take dθ as our estimate of the difficulty of reaching a goal state g from a given state s.

4.1.1 Training QuaD with Quasimetric Distance

Using mean-squared-error loss alone in Decision Transformer (DT) can lead to suboptimal policy learning, as
it directly minimizes the difference between predicted and observed actions without considering long-term
rewards. This approach lacks a mechanism to distinguish high-value actions from suboptimal ones, limiting
performance in offline RL settings. To address this, we integrate Deep Deterministic Policy Gradient with
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Behavior Cloning (DDPG+BC) (Lillicrap et al., 2016), combining Q-function optimization with policy
regularization. The QuaD training objective follows the standard Decision Transformer loss function but
conditions on the quasimetric distance d(s, g):

LQuaD = λ · E(s,a)∼D [−Q(s, g)] + (1 − λ) · E(s,a)∼D

[
∥â − a∥2

]
, (9)

The first term, E[−Q(s, g)], promotes actions that yield higher Q-values. Minimizing the negative Q-value
encourages value-driven behavior. The second term, E[∥â − a∥2], is a standard mean squared error loss
between the predicted action â and the ground-truth action a from the dataset, encouraging imitation of
demonstrated behavior.

DDPG provides value-based updates, ensuring the policy prioritizes high-reward actions, while BC prevents
excessive deviation from the dataset, improving stability. The additional MSE loss refines action consistency,
keeping predictions aligned with observed behaviors while benefiting from value-driven learning. Furthermore,
instead of treating goals and states as separate tokens as done by DT, we enhance trajectory tokenization by
concatenating the goals with state together and then tokenize the vector, improving context understanding.
This integrated approach results in better stability, improved action selection, and more effective offline RL
training

The quasimetric function d(s, g) is learned separately as a neural network fθ(s, g) trained to satisfy the
quasimetric properties:

d(s, g) ≈ min
π

Eπ

[
T∑

t=0
c(st, g) | s0 = s

]
, (10)

where c(st, g) is a cost function associated with reaching g from st. Training fθ ensures that the quasimetric
structure is learned efficiently and provides meaningful goal-directed guidance.

5 Experiments

Our experiments will use three offline goal-conditioned tasks, aiming to answer the following questions:

1. Quasimetric Guidance vs. Return-to-Go (RTG): How does replacing RTG conditioning with
quasimetric distances affect trajectory optimization and goal-reaching performance?

2. Effectiveness of Different Quasimetric Models: Which quasimetric model provides better
generalization and planning capabilities?

3. Impact of Loss Functions: How do different loss functions (AWR vs DDPGBC) influence
quasimetric learning and goal-reaching success?

5.1 Experimental Setup

We first describe our evaluation environments, shown in Fig.2. We evaluate QuaD in D4RL AntMaze (Fu
et al., 2020), a suite of six goal-conditioned navigation tasks featuring an 8-DoF Ant robot navigating from
a starting position to a goal location. These tasks require long-horizon planning and trajectory stitching,
making them well-suited for evaluating quasimetric-based decision transformers. The six tasks include:
• AntMaze-Umaze (Play & Diverse)
• AntMaze-Medium (Play & Diverse)
• AntMaze-Large (Play & Diverse)
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Figure 2: D4rl AntMaze environments - Umaze, Medium & Large

We evaluate QuaD against a comprehensive set of baselines spanning three primary offline reinforcement
learning paradigms: behavior cloning, value-based methods, and sequence modeling approaches. For behavior
cloning, we include Behavior Cloning (BC), a standard supervised learning method trained to replicate
actions in the dataset without using any reward or goal information, and Goal-Conditioned Behavior Cloning
(GCBC) (Ghosh et al., 2021), which conditions the policy on goal states to imitate goal-reaching behaviors
without value estimation. Among value-based methods, we compare against TD3+BC (Fujimoto & Gu, 2021),
which augments the TD3 actor-critic framework with behavior cloning regularization to ensure stability in
the offline setting; OneStepRL (Brandfonbrener et al., 2021), which limits value updates to a single step to
avoid extrapolation errors over long horizons; and Goal-Conditioned IQL (GC-IQL), an adaptation of Implicit
Q-Learning (Kostrikov et al., 2022) for goal-conditioned tasks that filters actions based on learned Q-values
and avoids value overestimation. For sequence modeling, we include the Decision Transformer (DT) (Chen
et al., 2021), which models trajectories autoregressively and conditions on return-to-go (RTG) to predict
actions, and the Q-Learning Decision Transformer (QLDT), a variant of DT that incorporates Q-values
into the transformer input to guide prediction toward high-value behaviors. All baselines are evaluated on
the AntMaze benchmark under identical conditions using five random seeds, with 95% confidence intervals
shown via shaded regions in figures or standard deviations reported in tables. Additional training and
implementation details are provided in the Appendix.

Environment TD3+BC OneStepRL BC GCBC GC-IQL DT QLDT QuaD(IQE) QuaD(MRN)
An-U-v2 78.6 64.3 54.6 67.3 ± 10.1 63.5 ± 14.6 53.6 ± 7.3 67.2 ± 2.3 91.0 ± 3.16 89.2 ± 3.82

An-UD-v2 71.4 60.7 45.6 71.9 ± 16.2 70.9 ± 11.2 42.2 ± 5.4 62.1 ± 1.6 91.4 ± 3.58 91.4 ± 3.23
An-MP-v2 10.6 0.3 0 20.2 ± 9.1 50.7 ± 18.8 0.0 0.0 59.4 ± 3.66 60.8 ± 3.24
An-MD-v2 3.0 0.0 0 23.1 ± 15.6 56.5 ± 14.4 0.0 0.0 60.6 ± 2.87 57.8 ± 3.2
An-LP-v2 0.2 0.0 0 14.4 ± 9.7 21.6 ± 15.2 0.0 0.0 33.2 ± 3.80 32.0 ± 1.79
An-LD-v2 0.0 0.0 0 20.7 ± 9.7 29.8 ± 12.4 0.0 0.0 31.2 ± 2.07 30.4 ± 3.36

Table 1: Offline RL benchmarks: We use the AntMaze suite (Fu et al., 2020) of goal-conditioned RL tasks
to compare our method to prior methods, measuring the success rate and standard error across multiple
seeds. The methods on the right of the vertical line are transformer-based methods, the top scores among
which are highlighted in bold. To save space, the name of the environments and datasets are abbreviated as
follows: for the environments An=Ant; for the datasets U=umaze, UD=umaze-diverse, MP=medium-play,
MD=medium-diverse, LP=large-play, LD-large-diverse. The proposed solution performs well.

5.2 Main Results on AntMaze Environments

Table 1 summarizes the success rates (%) and standard errors across multiple seeds, comparing our approach
against various state-of-the-art offline RL methods, including TD3+BC (Fujimoto & Gu, 2021), OneStep
RL (Brandfonbrener et al., 2021), BC (Behavior Cloning), and Decision Transformer (DT) (Chen et al., 2021).
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The transformer-based methods (right side of the vertical line) are particularly relevant for comparing our
approach, as they employ sequence modeling techniques.

Overall Performance Trends. Our methods, QuaD (IQE) and QuaD (MRN), significantly outperform
Decision Transformer (DT) and QLDT in all environments, particularly in more complex mazes. While DT
struggles to achieve meaningful success rates, our approach demonstrates robust performance even in difficult
settings. Notably, on the easier umaze environments, QuaD (IQE) achieves a success rate of 91.0%, far
surpassing DT (53.6%) and QLDT (67.2%). Similarly, in umaze-diverse, both IQE and MRN models reach
91.4%, outperforming all baselines.

Performance in Medium and Large Mazes. In more challenging medium and large mazes, our method
significantly improves over prior approaches. Notably, in the medium-play setting, DT and QLDT both
fail to achieve meaningful success rates, whereas our QuaD (IQE) and QuaD (MRN) models achieve 59.4%
and 60.8% success rates, respectively, demonstrating the advantage of quasimetric-based distance guidance.
Similarly, in medium-diverse, both of our models maintain a high success rate around 60%, while all prior
transformer-based methods fail to solve the task.

Challenging Large Maze Tasks. The large-scale AntMaze tasks remain among the most challenging
benchmarks in offline RL. While all prior transformer-based methods fail completely (DT and QLDT achieve
0% success), our models significantly outperform previous baselines, achieving 33.2% (IQE) and 32.0% (MRN)
on large-play, and 31.2% (IQE) and 30.4% (MRN) on large-diverse. This demonstrates that our quasimetric
distance-based approach enables effective long-horizon goal reaching, even in highly sparse-reward settings.

Comparison with Traditional Offline RL. Traditional offline RL methods such as TD3+BC, OneStep
RL, and BC fail to generalize effectively across AntMaze tasks. While TD3+BC achieves some success on
umaze and umaze-diverse, its performance drops significantly in medium and large environments, where goal-
conditioned trajectory stitching is required. Our method, on the other hand, maintains strong performance
across all difficulty levels, highlighting its advantage in long-horizon tasks requiring strategic planning.

Overall, QuaD (IQE) and QuaD (MRN) consistently outperform DT, QLDT, and other prior methods across
all AntMaze tasks. The results validate our hypothesis that replacing RTG with quasimetric guidance enables
better goal-directed decision-making in sequence-based RL. Moreover, IQE slightly outperforms MRN in
most settings, suggesting that interval-based quasimetric embeddings provide a stronger representation for
long-horizon trajectory modeling. These findings establish QuaD as a powerful alternative to traditional
RTG-based Decision Transformers, particularly in goal-conditioned RL.

5.3 Ablation Studies

To better understand the performance and generalization capabilities of Quasimetric Decision Transformer
(QuaD), we conduct a series of ablation studies focusing on key design choices: the effectiveness of different
quasimetric learning models and the impact of loss functions on training stability and goal-reaching success.

5.3.1 Effectiveness of Different Quasimetric Methods

A fundamental component of QuaD is the choice of quasimetric function, which serves as a structured guidance
signal in place of return-to-go (RTG). We evaluate the two primary quasimetric formulations introduced in
this work:
• Interval Quasimetric Embeddings (IQE) - IQE learns an interval-based quasimetric representation

by sorting embedded state-goal representations into discrete intervals and aggregating them using mean
and max pooling. This approach enforces implicit ordering constraints, making it robust to trajectory
perturbations.

• Metric Residual Networks (MRN) - MRN computes a residual correction over a base Euclidean
distance, incorporating an additional asymmetric L-infinity term to better capture directed transition
dynamics.
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Comparison Results: We evaluate both quasimetric models across all six AntMaze tasks, reporting success
rates in Tables 2 and 3. Our key findings are:

1. IQE vs. MRN: General Performance Trends. IQE consistently outperforms MRN in most envi-
ronments, particularly in structured mazes. In AntMaze-Umaze, IQE achieves a success rate of 91.0%
(DDPG+BC) and 93.2% (AWR), whereas MRN lags slightly behind at 89.2% (DDPG+BC)
and 92.4% (AWR). This suggests that IQE’s structured interval-based representation is highly
effective in environments where local trajectory stitching is sufficient for goal-reaching.

2. Impact of Quasimetric Choice in Medium-Scale Planning. In AntMaze-Medium-Play and
Medium-Diverse, MRN performs comparably to IQE, with a slight advantage for MRN in Medium-
Play (60.8% (MRN) vs. 59.4% (IQE), DDPG+BC), but an edge for IQE in Medium-Diverse
(61.0% (IQE) vs. 57.8% (MRN), AWR). This indicates that MRN’s additional residual correction
aids in handling longer-horizon dependencies, though IQE remains competitive.

3. Long-Horizon Performance in Large Mazes. In the most difficult environments (AntMaze-
Large-Play and Large-Diverse), both methods see a performance drop due to the extreme sparsity of
rewards and complexity of planning. IQE and MRN yield similar success rates, with IQE slightly
outperforming MRN in Large-Play (33.2% vs. 32.0%, DDPG+BC), but both converging to 31.2%
success in Large-Diverse. This suggests that neither method generalizes well in extremely long-horizon
settings, indicating a potential limitation in quasimetric extrapolation.

IQE provides superior trajectory stitching capabilities in small- and medium-scale environments, whereas
MRN’s residual-based approach enhances stability in longer-horizon tasks. However, in complex large-scale
mazes, both methods reach similar performance ceilings, highlighting the need for further research into
quasimetric learning for extreme long-horizon goal-reaching.

Figure 3: Learning curves of QuaD on antmaze-Umaze-v2 environment with different quasimetric functions
(IQE on left, MRN on the right)

5.3.2 Impact of Different Loss Functions

Beyond the choice of quasimetric function, the selection of an appropriate loss function plays a crucial role in
determining the quality of learned quasimetric representations and the robustness of trajectory conditioning.
We analyze the effect of the following loss formulations:
• Advantage-Weighted Regression (AWR) - This loss function reweights the behavioral cloning loss

using an exponential advantage factor, which is derived from the quasimetric distance function. Higher
advantages result in a greater probability of action selection, biasing the policy toward trajectories with
lower quasimetric distances.
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Figure 4: Learning curves of QuaD on antmaze-medium-play-v2 environment with different quasimetric
functions (IQE on left, MRN on the right)

• DDPG+BC Loss - A hybrid offline RL loss that combines Q-learning (DDPG) and policy regularization
(BC), encouraging quasimetric distance learning while preventing overestimation of value function errors.
This loss is particularly effective for long-horizon planning tasks.

Loss Function Comparison: We evaluate QuaD under each loss function and summarize performance
trends based on the success rates in Tables 2 and 3.

1. AWR excels in small, structured environments. - In AntMaze-Umaze, IQE with AWR achieves
a success rate of 93.2%, slightly outperforming DDPG+BC at 91.0%. - Similarly, in AntMaze-Umaze-
Diverse, AWR-based IQE reaches 89.9%, whereas DDPG+BC achieves 91.4%. - These results suggest
that AWR provides a strong local decision-making bias, making it more effective in short-horizon
structured tasks where optimal trajectories are well-defined.

2. DDPG+BC outperforms AWR in medium and large-scale environments. - In AntMaze-
Medium-Play, IQE with DDPG+BC achieves 59.4%, slightly higher than 58.4% with AWR. - A
similar trend is observed in AntMaze-Medium-Diverse, where IQE scores 60.6% (AWR) vs. 61.0%
(DDPG+BC). - The advantage of DDPG+BC becomes more pronounced in large-scale AntMaze
tasks, particularly in Large-Play (33.2% vs. 31.2%) and Large-Diverse (31.2% for both methods). -
These results indicate that Q-learning improves long-horizon trajectory stitching, making DDPG+BC
preferable for complex planning tasks.

3. MRN follows the same trend as IQE but with slightly lower performance across all
environments. - In AntMaze-Umaze, MRN achieves 92.4% (AWR) and 89.2% (DDPG+BC),
slightly behind IQE. - However, in long-horizon tasks, MRN benefits more from DDPG+BC, as seen
in Medium-Play (60.8%) and Large-Play (32.0%), closing the gap with IQE. - These results suggest
that MRN’s residual structure is more sensitive to loss function selection than IQE.

AWR provides superior stability and early-stage learning efficiency, making it ideal for short-horizon, structured
tasks like Umaze. DDPG+BC enables better long-term planning, significantly improving performance in
medium and large-scale environments where trajectory stitching is crucial. IQE remains the superior
quasimetric model overall, but MRN benefits more from DDPG+BC in large-scale tasks. These findings
suggest that an adaptive loss function, combining AWR’s stability with DDPG+BC’s long-horizon planning
benefits, could be a promising future direction.

5.4 Summary of Ablation Findings

Our ablation studies provide key insights into the effectiveness of different quasimetric models, the impact of
loss function selection, and the robustness of QuaD to quasimetric inaccuracies. The results from Tables 2
and 3 highlight the following key takeaways:
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Environment IQE (AWR) IQE (DDPG+BC)
An-U-v2 93.2 ± 3.21 91.0 ± 3.16
An-UD-v2 89.9 ± 3.23 91.4 ± 3.58
An-MP-v2 58.4 ± 3.66 59.4 ± 3.63
An-MD-v2 61.0 ± 2.07 60.6 ± 2.87
An-LP-v2 31.2 ± 2.28 33.2 ± 3.80
An-LD-v2 31.2 ± 2.17 31.2 ± 2.07

Table 2: Success rate (%) with standard error for IQE using AWR loss and the DDPG+BC loss. Environments:
An=Ant. Datasets: U=umaze, UD=umaze-diverse, MP=medium-play, MD=medium-diverse, LP=large-play,
LD=large-diverse.

Environment MRN (AWR) MRN (DDPG+BC)
An-U-v2 92.4 ± 5.94 89.2 ± 3.82
An-UD-v2 89.3 ± 3.23 91.4 ± 3.23
An-MP-v2 57.2 ± 4.36 60.8 ± 3.24
An-MD-v2 58.6 ± 2.19 57.8 ± 3.2
An-LP-v2 28.4 ± 2.07 32.0 ± 1.79
An-LD-v2 31.2 ± 2.17 30.4 ± 3.36

Table 3: Success rate (%) with standard error for MRN using AWR loss and the DDPG+BC loss. Environments:
An=Ant. Datasets: U=umaze, UD=umaze-diverse, MP=medium-play, MD=medium-diverse, LP=large-play,
LD=large-diverse.

• IQE consistently outperforms MRN in structured environments but faces challenges in long-horizon tasks.
• DDPG+BC significantly improves long-horizon planning and goal-reaching success, outperforming AWR

in larger environments.
• DDPG+BC is the most effective loss function overall, achieving the highest success rates across all AntMaze

tasks.
• Quasimetric-based trajectory modeling provides a significant advantage over RTG-based Decision Trans-

formers.
These findings emphasize the importance of quasimetric selection and loss function choice in effective trajectory
modeling. Future improvements may focus on adaptive loss function strategies and hierarchical extensions
that integrate quasimetric subgoal discovery for enhanced long-horizon planning.

6 Conclusion

We introduced Quasimetric Decision Transformer (QuaD), a novel framework that replaces return-to-go
(RTG) conditioning in Decision Transformers with learned quasimetric distances for goal-conditioned RL.
By leveraging quasimetric learning, QuaD provides a structured, goal-aware signal that improves trajectory
optimization, generalization to unseen goals, and long-horizon planning. Our experiments on AntMaze tasks
demonstrate that QuaD significantly outperforms standard Decision Transformers across all settings, with IQE
excelling in structured navigation tasks. We show that Advantage-Weighted Regression (AWR) is the most
effective loss formulation, while DDPG+BC can further aid long-horizon trajectory stitching. Theoretical
analysis confirms that quasimetric distances offer a superior success predictor compared to RTG, leading
to more effective decision-making. This work establishes the first systematic study of metric learning in
sequence-based RL, bridging the gap between Decision Transformers and distance-based goal representations.
Future directions include hierarchical RL with quasimetric-based subgoal discovery, contrastive quasimetric
learning, and real-world applications in robotics. By introducing quasimetric guidance in DTs, we open a
new research avenue for scalable and structured goal-conditioned RL.

12



Under review as submission to TMLR

References
Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob McGrew,

Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. Advances in
neural information processing systems, 30, 2017.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt, and David
Silver. Successor features for transfer in reinforcement learning. Advances in neural information processing
systems, 30, 2017.

André Barreto, Will Dabney, Rémi Munos, Jonathan J. Hunt, Tom Schaul, Hado van Hasselt, and David
Silver. Successor Features for Transfer in Reinforcement Learning, February 2022.

Léonard Blier, Corentin Tallec, and Yann Ollivier. Learning Successor States and Goal-Dependent Values: A
Mathematical Viewpoint, January 2021. URL http://arxiv.org/abs/2101.07123.

Diana Borsa, André Barreto, John Quan, Daniel Mankowitz, Rémi Munos, Hado van Hasselt, David Silver,
and Tom Schaul. Universal successor features approximators. In International Conference on Learning
Representations. arXiv, 2019. URL http://arxiv.org/abs/1812.07626.

David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl without off-policy
evaluation. Advances in neural information processing systems, 34:4933–4946, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. Goal-conditioned reinforcement learning with imagined
subgoals. In International conference on machine learning, pp. 1430–1440. PMLR, 2021.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel, Aravind
Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling. Advances
in neural information processing systems, 34:15084–15097, 2021.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language modeling
with pathways. Journal of Machine Learning Research, 24(240):1–113, 2023.

Peter Dayan. Improving generalization for temporal difference learning: The successor representation. Neural
Computation, 5(4):613–624, 1993. doi: 10.1162/neco.1993.5.4.613.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In Annual Conference of the North American Chapter of the
Association for Computational Linguistics, 2019. doi: 10.48550/arXiv.1810.04805.

Ishan Durugkar, Mauricio Tec, Scott Niekum, and Peter Stone. Adversarial intrinsic motivation for reinforce-
ment learning. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems, 2021. URL https://openreview.net/forum?id=GYr3qnFKgU.

Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential for offline
RL via supervised learning? In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=S874XAIpkR-.

Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive learning as goal-
conditioned reinforcement learning. Advances in Neural Information Processing Systems, 35:35603–35620,
2022.

Norm Ferns, Prakash Panangaden, and Doina Precup. Bisimulation metrics for continuous markov decision
processes. SIAM Journal on Computing, 40(6):1662–1714, 2011.

13

http://arxiv.org/abs/2101.07123
http://arxiv.org/abs/1812.07626
https://openreview.net/forum?id=GYr3qnFKgU
https://openreview.net/forum?id=S874XAIpkR-


Under review as submission to TMLR

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep data-driven
reinforcement learning, 2020.

Scott Fujimoto and Shixiang Gu. A minimalist approach to offline reinforcement learning. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems,
2021. URL https://openreview.net/forum?id=Q32U7dzWXpc.

Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Devin, Benjamin Eysenbach, and Sergey
Levine. Learning to reach goals via iterated supervised learning. In International Conference on Learning
Representations. arXiv, 2021. URL http://arxiv.org/abs/1912.06088.

Raj Ghugare, Matthieu Geist, Glen Berseth, and Benjamin Eysenbach. Closing the gap between TD learning
and supervised learning - a generalisation point of view. In The Twelfth International Conference on
Learning Representations, 2024. URL https://openreview.net/forum?id=qg5JENs0N4.

Philippe Hansen-Estruch, Amy Zhang, Ashvin Nair, Patrick Yin, and Sergey Levine. Bisimulation makes
analogies in goal-conditioned reinforcement learning. In International Conference on Machine Learning,
pp. 8407–8426. PMLR, 2022.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders
are scalable vision learners. In IEEE/CVF Conference on Computer Vision and Pattern Recognition. arXiv,
2022. doi: 10.48550/arXiv.2111.06377.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence modeling
problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Petar Kormushev, Sylvain Calinon, and Darwin G Caldwell. Reinforcement learning in robotics: Applications
and real-world challenges. Robotics, 2(3):122–148, 2013.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-learning. In
International Conference on Learning Representations, 2022. URL https://openreview.net/forum?id=
68n2s9ZJWF8.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline reinforce-
ment learning. Advances in neural information processing systems, 33:1179–1191, 2020.

Kuang-Huei Lee, Ofir Nachum, Mengjiao Sherry Yang, Lisa Lee, Daniel Freeman, Sergio Guadarrama, Ian
Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, et al. Multi-game decision transformers. Advances in
Neural Information Processing Systems, 35:27921–27936, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver,
and Daan Wierstra. Continuous control with deep reinforcement learning. In International Conference on
Learning Representations, 2016. URL http://arxiv.org/abs/1509.02971.

Bo Liu, Yihao Feng, Qiang Liu, and Peter Stone. Metric residual network for sample efficient goal-conditioned
reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp.
8799–8806, 2023.

Vincent Micheli, Karthigan Sinnathamby, and François Fleuret. Multi-task reinforcement learning with a
planning quasi-metric. arXiv preprint arXiv:2002.03240, 2020.

Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek. Hierarchical reinforcement learning:
A comprehensive survey. ACM Computing Surveys (CSUR), 54(5):1–35, 2021.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression: Simple and
scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

14

https://openreview.net/forum?id=Q32U7dzWXpc
http://arxiv.org/abs/1912.06088
https://openreview.net/forum?id=qg5JENs0N4
https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=68n2s9ZJWF8
http://arxiv.org/abs/1509.02971


Under review as submission to TMLR

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gómez Colmenarejo, Alexander Novikov, Gabriel Barth-
maron, Mai Giménez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom Eccles, Jake Bruce, Ali
Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Hadsell, Oriol Vinyals, Mahyar Bordbar,
and Nando de Freitas. A generalist agent. Transactions on Machine Learning Research, 2022. ISSN
2835-8856. URL https://openreview.net/forum?id=1ikK0kHjvj. Featured Certification, Outstanding
Certification.

Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. Deep reinforcement learning
framework for autonomous driving. arXiv preprint arXiv:1704.02532, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Ahmed Touati and Yann Ollivier. Learning One Representation to Optimize All Rewards, October 2021.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. nips, 2017.

Tongzhou Wang and Phillip Isola. Improved representation of asymmetrical distances with interval quasimetric
embeddings. In NeurIPS 2022 Workshop on Symmetry and Geometry in Neural Representations, 2022a.
URL https://openreview.net/forum?id=KRiST_rzkGl.

Tongzhou Wang and Phillip Isola. On the learning and learnability of quasimetrics. In International
Conference on Learning Representations, 2022b. URL https://openreview.net/forum?id=y0VvIg25yk.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992.

15

https://openreview.net/forum?id=1ikK0kHjvj
https://openreview.net/forum?id=KRiST_rzkGl
https://openreview.net/forum?id=y0VvIg25yk


Under review as submission to TMLR

A Quasimetric Learning

In many machine learning applications, quantifying distances between data points is fundamental to structured
decision-making. This is particularly relevant in reinforcement learning, where understanding the distance
between different states in an environment can significantly improve an agent’s ability to plan and generalize
across tasks. Metric learning is a subfield of representation learning that focuses on learning distance functions
tailored to specific tasks. The goal of metric learning is to define a function d(s, g) that captures meaningful
relationships between states in a way that supports decision-making and control Wang & Isola (2022b;a).

In classical metric learning, the function d(s, g) must satisfy four fundamental properties to be considered a
metric:

(i) Non-negativity: d(s, g) ≥ 0;

(ii) Identity: d(s, s) = 0;

(iii) Symmetry: d(s, g) = d(g, s)

(iv) The Triangle Inequality:d(s, g) ≤ d(s, w) + d(w, g) for all s, g, w ∈ S.

However, in reinforcement learning, particularly in goal-conditioned reinforcement learning, distances between
states are often asymmetric. This asymmetry arises because transitioning from one state to another may
not require the same effort or number of steps as returning to the original state. For example, in a robotic
navigation task, descending a hill may be much easier than climbing back up. Standard metric functions,
which assume symmetry, fail to capture this directional nature of state transitions.

This motivates the use of quasimetric functions, which relax the symmetry constraint while preserving the
essential properties required for structured decision-making. A quasimetric function d(s, g) satisfies two key
properties:

(i) Triangle Inequality: d(s, g) ≤ d(s, w) + d(w, g) for all s, g, w ∈ S.

(ii) Asymmetry: d(s, g) ̸= d(g, s)

Quasimetric learning is particularly useful for goal-conditioned reinforcement learning because it provides a
more structured, data-driven way of measuring progress toward achieving a goal. Unlike manually designed
reward functions, which often require extensive tuning, a learned quasimetric function can provide task-relevant
guidance, improving generalization and efficiency in decision-making.

A.1 Interval Quasimetric Embedding (IQE)

One of the most effective and interpretable approaches to quasimetric learning in goal-conditioned reinforcement
learning is the IQE framework introduced by Wang & Isola (2022a). The central idea behind IQE is to learn
an embedding space where the difficulty of transitioning from a current state s to a target goal state g is
encoded in the geometry of the latent space itself. Unlike traditional distance metrics, which often rely on
symmetric Euclidean distances, IQE captures asymmetry and directional difficulty by defining the quasimetric
distance through the structure of intervals over latent features.

In IQE, each state s ∈ S is embedded into a structured latent space using a learned encoder function

f : S → Rk×l,

which maps the input state space S to a matrix in Rk×l, where:
- k ∈ N is the number of latent components (rows),
- l ∈ N is the number of intervals per component (columns),
- R denotes the real numbers.
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Let u = f(s) ∈ Rk×l and v = f(g) ∈ Rk×l denote the latent representations of the current state s and the
goal state g, respectively.

The component-wise IQE distance between u and v is computed for each row i ∈ {1, . . . , k}, and is defined as:

di(u, v) ≜

∣∣∣∣∣∣
l⋃

j=1
[uij , max(uij , vij)]

∣∣∣∣∣∣ , (11)

where:
• uij and vij denote the elements at row i, column j in matrices u and v, respectively,
• The interval [uij , max(uij , vij)] ⊂ R defines a one-dimensional directed interval,
•

⋃l
j=1 [uij , max(uij , vij)] denotes the union of all such intervals across columns j = 1 to l,

• |·| denotes the total length (Lebesgue measure) of the resulting union of intervals on the real line.
This operation captures the directional spread between the latent features of s and g, component-wise. The
final IQE distance between states s and g can be computed in several ways by aggregating the component-wise
distances di(u, v).

The simplest form, IQE-sum, is given by summing all components:

dIQE-sum(u, v) ≜
k∑

i=1
di(u, v), (12)

which encourages a cumulative measure of directional discrepancy.

A more expressive variant, IQE-maxmean, blends the mean and maximum component-wise distances, using
a learnable scalar parameter α ∈ [0, 1], typically produced by a sigmoid function to ensure bounds:

dIQE-maxmean(u, v; α) ≜ α · max
i

di(u, v) + (1 − α) · 1
k

k∑
i=1

di(u, v), (13)

where: maxi di(u, v) identifies the most significant component-wise distance, 1
k

∑
i di(u, v) computes the

average component-wise distance, and α modulates the relative importance between worst-case and average-
case directional difficulty.

IQE avoids issues with vanishing gradients and bounded representations by employing positively homogeneous
operations (e.g., scaling-invariant interval unions). The use of structured, row-wise interval unions induces a
strong architectural bias toward directional reasoning, making IQE particularly suitable for sparse-reward
and goal-reaching reinforcement learning tasks where asymmetry in transition difficulty is fundamental.

A.2 Illustrative Example: Interval Quasimetric Embedding

To demonstrate the directional nature of the IQE distance, we consider two latent vectors u and v, each of
dimension 6, and reshape them into matrices with shape 2 × 3, corresponding to k = 2 components and l = 3
intervals per component:

u =
[

0.1 0.3 −0.2
−0.5 0.0 0.4

]
, v =

[
1.0 0.6 0.0
0.3 0.5 0.2

]

We compute the component-wise IQE distance di(u, v) using the following rule:
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di(u, v) ≜

∣∣∣∣∣∣
3⋃

j=1
[uij , max(uij , vij)]

∣∣∣∣∣∣
Component 1 (i = 1) — d1(u, v) :

[u1,1, max(u1,1, v1,1)] = [0.1, max(0.1, 1.0)] = [0.1, 1.0], length = 1.0 − 0.1 = 0.9
[u1,2, max(u1,2, v1,2)] = [0.3, max(0.3, 0.6)] = [0.3, 0.6], length = 0.6 − 0.3 = 0.3
[u1,3, max(u1,3, v1,3)] = [−0.2, max(−0.2, 0.0)] = [−0.2, 0.0], length = 0.0 − (−0.2) = 0.2

After merging overlapping intervals:
[0.1, 1.0] ∪ [0.3, 0.6] ∪ [−0.2, 0.0] = [−0.2, 0.0] ∪ [0.1, 1.0], total length = 0.2 + 0.9 = 1.1

Component 2 (i = 2) — d2(u, v) :
[u2,1, max(u2,1, v2,1)] = [−0.5, max(−0.5, 0.3)] = [−0.5, 0.3], length = 0.3 − (−0.5) = 0.8
[u2,2, max(u2,2, v2,2)] = [0.0, max(0.0, 0.5)] = [0.0, 0.5], length = 0.5 − 0.0 = 0.5
[u2,3, max(u2,3, v2,3)] = [0.4, max(0.4, 0.2)] = [0.4, 0.4], length = 0.4 − 0.4 = 0.0

Merged intervals:
[−0.5, 0.3] ∪ [0.0, 0.5] ∪ [0.4, 0.4] = [−0.5, 0.5], total length = 0.5 − (−0.5) = 1.0

Aggregation: Assuming a learned blending parameter α = 0.5, we compute the final IQE distance as:

dIQE(u, v) = α · d1(u, v) + d2(u, v)
2 + (1 − α) · max(d1(u, v), d2(u, v))

= 0.5 · 1.1 + 1.0
2 + 0.5 · max(1.1, 1.0)

= 0.5 · 1.05 + 0.5 · 1.1
= 0.525 + 0.55 = 1.075

Asymmetry Check (dIQE(v, u)) We now compute the reverse direction using:

di(v, u) =

∣∣∣∣∣∣
3⋃

j=1
[vij , max(vij , uij)]

∣∣∣∣∣∣
Component 1 (i = 1) — d1(v, u) :

[v1,1, max(v1,1, u1,1)] = [1.0, max(1.0, 0.1)] = [1.0, 1.0], length = 1.0 − 1.0 = 0.0
[v1,2, max(v1,2, u1,2)] = [0.6, max(0.6, 0.3)] = [0.6, 0.6], length = 0.0
[v1,3, max(v1,3, u1,3)] = [0.0, max(0.0, −0.2)] = [0.0, 0.0], length = 0.0

Total length: d1(v, u) = 0.0

Component 2 (i = 2) — d2(v, u) :
[v2,1, max(v2,1, u2,1)] = [0.3, max(0.3, −0.5)] = [0.3, 0.3], length = 0.0
[v2,2, max(v2,2, u2,2)] = [0.5, max(0.5, 0.0)] = [0.5, 0.5], length = 0.0
[v2,3, max(v2,3, u2,3)] = [0.2, max(0.2, 0.4)] = [0.2, 0.4], length = 0.4 − 0.2 = 0.2

Merged intervals: [0.2, 0.4], total length: d2(v, u) = 0.2
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Aggregation:

This example clearly illustrates the asymmetry of the IQE quasimetric:

dIQE(u, v) = 1.075 vs. dIQE(v, u) = 0.15

The difference arises due to the directional structure of interval-based comparisons, highlighting IQE’s utility
in modeling goal-conditioned distances with asymmetric transition difficulty.

A.3 Metric Residual Network (MRN)

In parallel to IQE, an alternative and equally principled approach is the MRN framework proposed by Liu
et al. (2023). Unlike IQE, which defines the quasimetric from scratch via interval operations, MRN builds on
top of standard symmetric metrics such as Euclidean distances and introduces an asymmetric residual term
to account for directionality in transition difficulty.

The MRN formulation defines the quasimetric as a sum of two components: a symmetric baseline distance
and an asymmetric residual term. Given encoded state representations u = f(s) and v = f(g), each latent
vector is split into symmetric and asymmetric components:

u = [usym ∥ uasym], v = [vsym ∥ vasym]

d(s, g) = ∥usym − vsym∥2 + ReLU
(

max
i

(uasym,i − vasym,i)
)

(14)

This equation defines the quasimetric distance d(s, g) between a start state s and a goal state g, used in
the Metric Residual Network (MRN) model. The embeddings u = f(s) and v = f(g) are split into symmetric
and asymmetric components: usym, vsym ∈ Rk and uasym, vasym ∈ Rk.

The first term, ∥usym − vsym∥2, is a standard symmetric L2 distance capturing mutual similarity between
s and g. The second term introduces asymmetry via a ReLU-activated directional component, where the
maximum difference across dimensions i of the asymmetric parts uasym and vasym penalizes transitions that
are more difficult in one direction than the other. This construction satisfies key properties of a quasimetric,
including non-negativity and asymmetry.

This decomposition ensures that the resulting function satisfies the three quasimetric axioms: non-negativity,
identity, and the triangle inequality. The asymmetric component, computed through feature-wise residuals
and a ReLU operation, allows MRN to model cases where going from state s to g may be significantly different
from returning from g to s—a property that is often observed in real-world navigation and control tasks.

The projection step encourages alignment in a shared space, while the additive residual allows fine-grained
adjustments that improve training stability and sample efficiency. MRNs thus combine the inductive bias
of metric structure with the expressiveness of residual learning, enabling better approximation of complex
goal-reaching behaviors.

A.4 Illustrative Example: Metric Residual Network (MRN)

To compare with IQE, we apply the MRN quasimetric computation to the same latent vectors u = f(s) and
v = f(g), each with 6 dimensions. Following the MRN formulation, each vector is split into two halves: -
The first 3 dimensions are used for the symmetric Euclidean term - The remaining 3 dimensions form the
asymmetric residual term

u = [0.1, 0.3, −0.2]︸ ︷︷ ︸
usym

∥ [−0.5, 0.0, 0.4]︸ ︷︷ ︸
uasym

, v = [1.0, 0.6, 0.0]︸ ︷︷ ︸
vsym

∥ [0.3, 0.5, 0.2]︸ ︷︷ ︸
vasym
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The MRN quasimetric is defined as:

dMRN (u, v) = ∥usym − vsym∥2 + ReLU
(

max
i

(uasym,i − vasym,i)
)

Symmetric Term:

∥usym − vsym∥2 =
√

(0.1 − 1.0)2 + (0.3 − 0.6)2 + (−0.2 − 0.0)2

=
√

(−0.9)2 + (−0.3)2 + (−0.2)2 =
√

0.81 + 0.09 + 0.04
=

√
0.94 ≈ 0.9695

Asymmetric Term:

uasym − vasym = [−0.5 − 0.3, 0.0 − 0.5, 0.4 − 0.2] = [−0.8, −0.5, 0.2]
ReLU (max(·)) = ReLU(0.2) = 0.2

Final MRN Distance:
dMRN (u, v) = 0.9695 + 0.2 = 1.1695

Asymmetry Check (dMRN (v, u)) :

We now reverse the direction and compute dMRN (v, u).

∥vsym − usym∥2 = ∥usym − vsym∥2 = 0.9695
vasym − uasym = [0.3 − (−0.5), 0.5 − 0.0, 0.2 − 0.4] = [0.8, 0.5, −0.2]

ReLU (max(·)) = ReLU(0.8) = 0.8

dMRN (v, u) = 0.9695 + 0.8 = 1.7695

This example illustrates the inherent asymmetry captured by the MRN quasimetric:

dMRN (u, v) = 1.1695 vs. dMRN (v, u) = 1.7695

The directional gap arises from the residual term in the asymmetric subspace, which models the increased
difficulty of transitioning from v back to u compared to the forward direction.

In summary, both IQE and MRN represent state-of-the-art approaches for learning quasimetric functions
in reinforcement learning. IQE provides a highly structured and interval-based embedding with minimal
parameterization, while MRN introduces a flexible residual-based construction that extends classical metric
learning. Empirically, IQE tends to perform better in environments with structured navigation and short-
to-medium horizon dependencies, whereas MRN is often more effective in handling long-horizon tasks and
capturing fine-grained asymmetries.

B Impact of Positive and Negative Losses and the Distance Function

In this section, we analyze the individual and combined effects of the two core loss components used in
training the quasimetric distance model: the positive loss Lpos, which encourages small distance between
successive states, and the negative loss Lneg, which penalizes short distances to unrelated goal states. Our
primary objective is to investigate whether training with only one of the two losses is sufficient or whether a
combination with a learnable balancing coefficient λ is essential for learning structured and effective distance
functions in complex goal-conditioned tasks.
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B.1 Experimental Setup

We train three variants of the quasimetric model:

1. QRL_pos: Trained using only Lpos (positive supervision).

2. QRL_neg: Trained using only Lneg (negative supervision).

3. QRL: Trained using the full combined loss Ltotal = Lneg + λ · stop_grad(Lpos), where λ is learned
dynamically during training.

Each model is evaluated on the AntMaze medium and large environments. After training, we plug the learned
quasimetric into QuaD and evaluate the final goal-reaching success rate. We also monitor the evolution of
average positive and negative distances over training to gain insight into learning dynamics.

Our results show a stark difference between the individual losses and the full model. When trained using only
the positive loss term (QRL_pos), the quasimetric quickly collapses all distances to near zero, even for faraway
or unreachable goals, resulting in the agent receiving misleadingly small guidance signals. Consequently,
when this model is integrated into QuaD, it fails entirely to guide policy learning and yields 0% success on
all AntMaze environments.

On the other hand, training with only the negative loss (QRL_neg) causes the distances to inflate indiscrimi-
nately. The model lacks an anchor to define what reachable means, leading to overestimation of distances
even for adjacent transitions. This again renders the model unusable for guiding goal-reaching behavior, and
the agent also achieves 0% success in all environments.

In contrast, the full QRL model—which combines both losses using an adaptive weighting parameter λ—learns
to assign low distances to reachable states while maintaining high distances to unrelated goals. This dual
structure provides the necessary contrast and balance for meaningful distance estimation. When this model is
used in QuaD, it leads to strong success rates: over 59% on medium mazes and over 31% on large mazes.
This highlights the importance of including both positive and negative supervision in training a quasimetric
function that is robust, generalizable, and effective for guiding decision-making in sparse, goal-conditioned
environments.

B.2 Deeper Analysis: Why Both Losses Are Essential

The quasimetric learning formulation combines two distinct losses—positive and negative—each with a
critical role in shaping the distance function d(s, g). In this section, we provide an in-depth analysis of what
these losses individually encode, why their combination is crucial, and what challenges arise when either
component is removed.

B.2.1 Positive Loss Lpos: Grounding Through Reachable States

The positive loss anchors the distance function to reflect that transitions to nearby states (the next state)
should have low distance. Formally, for a sampled transition (s, a, s′) ∈ D, we define:

Lpos = E(s,s′)∼D

[
(ReLU(dθ(s, s′) − 1))2

]
(15)

This loss penalizes the model when the estimated distance between s and its immediate successor s′ is greater
than a threshold (typically 1). Intuitively, this encourages that nearby and temporally consecutive states are
pulled closer in the embedding space.

However, this loss alone is insufficient. If we remove the negative loss, the model quickly collapses to
minimizing distances universally. In absence of any constraints on distant goals, the model trivially minimizes
Lpos by mapping all inputs to the same embedding, thus flattening the distance landscape (as observed the
distance estimation in figure 5:

dθ(s, g) ≈ 0 ∀s, g
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Such a degenerate solution lacks any notion of long-range structure or directional effort. Empirically, this
manifests as a zero success rate in planning tasks, since all states appear “close” and the model cannot
distinguish between feasible and infeasible goals.

Figure 5: Comparison of the distance learned by both the models: QRL_pos(top) and QRL_full(bottom)
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B.2.2 Negative Loss Lneg: Structural Discrimination from Unrelated Goals

To enforce global structure, we introduce a contrastive-like negative loss. Given a random goal g ∼ pgoal that
is generally not reachable in one step from state s, we define:

Lneg = E(s,g)

[
100 · softplus

(
5 − dθ(s, g)

100

)]
(16)

This loss penalizes the model when it underestimates the distance to an unrelated goal. Its design has
Softplus that smoothly penalizes low distances, avoiding hard margins or vanishing gradients.

Yet again, this loss is insufficient on its own. In the absence of Lpos, the model has no lower bound or
reference for what “nearby” looks like. The optimizer has no measure to maintain any local distance, leading
to unbounded expansion of all distances:

dθ(s, g) >> 1

As shown in Figure 6 (top), this results in exploding distance estimates compared to QRL_full. Consequently,
when used in a planning model like QuaD: it overestimates the distances for every goal, including feasible
ones.
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Figure 6: Comparison of the distance learned by both the models: QRL_neg(top) and QRL_full(bottom)

B.2.3 Combined Loss with Learnable λ: Structured Grounding

Therefore, to maintain local distance as well as estimate global separation, we combine both losses using a
learnable scalar λ, resulting in:

Ltotal = Lneg + λ · stop_grad(Lpos) (17)
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This architecture enables the model to:
• Use positive transitions to anchor the distance scale near the agent.
• Use negative goals to stretch the embedding and introduce meaningful contrast.
• Adaptively balance both objectives based on current training dynamics.
The use of stop_grad ensures that λ is updated to modulate the relative influence of the terms, without
affecting the backward gradients through Lpos.

Figure 5 and 6 clearly show that this formulation leads to a healthy separation of scales:
• dpos is small and stable: the model understands what reachable transitions look like.
• dneg: the model learns to penalize unreachable or distant goals appropriately.
Together, they form a calibrated quasimetric landscape that captures both feasibility and directional-
ity—critical for long-horizon sparse-reward tasks.

B.3 Adaptive Weighting Behavior: Lambda Dynamics

In our full training setup, the weighting parameter λ is learned alongside the quasimetric model. This
adaptive scalar governs the trade-off between the positive loss Lpos and the negative loss Lneg, enabling the
model to dynamically prioritize either structure (via separation of random goals) or grounding (via continuity
of reachable transitions) depending on the training stage.

Figure 7: Learned value of λ over training on antmaze-medium-play-v2.

Figure 7 shows how λ evolves during training on the antmaze-medium-play-v2 environment. In the early
stages, we observe a sharp rise in λ, reaching a peak of approximately 800 by 30K steps. This indicates that
the model initially prioritizes learning structure by emphasizing the negative loss term, pushing distances
between unrelated start-goal pairs apart.

As training progresses, λ begins to plateau and then gradually declines, suggesting a shift in focus toward the
positive loss. This rebalancing is essential, and it prevents the model from arbitrarily inflating all distances
due to the absence of grounding signals.

This dynamic behavior is not possible in fixed-weight baselines, where the relative importance of each
loss remains static throughout training. By contrast, our learned-λ strategy adapts to training dynamics,
producing a more stable and robust quasimetric model.
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B.3.1 Summary

• Removing Lpos: No sense of reachability or grounding. Everything is “far.” Leads to overconservative
agents.

• Removing Lneg: No sense of difficulty or structure. Everything is “near.” Leads to confused or overly
optimistic agents.

• Combining both with λ: Learns directional distances that reflect true task difficulty.
Thus, the full QRL loss is not just a sum of its parts—it is a structured mechanism that provides both
calibration and contrast. This makes it indispensable for learning meaningful quasimetric functions in
complex environments.

C Hyperparameters

C.1 Quasimetric Network

We provide the hyperparameters used for training the Interval Quasimetric Embedding (IQE) and Metric
Residual Network (MRN) value functions in Table 4. Most hyperparameters are set following standard
configurations used in prior Quasimetric RL (QRL) (Wang & Isola, 2022a; Liu et al., 2023). Both IQE and
MRN utilize a three-layer MLP with 512 hidden units per layer and layer normalization to ensure stable
training. The latent dimension for both architectures is set to 512, with IQE using a per-component dimension
of 8, which defines the number of interval embeddings used in the quasimetric representation. For the dual
lambda loss, we set the margin parameter ϵ = 0.05 across all environments.

Regarding dataset configurations, we set the probability of sampling random value goals to 1.0, ensuring
diverse quasimetric learning, while future trajectory-based goal sampling is only applied for the actor policy.
Additionally, geometric sampling is enabled for value function learning but is disabled for the actor function
to avoid unintended bias in trajectory learning. The quasimetric loss formulation follows the original
implementation in Quasimetric RL, where a softplus loss is used for negative distances, and a quadratic
penalty is applied for positive distances exceeding 1.0. The full hyperparameter details are reported in Table
4.

Hyperparameter IQE (Interval Quasimetric Embeddings) MRN (Metric Residual Network)
Learning Rate (lr) 3 × 10−4 3 × 10−4

Batch Size 1024 1024
Quasimetric Type iqe mrn
Value Hidden Dims (512, 512, 512) (512, 512, 512)
Latent Dimension 512 512
Dimension per Component 8 Not Applicable
Layer Normalization True True
Discount Factor 0.99 0.99
Epsilon for Lambda Loss 0.05 0.05
Quasimetric Function Interval-Based IQE Metric Residual Over Euclidean Distance
Distance Function Mean and Max Aggregation Euclidean + L-Infinity Metric
Alpha Parameter Trainable via Sigmoid Not Applicable
Distance Computation Sorted Components with Negative Increments Symmetric Euclidean + Asymmetric Max

Table 4: Hyperparameter settings and architectural details for the two quasimetric network versions: IQE
and MRN.

C.2 Quasimetric Decision Transformer

We summarize the hyperparameters and architectural details of the Quasimetric Decision Transformer (QuaD)
in Table 5. Most hyperparameters align with standard Decision Transformer (DT) (Chen et al., 2021)
configurations. The model is trained using a sequence length of 20 with a transformer-based architecture
consisting of 4 causal attention blocks, each using 8 self-attention heads and a dropout probability of 0.1. The
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embedding dimension is set to 128, with separate state-goal, action, and quasimetric distance embeddings to
enhance representation learning.

For quasimetric learning, we experiment with two quasimetric functions: Interval Quasimetric Embeddings
(IQE) and Metric Residual Networks (MRN), where the latent dimension is set to 512. The quasimetric-guided
actor policy is trained using DDPG+BC by default, but we also evaluate Advantage-Weighted Regression
(AWR) loss settings in ablation studies. The quasimetric prediction model is integrated into the autoregressive
transformer framework, where quasimetric distances are computed at each timestep and embedded into the
transformer sequence model.

Regarding training settings, we follow standard DT training configurations, using an Adam optimizer with a
learning rate of 8 × 10−4, weight decay of 1 × 10−4, and gradient clipping at 0.25 to ensure stable training.
The quasimetric target values replace the standard return-to-go (RTG) formulation, providing a structured
goal-reaching metric for improved sequence modeling. We evaluate the QuaD framework across six AntMaze
environments from D4RL. The full list of model-specific and training-specific hyperparameters is presented in
Table 5.

Hyperparameter Value
General Training Settings

Batch Size 64
Training Steps 100,000
Evaluation Episodes 100
Episode Length 1,000
Evaluation Interval 10000
Discount Factor (γ) 0.99
Learning Rate 8 × 10−4

Weight Decay 1 × 10−4

Adam Beta Parameters (0.9, 0.999)
Gradient Clipping 0.25
Warmup Steps 10,000

Decision Transformer Model
Sequence Length 20
Number of Transformer Blocks 4
Hidden Dimension (hdim) 128
Number of Attention Heads 8
Dropout Probability 0.1
Attention Heads 8

Quasimetric Network
Quasimetric Type IQE / MRN
Latent Dimension 512
Actor Loss Type AWR / DDPG+BC
Alpha Scaling Factor 0.003
Constant Standard Deviation True

Table 5: Hyperparameter and Architectural Details of the Quasimetric Decision Transformer (Quad).
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