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SUPPLEMENTARY MATERIAL

A EXPERIMENTAL SETTINGS

We are using Flax ( https://github.com/google/flax) which is based on JAX (Brad-
bury et al., 2018). The implementations are based on the Flax examples and the reposi-
tory https://github.com/google-research/google-research/tree/master/

flax_models/cifar (Foret et al., 2020). We include a simple Flax implementation of ABEL
with the submission and the corresponding minor modifications to run ABEL on the Flax exam-
ples and flax_models/cifar.All datasets are downloaded for tensorflow-datasets and we used their
training/test split.

All experiments use the same seed for the weights at initialization and we consider only one such
initialization unless otherwise stated. We have not seen much variance in the phenomena described,
see Table 1, 2 description. All experiments use cross-entropy loss.

We run all experiments in v3-8 TPUs. The WideResnet 28-10 CIFAR experiments take roughly
1h per run, the ResNet-50 Imagenet experiments take roughly 5h per run, the PyramidNet CIFAR
experiments take roughly 50h per run, the Transformer experiments take roughly 24h per run, the
ALBERT fine-tuning experiments take around 10 � 20minutes per task.

Here we describe the particularities of each experiment in the figure/tables.

Table 1. All models use momentum with a momentum parameter of 0.9 and none of them uses
dropout. ABEL considerations: learning rate decay 0.1 for ImageNet and SVHN and 0.2 for CIFAR-
100. We force ABEL to decay at 85% of the total epoch budget by the same decay factor. We run the
CIFAR-10 and CIFAR-100 WideResnet experiments with three different seeds and report the average
accuracy, the standard deviation across experiments for all schedules and CIFAR-10, CIFAR-100 is
 0.1%, except for ABEL and CIFAR-100 which has a standard deviation of 0.2% (the standard error
of the mean is 0.1%), from these observations we only consider a single run for the other experiments.
For the CIFAR and WRN experiments, the gradient norm is clipped to 5.

• Resnet-50 on Imagenet: learning rate of 0.8, L2 regularization of 0.0001 (we do not decay
the batch-norm parameters here), label smoothing of 0.1 and 90 epochs. All experiments
include a linear warmup of 5 epochs. Standard data augmentation: horizontal flips and
random crops. Step-wise decay: multiply learning rate by ↵ = 0.1 at 30, 60 epochs. These
experiements take around 4 hours on a v3-8 TPU.

• Wide Resnet 16-8 on SVHN: learning rate of 0.01, L2 regularization of 0.0005, batch size
of 128, no dropout and evolved for 160 epochs. Training data includes the "extra" training
data and no data augmentation. Step-wise decay: multiply learning rate by ↵ = 0.1 at
80, 120 epochs. These experiments take around 7 hours/run on a v3-8 TPU.

• Wide Resnet 28-10 on CIFAR10/100: learning rate of 0.1, L2 regularization of 0.0005,
batch size of 128 and evolved for 200 epochs. Standard data augmentation: horizontal flips
and random crops. Step-wise decay: multiply learning rate by ↵ = 0.2 at 60, 120, 160
epochs. These experiments take around 50 minutes/run on a v3-8 TPU.

• Shake-Drop PyramidNet on CIFAR100: learning rate of 0.1, L2 regularization of 0.0005,
batch size 256, evolved for 1800 epochs. Uses AutoAugment and cutout as data augmen-
tation. Because training this model takes a long time and weight bounces generally take
longer at smaller learning rates, we found it convenient to average the weight norm every
five epochs when using ABEL in order to avoid the decays from being noise dominated
(without this, the third decay happens too early and the test error increases by 0.2%). These
experiments take around 58 hours/run on a v3-8 TPU.

• VGG-16 on CIFAR10: learning rate of 0.05, L2 regularization of 0.0005, batch size 128,
evolved for 200 epochs. Basic data augmentation and no batch norm. These experiments
take around 30 minutes/run on a v3-8 TPU.

Table 2 NLP, RL. All these experiments use ADAM, no dropout nor weight decay.

• Base Transformer trained for translation: learning rate: 1.98 · 10�3, learning rate warmup
of 10k steps, evolved for 100k steps, batch size 256 uses reverse translation. Simple decay:
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Task MNLI(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average
Linear Decay 82.6/83.4 88.1 92.1 92.8 58.5 91.0 88.7 70.8 83.1
Simple Decay 82.9/83.5 87.6 91.1 92.1 57.0 91.2 88.2 73.3 82.9

Table S1: Evaluation metric is accuracy except for CoLA (Matthew correlation), MRPC (F1) and
STS-B (Pearson correlation).

decay by 0.1 at 90k steps. The translation tasks correspond to WMT’17. These experiments
take around 22 hours/run on a v3-8 TPU.

• ALBERT and Glue fine-tuning. fine-tuned from the base ALBERT model of
https://github.com/google-research/albert. Tasks: All tasks were trained for 10k steps
(including 1k linear warmup steps) for four learning rates: {10�5

, 2 · 10�5
, 5 · 10�5

, 10�6},
reported best learning rate, batch size 16. See table S1 for the specific scores. Simple
decay: decay by 0.1 at 0.8 of training. The individual scores are summarized in S1. These
fine-tuning experiments take around 30 minutes/run per task on a v3-8 TPU.

• PPO: learning rate 2.5 · 10�4, batch size 256, 8 agents. Evolved for 40M frames. Simple
decay: decay by 0.1 at 0.9 of training. Rest of configuration is the default configuration of
https://github.com/google/flax/examples. Reported score is the average score over the last
100 episodes. We have three runs per task and schedule. The scores with a 95% confidence
interval are: Seaquest: Linear: 1750 ± 260, Simple: 1850 ± 40; Pong: Linear 21.0 ± 0.01,
Simple 20.7± 0.5; Qbert: Linear 22300± 2950, Simple 23000± 1800. We use one Nvidia
P100 for these experiments, and each run takes around 10 hours.

Table 2 Vision.
These experiments are the same as table 1 but without L2. The simple decay is defined by evolving
with a fixed learning rate during 85% of the time and then decay it (with decay factor 0.1 for ImageNet
and 0.2 for CIFAR). In the case of ImageNet+Adam, the learning rate was reduced to 0.0008. For
simple decay with L2 6= 0, the test error would often increase after decaying, in such case, we choose
the test error at the minimum of the training loss, see fig S10a for an experiment with this behaviour.

Fig S6a: VGG-5 trained with ⌘ = 0.25,� = 0.005 and decayed by a factor of 10 at the respective
time.

Rest of figures. Small modifications or further plots of previous experiments, changes are specified
explicitly.
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B EXPERIMENTAL DETAILS

B.1 THE MILD DEPENDENCE ON THE LAST DECAY EPOCH

In figure S1 we run again the CIFAR experiments with ABEL for different values of
‘last_decay_epoch‘. We see how the final performance does not depend too much on this value.
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Figure S1: Models trained with ABEL with different values for ‘last_decay_epoch‘. Difference of
test error with respect to 85% of training time (170 epochs). We see that the test error does not change
too much, most changes are less than 0.2%.

B.2 LAYER-WISE DEPENDENCE DYNAMICS OF WEIGHT NORM.

In this section, we study the dynamics of the layer-wise weight norm. We consider the Resnet-50
Imagenet setup of table 1 with step-wise decay. For better visualization, we focuse on the top 10
layers, we rank layers by their maximum weight norm during training. These top 10 layers are
mostly intermediate but there are also early and late layers. In figure S2a, we plot the contribution the
quotient between the weight norm of each layer (or the sum of the top 10 layers) and the total weight
norm. We see these top layers account for ⇠ 50% of the total weight norm and they exhibit the same
dynamics: the red line is straight. At the individual layer level, we see that several layers become
constant really fast while there are ⇠ 3 which have a deeper bounce but then have the same dynamics
as the total weight norm. We can illustrate this in fig S2b, where we compare the evolution of the
different weights (normalized by their value at initialization). Most layers have the behavour of the
total weight norm: a bounce and slow down of growth before decaying.
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(a) Resnet-50 on Imagenet
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(b) Resnet-50 on Imagenet

Figure S2: a) Evolution of the quotient between the weight norm of different layers and the total
weight norm. b) Evolution of the weight norm of different layers, normalized by its value at
initialization.
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B.3 DECAY LR ON LOSS PLATEAU

We implemented a simple version of this scheduler in FLAX with the default values for the hyperpa-
rameters from the pytorch implementation , except for the decay factor (called factor) which we set to
0.1 for ImageNet and 0.2 for CIFAR. The other relevant hyperparameters which we did not change
are patience= 10 (Number of epochs with no improvement after which learning rate will be reduced),
threshold= 0.0001 (Relative Threshold for measuring the new optimum, to only focus on significant
changes.). See the https://pytorch.org/docs/stable/optim.html for more details.
The test errors for WRN 28-10 on CIFAR-10 are 3.9 and 47.4 for Resnet-50 on Imagenet. For
Imagenet, the loss still decreases slightly during training so it does not seem like the logic behind this
schedule could yield good results.

For CIFAR-10, the first decay is caused by a real plateau, but after that the loss increases for more
than 10 epochs, so the learning rate decays again. One decay after that, the loss basically stays in a
plateau and the learning rate decays without bound. It is surprising that this schedule does so well on
CIFAR-10 despite of the learning rate becoming so low so early.

These two examples exhibit the opposite issues: too much vs too few decay. It seems unrealistic
that proper hyperparameter tuning can fix both problems, among other things because the ImageNet
Resnet loss is slowly decaying.
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(a) Wide Resnet on CIFAR-10
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(c) Wide Resnet on CIFAR-10
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(d) Resnet-50 on Imagenet
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(e) Resnet-50 on Imagenet
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(f) Resnet-50 on Imagenet

Figure S3: Experiments from the main section with a ReduceLROnPlateau schedule.
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B.4 NO ADVANTAGE FOR EASY TASKS

We expand on the discussion of the main text. We train the same Wide Resnet models of table 1 but
without data augmentation. We see that in this case, simple decay reaches training error 0 at the end
of training and there is no advantage of cosine decay. The test error without data augmentation for
CIFAR100 and 29.7 (cosine) and 29.4 (simple) and for CIFAR10 it is 7.3 for both schedules. We
attribute this to the fact that when evolved for a small number of epochs, before the weight norm
has time to bounce, the simple decay schedule can already reach training error 0 and thus it can not
benefit from the bounce.
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(a) Wide Resnet on CIFAR-10
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(b) Wide Resnet on CIFAR-10
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(c) Wide Resnet on CIFAR-10
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(d) Wide Resnet on CIFAR-100
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(e) Wide Resnet on CIFAR-100
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(f) Wide Resnet on CIFAR-100
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(g) Wide Resnet on CIFAR-10

0 5 10 15
Epochs

0.00

0.05

0.10

0.15

0.20

T
ra

in
E

rr
or

Cosine

Simple

(h) Wide Resnet on CIFAR-10
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(i) Wide Resnet on CIFAR-10

Figure S4: Wide Resnets on CIFAR without data augmentation can reach zero training error with
simple decay.
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B.5 LEARNING RATE DEPENDENCE OF BOUNCING

We can study the effect of the learning rate. Large learning rates seem important for weight norm
bouncing as we can see in figure S5, the small learning rate of 0.01 does not have a bouncing norm
even if we evolve for longer (since smaller learning often to take a longer time to train). We see that
only when there is a bouncing norm are cosine schedules benefitial, see table S2.

Setup Simple Decay Cosine Decay
lr= 0.05 7.4 6.7
lr= 0.01 7.4 7.8
lr= 0.01 1000 epochs 7.2 7.6

Table S2: Test error for VGG-16 and CIFAR-10 for different small learning rate setups. Cosine decay
is only superior at large learning rates when there is a bouncing weight norm.
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(a) VGG-16 on CIFAR-10
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(b) VGG-16 on CIFAR-10
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(c) VGG-16 on CIFAR-10
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Figure S5: In order for the weight norm to bounce in our training run, the learning rate has to be big
enough. We see how for learning rate 0.01 weight norm does not bounce. This is true even if we
evolve for five times longer.
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C EXTRA EXPERIMENTS

Here we describe the extra couple of experiments mentioned in the main text.

The disadvantage of decaying too early or too late. Waiting for the weight norm to bounce seems
key to get good performance. Decaying too late might be harmful because the weight norm does not
have enough time to bounce again, but it is not clear if it is bad by itself. In this section, we run a
VGG-5 experiment on CIFAR-100 for 80 epochs and we decay the learning rate once (by a factor
of 10) at different times and compare the minimum test error, see fig S6a. We see that decaying too
early significantly hurts performance and the best time to decay is after the weight norm has started
slowing down its growth, before it is fully equilibrated. We can compare this sweep over decay times
with ABEL: ABEL would be equivalent to a simple schedule decayed at the time marked by the red
line (here there is no benefit from decaying it again at the end of training). Given the limitation of the
experiment, we can not conclude that decaying to late is hurtful and from the success of cosine decay
we expect it is not bad.
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Figure S6: Minimum test error for VGG5 models decayed at different times (all are evolved for 80
epochs) and weight norm for fixed learning rate. Models with the best performance are decayed after
the bounce, soon before the weight norm dramatically slows down its growth.

Dependence on initialization scale. The bouncing behaviour suggests that maybe one can avoid
bouncing at all by starting with the minimum weight norm to begin with. In order to check this,
we run our CIFAR-100 WRN28-10 experiments with cosine decay for different initializations for
all weights (including the batchnorm weights), which we denote �w, with �w = 1 the standard
experiments that we have run. We see how, even if we start with a weight norm which is below the
minimum weight norm for �w = 1, there is still bouncing. As we keep decreasing �w, it gets to a
point where performance gets significantly degraded (and bouncing dissappears too). These small
�w are probably pathological, but it is interesting to see again the correlation between degraded
performance and no bouncing. Before reaching this small weight initialization the final weight norm
(and error rate) is very similar for the different initializations.
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(a) WRN 28-10 on CIFAR-100
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Figure S7: Wide Resnet 28-10 on CIFAR100 expeirents with different initialization scale. a) Test
error, we see that the two smallest initialization present substantial degradation of performance. b)
Despite of the weight norm being so different at initialization, the final weight norm is the same for
the different models. c) Zoomed version of b) we see that all the initializations but the smallest two
exhibit clear bouncing.
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D MORE TRAINING CURVES

D.1 TRAINING CURVES FOR TABLE 1 EXPERIMENTS

We show the remaining training curves for the Table 1 experiments.
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(a) Wide Resnet on CIFAR-10
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(b) Wide Resnet on CIFAR-10
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(c) Wide Resnet on CIFAR-10
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(d) VGG on CIFAR-10
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(e) VGG on CIFAR-10
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(f) VGG on CIFAR-10
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(g) Wide Resnet 16-8 on SVHN
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(h) Wide Resnet 16-8 on SVHN
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(i) Wide Resnet 16-8 on SVHN
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(j) PyramidNet on CIFAR100
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(k) PyramidNet on CIFAR100
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Figure S8: Remaining training curves for experiments of table 1.
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D.2 LOSS CURVES FOR FIGURE 2 EXPERIMENTS

Here we show the loss curves for the experiments of figure 2.
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(a) WRN 28-10 on CIFAR100
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(b) WRN 28-10 on CIFAR10
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(c) Resnet-50 on ImageNet
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(d) WRN 28-10 on CIFAR100
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(e) WRN 28-10 on CIFAR10
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(f) Resnet-50 on ImageNet

Figure S9: Training and test loss curves for the experiments displayed on figure 2.
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D.3 TRAINING CURVES FOR TABLE 2 EXPERIMENTS

Here we show the training curves for some experiments in Table 2.
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(a) WRN 28-10 on CIFAR100
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(b) WRN 28-10 on CIFAR100
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(c) WRN 28-10 on CIFAR100
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(d) Adam and Imagenet
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(e) Adam and Imagenet
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(f) Adam and Imagenet

Figure S10: A couple of vision tasks of table 2. We see how in the absence of L2, a non-trivial
schedule does not affect the performance and the weight norm is usually monotonically increasing.
d,e,f) Resnet-50 with Adam on Imagenet. We also see how weight norm bouncing also occurs despite
of Adam having an implicit schedule.
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Figure S11: Training curves for Transformer trained on the English-German translation task WMT’14.
We see how there is no significant difference between differnet learning rate schedules.

11



Under review as a conference paper at ICLR 2022

0 10 20 30 40
Millions of frames

�20

�10

0

10

20

P
on

g
sc

or
e

Simple

Linear

(a) PPO Pong

0 10 20 30 40
Millions of frames

0

10000

20000

30000

Q
b
er

t
sc

or
e

Linear

Simple

(b) PPO Qbert

0 10 20 30 40
Millions of frames

0

500

1000

1500

2000

Se
aq

ue
st

sc
or

e

Simple

Linear

(c) PPO Seaquest

0 10 20 30 40
Millions of frames

0

20000

40000

60000

80000

W
ei

gh
t

N
or

m

Simple

Linear

(d) PPO Pong

0 10 20 30 40
Millions of frames

0

25000

50000

75000

100000

W
ei

gh
t

N
or

m

Linear

Simple

(e) PPO Qbert

0 10 20 30 40
Millions of frames

0

20000

40000

W
ei

gh
t

N
or

m

Simple

Linear

(f) PPO Seaquest

Figure S12: Game score of different RL games for the two considered schedules. Mean score over
three runs and individual scores in lighter color. Simple is just decaying the base learning rate by a
factor of 10 at 90% of training and linear is linear decay.
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D.4 TRAINING CURVES FOR LARGE LEARNING RATE EXPERIMENT

We show the training curves for the ImageNet experiment with a large learning rate of 16 of section
2, figure 3. We see that Cosine and Stepwise schedules are basically not learning until the learning
rate decays significantly, however, ABEL adapts quickly to the large learning rate and decays it fast,
yielding better performance.
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Figure S13: Training curves for the Imagenet experiment of section 2, figure 3 with learning rate 16.
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E DERIVATION OF EQUATIONS OF SECTION 4

Weight dynamics equations. Equation 1 follows directly from the SGD update:

�wt+1 = wt+1 � wt = �⌘gt � ⌘�wt (S1)

�|wt+1|2 ⌘ |wt+1|2 � |wt|2 = �wt�1.�wt�1 + 2wt�1�wt�1 = ⌘
2|gt|2 � (2 � ⌘�)⌘�|wt|2 � 2(1 � ⌘�)gt · wt

⇡ ⌘
2|gt|2 � 2⌘�|wt|2 � 2⌘gt · wt (S2)

The terms that we are dropping are subleading for our purposes because ⌘� ⌧ 1 practically. We
expect these terms to be only relevant if the dominant terms cancel each other: ⌘2|gt|2 � 2⌘�|wt|2 �
2⌘gt · wt ⇠ 0

g · w = 0 for scale invariant layers. A scale invariant layer is such that its network function
satisfies f(↵w) = f(w), the bare loss only depends on the weights through the network function. If

we divide the weight into its norm and its direction: wa = |w|ŵa and use
dL

d|w| = 0, we get that:

0 = |w| dL
d|w| = |w|

X

a

dL

dwa

dwa

d|w| =
X

a

dL

dwa
|w|ŵa = g · w (S3)

For scale invariant networks without L2, the change in the weights becomes smaller as the
weight norm equilibrates. Using the SGD equation we get that:

cos angle(wt+1, wt) =
wt+1 · wt

|wt+1||wt|
=�wt=�⌘g

|wt|
|wt+1|

sin angle(wt+1, wt) =
p
1 � cos2 angle =

s
�|wt|2
|wt+1|2

(S4)

As �|w|2 ! 0, angle(wt+1, wt) ⇠ sin angle(wt+1, wt) ! 0.
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